JPH0573352B2 - - Google Patents

Info

Publication number
JPH0573352B2
JPH0573352B2 JP15576687A JP15576687A JPH0573352B2 JP H0573352 B2 JPH0573352 B2 JP H0573352B2 JP 15576687 A JP15576687 A JP 15576687A JP 15576687 A JP15576687 A JP 15576687A JP H0573352 B2 JPH0573352 B2 JP H0573352B2
Authority
JP
Japan
Prior art keywords
semiconductor
type
barrier layer
layer
degenerate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15576687A
Other languages
Japanese (ja)
Other versions
JPS63318773A (en
Inventor
Kunikazu Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15576687A priority Critical patent/JPS63318773A/en
Publication of JPS63318773A publication Critical patent/JPS63318773A/en
Publication of JPH0573352B2 publication Critical patent/JPH0573352B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に異種半導体接
合を有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a semiconductor device having a heterogeneous semiconductor junction.

〔従来の技術〕[Conventional technology]

従来のヘテロ接合(異種半導体接合)を有する
半導体装置、例えばホツトエレクトロントランジ
スタではエミツタに広い禁制帯幅の半導体を用い
ベースに狭い禁制帯幅の半導体を用い、エミツタ
よりベースに注入したキヤリアーがコレクタに集
まるのを利用している。キヤリアのベース中の走
行時間が短いので原理的には高速の動作が期待出
来る。
Conventional semiconductor devices with heterojunctions (different semiconductor junctions), such as hot electron transistors, use a semiconductor with a wide forbidden band width for the emitter and a semiconductor with a narrow forbidden band width for the base, and the carrier injected from the emitter into the base becomes the collector. We take advantage of gatherings. Since the carrier's travel time during the base is short, in principle high-speed operation can be expected.

又、ホツトエレクトロントランジスタはエミツ
タとベース間の電流電圧特性が指数関数的特性を
示すが、キヤリアが縮退していないため、その立
上り特性が必ずしも十分ではない。
Further, although the current-voltage characteristic between the emitter and the base of the hot electron transistor exhibits an exponential characteristic, the rise characteristic is not necessarily sufficient because the carrier is not degenerated.

更に、半導体の不純物濃度を大きくするとトン
ネル接合になつてしまうので、特に広い禁制帯幅
の半導体の寄生抵抗を十分に小さくするたとがで
きず、原理的に期待されるほどには高速動作をさ
せることができない。
Furthermore, if the impurity concentration of the semiconductor is increased, it becomes a tunnel junction, so it is not possible to sufficiently reduce the parasitic resistance of a semiconductor with a particularly wide bandgap, and it is not possible to achieve high-speed operation as expected in principle. I can't.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のヘテロ接合を有する半導体装置
はトンネル接合を利用する特殊なものを除き不純
物濃度を大きくすることができないので特に禁制
帯幅の広い方の半導体の寄生抵抗が小さくするこ
とができず十分な高速動作を行なわせることがで
きないという欠点がある。又、キヤリアが縮退し
ていないため電圧に対して電流が十分に鋭く立上
るとはいえない欠点もある。
In the above-mentioned conventional semiconductor devices having a heterojunction, the impurity concentration cannot be increased except for special devices that use tunnel junctions, so the parasitic resistance of the semiconductor with a wide forbidden band width cannot be reduced, so it is not possible to sufficiently reduce the parasitic resistance of the semiconductor. The disadvantage is that it is not possible to perform high-speed operations. Furthermore, since the carrier is not degenerated, there is also the drawback that the current does not rise sharply enough with respect to the voltage.

〔問題点を解決するための手段〕[Means for solving problems]

本願第1の本発の半導体装置は、強く縮退した
N(又はP)型の第1の半導体、前記第1の半導
体と伝導帯(又は価電子帯)同士が連続した接合
を形成する縮退していない第2の半導体からなる
所定厚さの障壁層及び前記障壁層と所定高さのポ
テンシヤル障壁をもつて接触し前記第2の半導体
より禁制帯幅の小さな第3の半導体からなる異種
半導体接合を有するというものである。
The first semiconductor device of the present application includes a strongly degenerate N (or P) type first semiconductor, and a degenerate semiconductor device in which the first semiconductor and the conduction band (or valence band) form a continuous junction. a barrier layer of a predetermined thickness made of a second semiconductor with a predetermined height, and a third semiconductor having a smaller forbidden band width than the second semiconductor, which contacts the barrier layer with a potential barrier of a predetermined height; It is said that it has.

