JPH057304U - Dissolved air separation and removal device - Google Patents

Dissolved air separation and removal device

Info

Publication number
JPH057304U
JPH057304U JP5427291U JP5427291U JPH057304U JP H057304 U JPH057304 U JP H057304U JP 5427291 U JP5427291 U JP 5427291U JP 5427291 U JP5427291 U JP 5427291U JP H057304 U JPH057304 U JP H057304U
Authority
JP
Japan
Prior art keywords
hot water
air
main body
water supply
bowl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5427291U
Other languages
Japanese (ja)
Other versions
JPH0721201Y2 (en
Inventor
洋一 内田
俊夫 野口
武美 村中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP1991054272U priority Critical patent/JPH0721201Y2/en
Publication of JPH057304U publication Critical patent/JPH057304U/en
Application granted granted Critical
Publication of JPH0721201Y2 publication Critical patent/JPH0721201Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

(57)【要約】 【目的】 この種の給湯システムにおいて極めて簡単な
脱気設備で済むと共に、空気障害の問題を確実に解消し
得るようにした溶存空気の分離除去装置を提供すること
である。 【構成】 給湯設備の熱源の出口管側に設置されるよう
になっていて温水の入口3と出口4とを有する本体2
と、該本体2内でその底部2aから立設していて下端5
aが上記入口3と接続すると共に上端5bにノズル6が
設けられている垂直管5と、上記本体2上部の蓋体7に
取り付けられた空気排気手段13,14と、上記ノズル
6を覆うように取付板9を介して上記本体2に固定され
た椀状部材11と、を備えている。
(57) [Summary] [Purpose] To provide a device for separating and removing dissolved air, which requires only extremely simple deaeration equipment in this kind of hot water supply system and can surely solve the problem of air obstacles. . [Structure] A main body 2 having an inlet 3 and an outlet 4 of hot water which is installed on the outlet pipe side of a heat source of hot water supply equipment.
And the lower end 5 which is erected from the bottom portion 2a in the main body 2.
a is connected to the inlet 3 and a vertical pipe 5 having a nozzle 6 provided at the upper end 5b, air exhausting means 13 and 14 attached to a lid 7 on the upper part of the main body 2, and the nozzle 6 are covered. And a bowl-shaped member 11 fixed to the main body 2 via a mounting plate 9.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、ビル等における給湯設備の配管中に溶存する空気等を分離除去する ための装置に関する。 The present invention relates to an apparatus for separating and removing air and the like dissolved in piping of hot water supply equipment in a building or the like.

【0002】[0002]

【従来の技術】[Prior Art]

最近、マンション等のビルにおいて温水を利用する集中給湯方式による暖房や 給湯設備が普及しているが、その一方でかかる給湯設備の配管中に存在する空気 による障害、例えば循環ポンプの焼損や配管の腐食等の発生が増加してきている 。 Recently, heating and hot water supply equipment using a central hot water supply system that uses hot water has become widespread in buildings such as condominiums. Occurrence of corrosion is increasing.

【0003】 上記空気による障害のうち循環ポンプの焼損は、温水中の微細気泡や溶存空気 が温水から分離して凝集し、それが大きな気泡になって配管中を移動して循環ポ ンプに流入することに起因している。また、配管腐食は、温水中に含まれる溶存 酸素が温水から分離して配管内面に付着することにより、所謂、酸素濃淡電池が 形成されることがその主な原因であると言われている。そして特に配管腐食の場 合、温水温度が50〜60°Cになると、溶存酸素の影響が著しく大きくなり、 このためかかる温度範囲で使用される温水設備では温水中の溶存酸素も含めて溶 存空気を除去する(以下、脱気という)ための手段が種々講じられている。Among the above-mentioned obstacles caused by air, burnout of the circulation pump is caused by fine air bubbles and dissolved air in the hot water which are separated from the hot water and agglomerated into large air bubbles that move in the pipe and flow into the circulation pump. It is due to doing. It is said that the main cause of the pipe corrosion is that a so-called oxygen concentration battery is formed by the dissolved oxygen contained in the hot water separating from the hot water and adhering to the inner surface of the pipe. Especially in the case of pipe corrosion, when the hot water temperature reaches 50 to 60 ° C, the effect of dissolved oxygen becomes significantly large. Therefore, in hot water equipment used in such a temperature range, dissolved oxygen including hot water is also dissolved. Various means have been taken for removing air (hereinafter referred to as deaeration).