本願第2の発明の半導体装置は、強く縮退した
N(又はP)型の第1の半導体からなるエミツタ
領域と、前記第1の半導体と伝導帯(又は価電子
帯)同士が連続した接合を形成する縮退していな
い第2の半導体からなる所定厚さの第1の障壁層
と、前記第1の障壁層と所定高さの第1のポテン
シヤル障壁をもつて接触し前記第2の半導体より
禁制帯幅の小さな第3の半導体からなるベース領
域と、前記第1のポテンシヤル障壁より高さの小
さい第2のポテンシヤル隔壁をもつて前記ベース
領域と接触する縮退していない第4の半導体から
なる第2の障壁層と、前記第2の障壁層と伝導帯
(又は価電子帯)同士が連続した接合を形成する
N(又はP)型の第5の半導体からなるコレクタ
領域とを有してトランジスタを含むという構成を
有している。
The semiconductor device of the second invention of the present application has an emitter region made of a strongly degenerate N (or P) type first semiconductor, and a junction where the first semiconductor and the conduction band (or valence band) are continuous. a first barrier layer of a predetermined thickness made of a non-degenerate second semiconductor to be formed, and a first barrier layer that is in contact with the first barrier layer with a first potential barrier of a predetermined height, a base region made of a third semiconductor with a small forbidden band width; and a non-degenerate fourth semiconductor that contacts the base region with a second potential partition wall smaller in height than the first potential barrier. a collector region comprising a second barrier layer and a fifth N (or P) type semiconductor in which the second barrier layer and the conduction band (or valence band) form a continuous junction; It has a configuration that includes a transistor.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して
説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本願第1の発明の一実施例の主要部を
示すダイオード・チツプの側面図である。
FIG. 1 is a side view of a diode chip showing the main parts of an embodiment of the first invention of the present application.

この実施例は、ドナーを1020cm-3ドープした
N+型Al0.7Ga0.3As基板1−1からなる強く縮退し
たN型の第1の半導体、第1の半導体1−1と伝
導帯同士が連続した接合を形成する厚さ約5〜
200nmのノンドープ又は1015cm−3以下のドーナ
を含むAl0.7Ga0.3As層1−2からなる障壁層及び
この障壁層と所定高さのポテンシヤル障壁をもつ
て接触しAl0.7Ga0.3Asより禁制帯幅の小さな1020
cm−3のドナーをドープしたN+型GaAs型1−3
からなる異種半導体接合を有するダイオードであ
り、陽極や陰極の金属電極(図示しない)がそれ
ぞれN+型Al0.7Ga0.3As基板1−1、N型GaAs層
1−3に設けられているものとする。
This example was doped with a donor of 10 20 cm -3
A strongly degenerate N-type first semiconductor made of an N + type Al 0.7 Ga 0.3 As substrate 1-1, with a thickness of approximately 5 to 100 mL to form a continuous junction with the first semiconductor 1-1 in conduction bands.
A barrier layer consisting of a 200 nm non-doped Al 0.7 Ga 0.3 As layer 1-2 containing a donor of 10 15 cm- 3 or less, and a barrier layer that is in contact with this barrier layer with a potential barrier of a predetermined height and is prohibited from Al 0.7 Ga 0.3 As. Small band width 10 20
N + type GaAs type 1-3 doped with cm- 3 donor
It is a diode having a heterogeneous semiconductor junction consisting of an anode and a cathode metal electrode (not shown) provided on an N + type Al 0.7 Ga 0.3 As substrate 1-1 and an N-type GaAs layer 1-3, respectively. do.

このような構造を得るには、例えば、N型
Al0.7Ga0.3As基板の主面にノンドープAl0.7Ga0.3
As層、N+型GaAs層を順次に分子線エピタキシ
ヤル法で堆積させればよい。
To obtain such a structure, for example, N-type
Al 0.7 Ga 0.3 As Non-doped Al 0.7 Ga 0.3 on the main surface of the substrate
The As layer and the N + type GaAs layer may be sequentially deposited by molecular beam epitaxial method.

次に、この実施例の特性について説明する。 Next, the characteristics of this embodiment will be explained.

第2図a,bはそれぞれダイオードの熱平衡状
態及びバイアス電圧印加状態におけるエネルギー
バンド図である。
FIGS. 2a and 2b are energy band diagrams of the diode in a thermal equilibrium state and in a bias voltage application state, respectively.

第2図aではフエルミ準位1−4に対してN+
型Al0.7Ga0.3As基板の伝導帯の底1−5Wが下に
あつて強く縮退している。又N+型GaAs層の伝導
帯の底1−5Nもフエルミ準位1−4の下にあ
り、強く縮退している。この時障壁層の伝導帯の
底1−5は二つの半導体の電子に対するポテン
シヤル障壁として作用している。フエルミ準位1
−4からの障壁の高さVTがダイオードの閾値電
圧となる。
In Figure 2a, N + for Fermi levels 1-4
The bottom 1-5W of the conduction band of the type Al 0.7 Ga 0.3 As substrate is located below and is strongly degenerated. Further, the bottom 1-5N of the conduction band of the N + type GaAs layer is also below the Fermi level 1-4 and is strongly degenerated. At this time, the conduction band bottoms 1-5 of the barrier layer act as potential barriers for the two semiconductor electrons. Fermi level 1
The height of the barrier V T from −4 is the threshold voltage of the diode.

次に、第2図bに示すように、N+型Al0.7Ga0.3
As基板1−1を正にバイアスすると、N+型Al0.7
Ga0.3As側のフエルミ準位1−7WがN+型GaAs
側のフエルミ準位1−7Nよりバイアス電圧Vだ
け上にある。
Next, as shown in Figure 2b, N + type Al 0.7 Ga 0.3
When As substrate 1-1 is positively biased, N + type Al 0.7
Ga 0.3 Fermi level 1-7W on As side is N + type GaAs
The bias voltage V is higher than the Fermi level 1-7N on the side.

さてこの時、N+型Al0.7Ga0.3Asのフエルミ準位
1−7Wは界面でのAl0.7Ga0.3Asの伝導帯の底1
−8よりもV−VTだけ上にあり、N+型Al0.7Ga0.3
As中の電子はN+型GaAs中に放出される。この
放出電流密度Jは次式で与えられる。
Now, at this time, the Fermi level 1-7W of N + type Al 0.7 Ga 0.3 As is the bottom 1 of the conduction band of Al 0.7 Ga 0.3 As at the interface.
-8 above by V−V T , N + type Al 0.7 Ga 0.3
Electrons in As are released into N + type GaAs. This emission current density J is given by the following equation.

J=mq/4π2〓3〔q(V−VT)〕2、V≧VT (l) ここでmは電子の有効質量、qは電子の電荷量、
〓はブランクの定数である。Al0.7Ga0.3Asの電子
の有効質量m=0.2×9.1×10-29、q=1.8×
10-29g、〓=1.05×10-27erg−sec、q=1.6×
1019Cを代入すると上式は次式のようになる。
J=mq/4π 2 〓3[q(V-V T )] 2 , V≧V T (l) Here, m is the effective mass of the electron, q is the amount of charge of the electron,
〓 is a blank constant. Effective mass of electrons in Al 0.7 Ga 0.3 As m=0.2×9.1×10 -29 , q=1.8×
10 -29 g, = 1.05 x 10 -27 erg-sec, q = 1.6 x
10 19 By substituting C, the above equation becomes the following equation.

=1.5×109(V−VT2A/cm2 (2) JはV≧VTで急速に立上る関数で、例えばJ
=103〜105A/cm2を得るのにV−VT=0.8mV〜
8mVで良い。
=1.5×10 9 (V-V T ) 2 A/cm 2 (2) J is a function that rises rapidly when V≧V T , for example, J
= 10 3 ~ To obtain 10 5 A/cm 2 , V-V T = 0.8 mV ~
8mV is fine.

N+型GaAs層、N+型Al0.7Ga0.3As基板は高濃度
にドープされているので低抵抗であり、Al0.7
Ga0.3As層は厚さが5〜200nmと薄いので、この
実施例のダイオードは寄生抵抗が小さく、電圧に
対して鋭く立上るので高速動作可能であり、論理
振幅10mV以下のデイジタル回路を構成できる。
The N + type GaAs layer and the N + type Al 0.7 Ga 0.3 As substrate are highly doped, so they have low resistance, and the Al 0.7
Since the Ga 0.3 As layer is thin, with a thickness of 5 to 200 nm, the diode of this example has low parasitic resistance and rises sharply with respect to voltage, allowing high-speed operation and making it possible to construct digital circuits with a logic amplitude of 10 mV or less. .