【0004】 例えば透過膜を利用した脱気手段の適用例を、ビルの集中給湯システムの場合 で説明すると、先ず集中給湯システムの概略構成を示している図5において、2 0はマンション等のビル、21は受水槽、22は給水ポンプ、23は給水管、2 4は貯湯タンク、25は自動空気抜き弁、26は温水循環ポンプ、27は温水行 き管、28は電気もしくはガス等を加熱エネルギー源とする熱源手段(以下、単 に熱源という)、29は温水戻り管、30は給湯循環ポンプ、31は給湯行き管 、32はカランそして33は給湯戻り管であり、これらが給湯システムの基本構 成となっている。For example, an application example of deaeration means using a permeable membrane will be described in the case of a centralized hot water supply system of a building. First, in FIG. 5, which shows a schematic configuration of the centralized hot water supply system, 20 is a building such as an apartment building. , 21 is a water tank, 22 is a water supply pump, 23 is a water supply pipe, 24 is a hot water storage tank, 25 is an automatic air vent valve, 26 is a hot water circulation pump, 27 is a hot water circulation pipe, 28 is electricity for heating electricity or gas, etc. A heat source means (hereinafter, simply referred to as a heat source) serving as a heat source, 29 is a hot water return pipe, 30 is a hot water supply circulation pump, 31 is a hot water supply pipe, 32 is a currant, and 33 is a hot water supply return pipe. It is structured.

【0005】 さらに、かかる給湯基本システムに対して以下の脱気システムが付加される。 即ち図中、34は脱気送水ポンプ、35はフィルタ、36は減圧弁、37は流量 計、38は流量設定弁、39は透過膜、40は脱気筒、41はエゼクタ、42は 脱気用水槽そして43は脱気用ポンプである。そしてこのように構成された従来 の脱気システムによれば、ビル20の屋上等に設置された熱源28の手前におい て、受水槽21の給水を上記透過膜39を通過させることにより、給水の脱気が 行われる。 ところで、上記透過膜39は一般に中空糸と呼ばれる高分子のプラスチック材 料により形成されており、空気を通過させるが水を通過させないようにした多数 の超微小の穴を有している。従ってこの透過膜39は専ら水から空気を取り除く ためのエレメントとしての機能を備えているだけであるから、脱気システムとし てはその他に上記脱気送水ポンプ34,フィルタ35及び脱気筒40等の多くの 付帯設備が必要になる。Further, the following deaeration system is added to the hot water supply basic system. That is, in the figure, 34 is a degassing water pump, 35 is a filter, 36 is a pressure reducing valve, 37 is a flow meter, 38 is a flow rate setting valve, 39 is a permeable membrane, 40 is a de-cylinder, 41 is an ejector, and 42 is for deaeration. The water tank and 43 are degassing pumps. According to the conventional degassing system configured as described above, the water supply of the water receiving tank 21 is passed through the permeable membrane 39 in front of the heat source 28 installed on the roof of the building 20, etc. Deaeration is performed. By the way, the permeable membrane 39 is formed of a polymeric plastic material generally called a hollow fiber, and has a large number of ultrafine holes that allow air to pass but not water to pass. Therefore, since the permeable membrane 39 has only the function as an element for removing air from water, the deaeration system is not limited to the deaeration water pump 34, the filter 35, and the decylinder 40. Many auxiliary equipments are required.

【0006】 なお、この種の透過膜を利用する脱気方法には、上記図5に示した例の他に例 えば、特公平1−299612号公報又は特公平1−215312号公報により 開示された技術が既に知られている。A degassing method utilizing this type of permeable membrane is disclosed in, for example, Japanese Patent Publication No. 1-299612 or Japanese Patent Publication No. 1-215312, in addition to the example shown in FIG. Technology is already known.

【0007】 一方、特公昭63−93311号公報には、超音波を利用した気泡分離除去装 置が開示されている。この気泡分離除去装置では、容器内を通過する温水に超音 波を照射して気泡を粗大化せしめ、この粗大化した気泡を除去する手段を用いて 空気を排除しようとするものである。 さらに、パラジウム触媒を利用する脱気方法があるが、これは例えば、特公平 2−265604号公報に記載された水中の溶存酸素除去装置のように、前述し た透過膜等の物理的手段とパラジウム触媒による化学的反応とを組合わせること により、溶存酸素のみを効率よく除去しようとするものである。On the other hand, Japanese Patent Publication No. 63-93311 discloses a device for removing and removing bubbles using ultrasonic waves. In this bubble separation / removal device, warm water passing through the container is irradiated with ultrasonic waves to coarsen the bubbles, and air is removed by using a means for removing the coarsened bubbles. Further, there is a degassing method using a palladium catalyst, which is the same as the above-mentioned physical means such as a permeable membrane as in the device for removing dissolved oxygen in water described in Japanese Patent Publication No. 2-265604. By combining it with a chemical reaction using a palladium catalyst, it is intended to efficiently remove only dissolved oxygen.