なお、障壁層の厚さは、トンネル電流が無視で
きる程度の厚さにしておけばよい。強く縮退した
第1の半導体と接合を形成したとき、第2図aで
いうと、フエルミ準位1−4の上に伝導体の底が
くる部分が、障壁層の実効的厚さになるので、そ
の幾何学的厚さは、半導体の種類、不純物濃度を
考慮して適宜定めればよい。
Note that the thickness of the barrier layer may be set to such a thickness that tunnel current can be ignored. When a junction is formed with the strongly degenerate first semiconductor, the effective thickness of the barrier layer is the part where the bottom of the conductor is above the Fermi levels 1-4, as shown in Figure 2a. , the geometrical thickness may be appropriately determined in consideration of the type of semiconductor and the impurity concentration.

又、第1、第2の半導体の例として組成比が同
じAlGaAsを例にあげて説明したが、第1、第2
の半導体としては強く縮退した半導体のキヤリア
の存在する側のバンドが、スパイクやノツチを生
ずることなく、連続して接合を形成すればよいの
である。
Furthermore, although AlGaAs having the same composition ratio has been used as an example of the first and second semiconductors, the first and second semiconductors have the same composition ratio.
As a semiconductor, it is sufficient that the band on the carrier side of a strongly degenerate semiconductor forms a junction continuously without producing spikes or notches.

本実施例ではN+−Al1-XGaxAsとN+−GaAsの
接合について述べたが、これはP/P接合でも良
い。又、他の異種半導体接合でもよいことは改め
ていうまでもない。
In this embodiment, a junction between N + -Al 1-X GaxAs and N + -GaAs has been described, but this may also be a P/P junction. It goes without saying that other types of semiconductor junctions may also be used.

第3図は本願第2の発明の一実施例の主要部を
示すトランジスタ・チツプの側面図である。
FIG. 3 is a side view of a transistor chip showing the main parts of an embodiment of the second invention of the present application.

この実施例は、1020cm-3のドナーをドープして
強く縮退したN+型Al0.3Ga0.7As層2−3からなる
エミツタ領域と、N+型Al0.3Ga0.7As層2−3と伝
導帯同士が連続した接合を形成する不純物を含ま
ないか低濃度のN型不純物を含むAl0.3Ga0.7As層
2−4からなる5〜20nmの厚さの第1の障壁層
と、この第1の障壁層と所定高さの第1のポテン
シヤル障壁をもつて接触しAl0.3Ga0.7As層2−4
より禁制帯幅の小さな1010cm-3のドナーを含む
N+型GaAs層2−5からなる厚さ100nmのベース
領域と、第1のポテンシヤル障壁より高さの小さ
い第2のポテンシヤル障壁をもつてベース領域と
接触する不純物を含まないか低濃度のN型不純物
(1016cm-3以下)を含むAl0.2Ga0.8As層2−2から
なる厚さ5〜20nmの第2の障壁層と、この第2
の障壁層と伝導帯同士が連続した接合を形成する
1020cm-3のドナー(Si)をドープし強く縮退した
N+型Al0.2Ga0.8As層2−2からなるコレクタ領域
とを有してなるトランジスタである。なお、この
実施例の構造を得るには、N+型Al0.2Ga0.8As基板
上に、Al0.2Ga0.8As層、N+型GaAs層、N+
Al0.3Ga0.7As層を順次にエピタキシヤル成長させ
ればよい。
This example has an emitter region consisting of a strongly degenerate N + type Al 0.3 Ga 0.7 As layer 2-3 doped with a donor of 10 20 cm -3 , and an N + type Al 0.3 Ga 0.7 As layer 2-3. A first barrier layer with a thickness of 5 to 20 nm consisting of an Al 0.3 Ga 0.7 As layer 2-4 containing no impurities or containing a low concentration of N-type impurities forming a continuous junction between conduction bands; Al 0.3 Ga 0.7 As layer 2-4 is in contact with the first barrier layer 2-4 with a first potential barrier having a predetermined height.
Contains a donor with a smaller forbidden band width of 10 10 cm -3
A base region with a thickness of 100 nm consisting of an N + type GaAs layer 2-5, a second potential barrier having a height smaller than the first potential barrier, and an impurity-free or low concentration N layer in contact with the base region. a second barrier layer with a thickness of 5 to 20 nm consisting of an Al 0.2 Ga 0.8 As layer 2-2 containing type impurities (10 16 cm -3 or less);
The barrier layer and the conduction band form a continuous junction.
10 Doped with 20 cm -3 donor (Si) and strongly degenerate
This transistor has a collector region made of an N + type Al 0.2 Ga 0.8 As layer 2-2. Note that in order to obtain the structure of this example, on an N + type Al 0.2 Ga 0.8 As substrate, an Al 0.2 Ga 0.8 As layer, an N + type GaAs layer, an N + type
It is sufficient to epitaxially grow Al 0.3 Ga 0.7 As layers in sequence.

次に、この実施例の特性について説明する。 Next, the characteristics of this embodiment will be explained.

第4図a,bはそれぞれ実施例のトランジスタ
の熱平衡状態及びベース領域に対してエミツタ領
域に正のバイアス電圧Vを印加しコレクタ領域に
負のバイアスを印加した状態におけるエネルギ
ー・バンド図である。
FIGS. 4a and 4b are energy band diagrams of the transistor according to the embodiment in a thermal equilibrium state and in a state where a positive bias voltage V is applied to the emitter region and a negative bias is applied to the collector region with respect to the base region.

第4図aに示すようにフエルミ準位2−6に対
して、2−1,2−5,2−3の伝導帯の底2−
7C,2−7B,2−7Eは下にあり、これらの
半導体は強く縮退している。
As shown in Figure 4a, for the Fermi level 2-6, the bottom 2-1 of the conduction band 2-1, 2-5, 2-3
7C, 2-7B, and 2-7E are below, and these semiconductors are strongly degenerate.

次に、第4図bに示すようにバイアスを印加す
ると、第1の発明の実施例の説明と同様に、エミ
ツタ領域からベース領域に電子が放出される。こ
の放出された電子はVTE−VTCのポテンシヤル差
で加速され、ベース幅が100nmと十分に薄いの
で、通過して第2の障壁層からコレクタ領域に達
する。即ちトランジスタとして動作する。注入電
流の式は(l)式においてVTにVTEを代入してえら
れ、エミツタベース間バイアス電圧Vの鋭く立上
る関数になる。
Next, when a bias is applied as shown in FIG. 4b, electrons are emitted from the emitter region to the base region, similar to the description of the first embodiment of the invention. These emitted electrons are accelerated by the potential difference of V TE -V TC , and since the base width is sufficiently thin as 100 nm, they pass through and reach the collector region from the second barrier layer. That is, it operates as a transistor. The formula for the injection current is obtained by substituting V TE for V T in formula (l), and is a sharply rising function of the emitter-base bias voltage V.

第1、第2の障壁層の厚さや、エミツタ領域と
第1の障壁層の禁制帯幅の関係、コレクタ領域と
第2の障壁層の禁制帯の関係は第1の発明のとこ
ろで説明したことと同様であるから改めて詳述し
ない。
The thickness of the first and second barrier layers, the relationship between the forbidden band width between the emitter region and the first barrier layer, and the relationship between the forbidden band between the collector region and the second barrier layer are as explained in the first invention. Since it is the same as that, I will not explain it in detail again.

この第2の発明は従来のヘテロ接合を用いたホ
ツトエレクトロントランジスタの電圧−電流特
性、寄生抵抗を改善したものであり、高速動作可
能であり、論理振幅10mV以下のデイジタル回路
を構成できる。
This second invention improves the voltage-current characteristics and parasitic resistance of the conventional hot electron transistor using a heterojunction, enables high-speed operation, and constitutes a digital circuit with a logic amplitude of 10 mV or less.

また、実施例ではコレクタ領域も強く縮退して
いるものをあげたが、これは必ずしもその必要は
ない。コレクタ領域が強く縮退していることは、
鋭い立上り特性を得るのに必要な条件ではないか
らである。
Further, in the embodiment, the collector region is also strongly degenerated, but this is not necessarily necessary. The fact that the collector region is strongly degenerated means that
This is because it is not a necessary condition to obtain sharp rise characteristics.