【0008】[0008]

【考案が解決しようとする課題】 しかしながら、上述した従来の脱気手段において、先ず透過膜を利用する脱気 方法の場合、前記透過膜39それ自体が所謂、ハイテク部品であるため高価であ る上に、脱気送水ポンプ34,フィルタ35及び脱気筒40等多くの付帯設備を 別途必要とするから、設備全体は複雑且つ高価なものにならざるを得なかった。 しかも、上記透過膜39は実使用において微細なゴミやスケールによってしばし ば目詰まりを来し、空気の分離効率を低下させていることから、かかる透過膜3 9は定期的な洗浄または交換を余儀なくされた。そして更に、透過膜39は高温 度における強度上の信頼性が十分でなく、高温度下での使用に際してはその補強 が必要になる等の不都合がある。このため常温(20°C以下)の給水側で用い るのが限度であり、温度50〜60°Cの温水に対しては実質上適用することが できない。However, in the conventional degassing means described above, in the case of the degassing method that first uses the permeable membrane, the permeable membrane 39 itself is a so-called high-tech component, which is expensive. In addition, since many additional equipments such as the degassing / water-feeding pump 34, the filter 35, and the de-cylinder 40 are separately required, the entire equipment has to be complicated and expensive. Moreover, since the permeable membrane 39 is often clogged by fine dust and scales in actual use and lowers the air separation efficiency, the permeable membrane 39 must be regularly washed or replaced. Was done. Further, the permeable membrane 39 is not sufficiently reliable in strength at high temperatures, and there is a disadvantage in that it needs to be reinforced when used at high temperatures. For this reason, the limit is that it can be used on the water supply side at room temperature (20 ° C or lower), and it cannot be practically applied to hot water at a temperature of 50 to 60 ° C.

【0009】 また、前記超音波を利用する脱気方法の場合、超音波発生手段とは別に空気を 除去するための手段が必要になるばかりか、上記超音波発生手段自体でも例えば 電気により振動部品を作動させるための構成が必要になる等、実際上かなり面倒 であり、またそのために事実、ビル等の給湯設備においても脱気方法として殆ど 活用されていない。Further, in the case of the degassing method using the ultrasonic waves, not only a means for removing air is required in addition to the ultrasonic wave generating means, but also the ultrasonic wave generating means itself itself vibrates by an electric component. It is quite troublesome in practice, such as requiring a configuration to operate the air conditioner. In fact, it is hardly used as a degassing method in hot water supply facilities such as buildings.

【0010】 さらに、パラジウム触媒を利用する脱気方法の場合、パラジウム触媒の他に物 理的手段を組み合わせなければ、十分な効果を奏し得ないばかりか、装置全体が 複雑で高価であることから半導体工業における超水粋生成装置や特別なボイラプ ラントにおける給水装置にしか実際上利用することができない。つまり、ビルの 給湯システム等の比較的中小規模の設備には殆ど用いられていないのが実情であ る。Furthermore, in the case of a degassing method using a palladium catalyst, unless a physical means other than the palladium catalyst is combined, sufficient effects cannot be obtained, and the entire apparatus is complicated and expensive. It can only be practically used as a super water purifier in the semiconductor industry or as a water supply in a special boiler plant. In other words, the fact is that it is rarely used in relatively small and medium-sized facilities such as hot water supply systems in buildings.

【0011】 このように従来の脱気手段にはそれぞれ問題があり、そこでむしろそのような 脱気手段を設けないでこの種の給湯システムを構成した例があるが、その場合で も以下に述べる問題があった。 ここで先ず、温水に対する気体の溶解量はブンゼン(Bunsen)の吸収係 数及びヘンリーの法則(Henry’s law)に従って変化することが知ら れている。例えば酸素の場合、図6に示したように酸素が温水に溶解する割合は 温水温度の上昇に従って少なくなり、また温水圧力の低下に従って少なくなる。 そしてかかる傾向は酸素に限らず窒素又は微量ガスを含む空気の場合においても 同様である。なお、図6の溶解曲線は実験室などで温水の流れていない状態で測 定した所謂、理論値(データ)であって、実際の場所の温水の溶解量がこの理論 値と一致しているときの状態を飽和という。そして通常、ビルの給湯設備の給水 は、貯水池や前記受水槽21(図5参照)で長時間大気と接触しているため、そ のときの大気圧及び給水温度における飽和値にほぼ近い値で空気が溶解している 。As described above, there are problems in the conventional degassing means, and there is an example in which a hot water supply system of this type is configured without providing such degassing means, but even in that case, it will be described below. There was a problem. First, it is known that the amount of gas dissolved in hot water changes according to Bunsen's absorption coefficient and Henry's law. For example, in the case of oxygen, as shown in FIG. 6, the proportion of oxygen dissolved in hot water decreases as the temperature of the hot water increases, and decreases as the pressure of the hot water decreases. This tendency is not limited to oxygen, and is the same in the case of air containing nitrogen or a trace amount of gas. The dissolution curve in Fig. 6 is a so-called theoretical value (data) measured in a laboratory where hot water is not flowing, and the actual amount of hot water dissolved is in agreement with this theoretical value. The state of time is called saturation. Usually, the water supplied to the hot water supply facility of a building is in contact with the atmosphere in the reservoir or the water receiving tank 21 (see Fig. 5) for a long time, and therefore has a value close to the saturation value at atmospheric pressure and water temperature at that time. The air is dissolved.

【0012】 さて、図5に示したビルの集中給湯システムにおいて脱気手段を設けない場合 の給湯基本システム(ここでは、前記受水槽21乃至給湯戻り管33までの一連 の部材によって構成されるものとする)を考えると、先ず、飽和状態にある給水 は受水槽21から給水ポンプ22によって給送されることにより、その圧力が上 昇する。このため、図6から明らかなように、かかる給水に対する空気の溶解量 は増加し、熱源28に対してむしろ分離しにくい状態で給水が流入する。Now, in the centralized hot water supply system of the building shown in FIG. 5, a hot water supply basic system in the case where deaeration means is not provided (here, it is composed of a series of members from the water receiving tank 21 to the hot water supply return pipe 33). Considering the above), first, the saturated water supply is fed from the water receiving tank 21 by the water supply pump 22, so that the pressure thereof rises. Therefore, as is clear from FIG. 6, the amount of air dissolved in the feed water increases, and the feed water flows into the heat source 28 in a state where it is rather difficult to separate the air.

【0013】 そして熱源28では50〜60°Cの加熱により溶解量が少なくなるが、その 一方で圧力が高くなっているため、図6の溶解曲線から判断する限り例えば10 °C,大気圧で飽和した水は1kgf/cm2 以上で、理論上では空気が殆ど分 離し得ない状態になる。ところが、実際には50〜60°Cの加熱により水のエ ネルギは相当程度高まって活性化しており、又、このときには空気もかなり膨張 していて微細化して温水から分離し易い状態になっている。このような状態の温 水が熱源28から温水戻り管29を介して貯湯タンク24へ戻る場合、該熱源2 8から離れるに従って温度低下を来し、そして貯湯タンク24内に流入したこと により流速が若干減少すると共に、貯湯タンク24内に長時間滞留していること により上記のように一旦活性化して微細化した空気は再び温水中に溶解してしま う。 In the heat source 28, the amount of dissolution is reduced by heating at 50 to 60 ° C., but on the other hand, the pressure is high. Therefore, as judged from the dissolution curve in FIG. 6, at 10 ° C. and atmospheric pressure, for example. Saturated water is 1 kgf / cm 2 or more, which means that theoretically air cannot be separated. However, actually, the energy of water is considerably increased and activated by heating at 50 to 60 ° C, and at this time, the air is also considerably expanded and becomes finer and easily separated from hot water. There is. When the hot water in such a state returns from the heat source 28 to the hot water storage tank 24 via the hot water return pipe 29, the temperature drops as it goes away from the heat source 28, and since it flows into the hot water storage tank 24, the flow velocity becomes The air, which has been slightly activated and finely pulverized by once being activated as described above due to staying in the hot water storage tank 24 for a long time, is dissolved again in the warm water.