尚、第1、第2の発明は通常の半導体のみなら
ず超格子を用いたものにも適用し得ることは改め
て詳述するまでもなく明らかなことである。
It is obvious that the first and second inventions can be applied not only to ordinary semiconductors but also to those using superlattices, without needing to explain them in detail again.

〔発明の効果〕〔Effect of the invention〕

本発明の半導体装置は強く縮退した半導体のヘ
テロ接合に薄い障壁層を介在させることにより鋭
く立上る電流電圧特性の半導体装置が得られる。
その結果、高速動作可能で微小な論理振幅
(10mV前後の)の回路が実現出来る効果がある。
In the semiconductor device of the present invention, by interposing a thin barrier layer in a strongly degenerate semiconductor heterojunction, a semiconductor device with sharp current-voltage characteristics can be obtained.
As a result, it is possible to realize a circuit that can operate at high speed and has a small logic amplitude (approximately 10 mV).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願第1の発明の一実施例の主要部を
示すダイオード・チツプの側面図、第2図a,b
はそれぞれ第1の発明の実施例の熱平衡状態及び
バイアス電圧印加状態におけるエネルギー・バン
ド図、第3図は本願第2の発明の一実施例の主要
部を示すトランジスタ・チツプの側面図、第4図
a,bはそれぞれ第2の発明の実施例の熱平衡状
態バイアス印加状態におけるエネルギー・バンド
図である。 1−2……N+型GaAs層、1−2……Al0.7
Ga0.3As層、1−3……N+型GaAS層、1−4…
…フエルミ準位、1−5……障壁層の伝導体の
底、1−5N,1−7N……N型GaAs側のフエ
ルミ準位、1−5W,1−7W……N型Al0.7
Ga0.3As側のフエルミ準位、1−6……N+
GaAs層の伝導帯の底、1−8……Al0.7Ga0.3As
層の伝導帯の底、2−1……N+型Al0.2Ga0.8As
層、2−2……Al0.2Ga0.8As層、2−3……N+
Al0.3Ga0.7As層、2−4……Al0.3Ga0.7As層、2
−5……N+型OaAs層、2−6……フエルミ準
位、27−B……N+型GaAs層2−5の伝導帯の
底、27−C……N+型Al0.2Ga0.8As層2−1の伝
導体の底、27−E……N+型Al0.3Ga0.7As層2−
3の伝導帯の底。
Figure 1 is a side view of a diode chip showing the main parts of an embodiment of the first invention of the present application, Figures 2a and b
3 is an energy band diagram of the embodiment of the first invention in a thermal equilibrium state and a bias voltage application state, respectively; FIG. 3 is a side view of a transistor chip showing the main part of an embodiment of the second invention of the present application; and FIG. Figures a and b are energy band diagrams of the embodiment of the second invention in a thermal equilibrium state and a bias applied state, respectively. 1-2...N + type GaAs layer, 1-2...Al 0.7
Ga 0.3 As layer, 1-3...N + type GaAS layer, 1-4...
...Felmi level, 1-5...Bottom of conductor in barrier layer, 1-5N, 1-7N...Felmi level on N-type GaAs side, 1-5W, 1-7W...N-type Al 0.7
Ga 0.3 Fermi level on As side, 1-6...N + type
Bottom of conduction band of GaAs layer, 1-8...Al 0.7 Ga 0.3 As
Bottom of conduction band of layer, 2-1...N + type Al 0.2 Ga 0.8 As
Layer, 2-2...Al 0.2 Ga 0.8 As layer, 2-3...N + type
Al 0.3 Ga 0.7 As layer, 2-4...Al 0.3 Ga 0.7 As layer, 2
-5...N + type OaAs layer, 2-6...Fermi level, 27-B...Bottom of conduction band of N + type GaAs layer 2-5, 27-C...N + type Al 0.2 Ga 0.8 Bottom of conductor of As layer 2-1, 27-E...N + type Al 0.3 Ga 0.7 As layer 2-
The bottom of the conduction band of 3.