【0014】 このため、貯湯タンク24からカラン32までの間の給湯行き管31における エルボやバルブ等の配置部分で局部的な減圧が生じ、このため空気は再び微細化 ・凝集して大きな気泡になり、従って前述したのと同様な空気障害が発生する結 果となる。このように脱気手段を設けないで給湯システムを構成すると、その構 成自体は極めて簡素化するものの、空気障害の問題は依然、解決され得ない。For this reason, local decompression occurs at the portion of the hot water supply pipe 31 between the hot water storage tank 24 and the calan 32 where the elbow, valve, etc. are arranged, and as a result, the air is again atomized and agglomerated into large bubbles. Therefore, the same air obstacle as described above will occur. If the hot water supply system is configured without providing the deaeration means in this way, the configuration itself is extremely simplified, but the problem of air obstruction cannot be solved.

【0015】 本考案は、かかる実情に鑑み、この種の給湯システムにおいて極めて簡単な脱 気設備で済むと共に、空気障害の問題を確実に解消し得るようにした溶存空気の 分離除去装置を提供することを目的とする。In view of the above situation, the present invention provides an apparatus for separating and removing dissolved air, which requires only a very simple deaeration facility in this type of hot water supply system and can surely solve the problem of air obstruction. The purpose is to

【0016】[0016]

【課題を解決するための手段】[Means for Solving the Problems]

本考案による溶存空気の分離除去装置は、給湯設備の熱源の出口管側に設置さ れるようになっていて温水の入口と出口とを有する本体と、該本体内でその底部 から立設していて下端が上記入口と接続すると共に上端にノズルが設けられてい る垂直管と、上記本体上部の蓋体に取り付けられた空気排気手段と、上記ノズル を覆うように取付板を介して上記本体に固定された椀状部材と、を備えている。 The device for separating and removing dissolved air according to the present invention is installed on the outlet pipe side of a heat source of hot water supply equipment, and has a main body having an inlet and an outlet for hot water, and is erected from the bottom of the main body. A vertical pipe with a lower end connected to the inlet and a nozzle at the upper end, an air exhaust means attached to the lid on the upper part of the main body, and an attachment plate to the main body via a mounting plate to cover the nozzle. A bowl-shaped member that is fixed.

【0017】[0017]

【作用】[Action]

本考案によれば、給湯設備の熱源から出た直後の活性化した温水中で微細化し ている気泡に対して、上記ノズルを介して空気層内に温水を噴出せしめることに よる減圧効果並びに該ノズルから噴出した温水を空気層内で上記椀状部材に衝突 せしめることによる効果で、微細気泡の分離効果を更に高めることができる。 According to the present invention, the decompressing effect by ejecting hot water into the air layer through the nozzles with respect to air bubbles that have become fine in activated hot water immediately after coming out of the heat source of the hot water supply equipment, The effect of colliding the hot water ejected from the nozzle with the bowl-shaped member in the air layer can further enhance the effect of separating fine bubbles.

【0018】[0018]

【実施例】【Example】

以下、図1乃至図4に基づき、従来例と同一部材には同一符号を用いて本考案 の溶存空気の分離除去装置の一実施例を説明する。 先ずここで、本実施例は前記従来例の場合に説明した給湯基本システム、即ち 図5に示される前記受水槽21乃至給湯戻り管33までの一連の部材によって構 成されるシステムにおいて適用するものとする。即ち、図1に示される本案分離 除去装置1は、図3を参照して温水戻り管29の途中に、つまり該温水戻り管2 9を構成する第1戻り管29aと第2戻り管29bとの間に接続されるようにな っている。 An embodiment of the device for separating and removing dissolved air according to the present invention will be described below with reference to FIGS. First, the present embodiment is applied to the hot water supply basic system described in the case of the conventional example, that is, the system configured by a series of members from the water receiving tank 21 to the hot water supply return pipe 33 shown in FIG. And That is, the separation / removal device 1 of the present invention shown in FIG. 1 has a first return pipe 29a and a second return pipe 29b which constitute the warm water return pipe 29, that is, in the middle of the warm water return pipe 29 with reference to FIG. Is being connected between.

【0019】 さて、上記分離除去装置1を示した図1において、2は上記分離除去装置1の 本体、3は給湯設備の熱源28の出口管側、即ち第1戻り管29aと接続された 入口、4は第2戻り管29bと接続された出口、5は上記本体2の底部2aから 鉛直方向に立設されていてその下端部5aが上記入口3、即ち第1戻り管29a と接続されている垂直管、6は上記垂直管5の上端部5bに取り付けられていて 放射状をなすように形成された複数の噴出口6aを有するノズルである。In FIG. 1 showing the separation / removal device 1, 2 is the main body of the separation / removal device 1, 3 is the outlet pipe side of the heat source 28 of the hot water supply facility, that is, the inlet connected to the first return pipe 29a. 4 is an outlet connected to the second return pipe 29b, 5 is a vertical standing from the bottom 2a of the main body 2, and its lower end 5a is connected to the inlet 3, that is, the first return pipe 29a. The vertical tube 6 is a nozzle attached to the upper end 5b of the vertical tube 5 and having a plurality of ejection openings 6a formed in a radial shape.

【0020】 7はガスケット8を介して上記本体2の上部に螺着された蓋体、9は上記蓋体 7の下端7aへボルト10により固定された支持板である。ここで上記支持板9 は図2に示したように、上記ボルト10の挿通用孔9aが穿設されていると共に 、気泡通過用の複数の開口9b(この例では4個)を有している。 さらに、11は上記支持板9に形成された挿通用孔9cに挿通されるボルト1 2により上記ノズル6を上側から覆うように該支持板9へ固定された椀状部材で ある。 上記蓋体7には、排出管13を備えた自動空気抜き弁などの空気排気手段(以 下、自動空気抜き弁という)14が取り付けられている。なお、図中、15はガ スケット、16はOリングである。Reference numeral 7 is a lid body screwed to the upper portion of the main body 2 via a gasket 8, and 9 is a support plate fixed to a lower end 7 a of the lid body 7 by a bolt 10. As shown in FIG. 2, the support plate 9 has an insertion hole 9a for the bolt 10 and a plurality of openings 9b (four in this example) for passing bubbles. There is. Further, 11 is a bowl-shaped member fixed to the support plate 9 so as to cover the nozzle 6 from the upper side by a bolt 12 inserted into an insertion hole 9c formed in the support plate 9. An air exhausting means (hereinafter referred to as an automatic air vent valve) 14 such as an automatic air vent valve having an exhaust pipe 13 is attached to the lid 7. In the figure, 15 is a gasket and 16 is an O-ring.

【0021】 上記の場合、本体2及び椀状部材11間の隙間並びに本体2及び垂直管5間の 隙間は、椀状部材11の下端縁から流出すべき大きな粒状の空気がそれ自身の浮 力によって上昇し得るが、本体2内の温水に従って出口4へと移動し得なくする ための流速(例えば、約0.3m/s以下)が形成されるように選定される。そ してかかる温水の流れを実現すべく本実施例において具体的に設定された数値例 によれば、椀状部材11の内径約43mm,本体2の内径約60mm,ノズル6 の噴出口6aの数及び穴径それぞれ13個及び1.6mm,垂直管5の外径27 .5mmそして分離除去装置1の高さ約300mmである。In the above case, the gap between the main body 2 and the bowl-shaped member 11 and the gap between the main body 2 and the vertical pipe 5 are such that large granular air that should flow out from the lower end edge of the bowl-shaped member 11 has its own buoyancy. It is selected so that a flow velocity (for example, about 0.3 m / s or less) is formed so that it can be moved to the outlet 4 according to the hot water in the main body 2, although it can be increased. According to the numerical example specifically set in this embodiment to realize such a flow of hot water, the inner diameter of the bowl-shaped member 11 is about 43 mm, the inner diameter of the main body 2 is about 60 mm, and the ejection port 6a of the nozzle 6 is The number and the hole diameter are 13 and 1.6 mm, respectively, and the outer diameter of the vertical tube 5 is 27. 5 mm and the height of the separation and removal device 1 is about 300 mm.

【0022】 本考案による溶存空気の分離除去装置は上記のように構成されており、次にそ の作用を説明する。 先ず、熱源28において加熱されその運動エネルギが高まって活性化した温水 と微細化して分離しやすくなっている気泡とが、混合状態で第1戻り管29aか ら入口3を介して垂直管5へ流入する。そして垂直管5内を上昇した温水はノズ ル6から噴出するが、該ノズル6が所謂、シャワーヘッド状に形成されおり、温 水は椀状部材11内で後述するように形成されている空気層17へシャワー状に 噴出し該椀状部材11の内面に衝突する。The device for separating and removing dissolved air according to the present invention is constructed as described above, and its operation will be described below. First, the hot water that has been heated in the heat source 28 and has increased its kinetic energy and that has been activated, and the bubbles that have become finer and easier to separate are mixed from the first return pipe 29 a