Claims (1)

【特許請求の範囲】 1 強く縮退したN(又はP)型の第1の半導体、
前記第1の半導体と伝導帯(又は価電子帯)同士
が連続した接合を形成する縮退していない第2の
半導体からなる所定厚さの障壁層及び前記障壁層
と所定高さのボデンシヤル障壁をもつて接触し前
記第2の半導体より禁制帯幅の小さな第3の半導
体からなる異種半導体接合を有することを特徴と
する半導体装置。 2 強く縮退したN(又はP)型の第1の半導体
からなるエミツタ領域と、前記第1の半導体と伝
導帯(又は価電子帯)同士が連続した接合を形成
する縮退していない第2の半導体からなる所定厚
さの第1の障壁層と、前記第1の障壁層と所定高
さの第1のポテンシヤル障壁をもつて接触し前記
第2の半導体より禁制帯幅の小さな第3の半導体
からなるベース領域と、前記第1のポテンシヤル
障壁より高さの小さい第2のポテンシヤル障壁を
もつて前記ベース領域と接触する縮退していない
第4の半導体からなる第2の障壁層と、前記第2
の障壁層と伝導帯(又は価電子帯)同士が連続し
た接合を形成するN(又はP)型の第5の半導体
からなるコレクタ領域とを有してなるトランジス
タを含むことを特徴とする半導体装置。
[Claims] 1. A strongly degenerate N (or P) type first semiconductor,
a barrier layer of a predetermined thickness made of a non-degenerate second semiconductor in which the first semiconductor and the conduction band (or valence band) form a continuous junction; and a bodential barrier of a predetermined height with respect to the barrier layer. 1. A semiconductor device comprising a dissimilar semiconductor junction comprising a third semiconductor that is in contact with each other and has a smaller forbidden band width than the second semiconductor. 2. An emitter region made of a strongly degenerate N (or P) type first semiconductor, and a non-degenerate second emitter region in which the first semiconductor and the conduction band (or valence band) form a continuous junction. a first barrier layer made of a semiconductor and having a predetermined thickness; and a third semiconductor that is in contact with the first barrier layer with a first potential barrier of a predetermined height and has a smaller forbidden band width than the second semiconductor. a second barrier layer made of a non-degenerate fourth semiconductor contacting the base region with a second potential barrier smaller in height than the first potential barrier; 2
A semiconductor comprising a transistor comprising a barrier layer and a collector region made of an N (or P) type fifth semiconductor in which conduction bands (or valence bands) form a continuous junction. Device.
JP15576687A 1987-06-22 1987-06-22 Semiconductor device Granted JPS63318773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15576687A JPS63318773A (en) 1987-06-22 1987-06-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15576687A JPS63318773A (en) 1987-06-22 1987-06-22 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS63318773A JPS63318773A (en) 1988-12-27
JPH0573352B2 true JPH0573352B2 (en) 1993-10-14

Family

ID=15612942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15576687A Granted JPS63318773A (en) 1987-06-22 1987-06-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63318773A (en)

Also Published As

Publication number Publication date
JPS63318773A (en) 1988-12-27

Similar Documents

Publication Publication Date Title
KR900004466B1 (en) Semiconductor device
CA1213378A (en) Ballistic heterojunction bipolar transistors
US4758868A (en) Ballistic hetero-junction transistor with transverse two dimensional electron gas layer
EP0313749B1 (en) Heterojunction bipolar transistor
US4691215A (en) Hot electron unipolar transistor with two-dimensional degenerate electron gas base with continuously graded composition compound emitter
US4716445A (en) Heterojunction bipolar transistor having a base region of germanium
EP0292568B1 (en) Hetero-junction bipolar transistor
US4768074A (en) Heterojunction bipolar transistor having an emitter region with a band gap greater than that of a base region
US5561306A (en) Hetero-bipolar transistor having a plurality of emitters
EP0566591B1 (en) Semiconductor device
JPH0665216B2 (en) Semiconductor device
US4672404A (en) Ballistic heterojunction bipolar transistor
JPH0665217B2 (en) Transistor
US4910562A (en) Field induced base transistor
US4926232A (en) Resonant-tunneling bipolar transistor
US4786957A (en) Negative differential resistance element
US4825269A (en) Double heterojunction inversion base transistor
EP0229672B1 (en) A heterojunction bipolar transistor having a base region of germanium
EP0322773B1 (en) Semiconductor device with semimetal
JPH0573352B2 (en)
JPS5946106B2 (en) ultra high speed transistor
JPS6247157A (en) Semiconductor device
JPH0831471B2 (en) Resonant tunneling transistor
JPH0458706B2 (en)
GB2191036A (en) Hot charge-carrier transistors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees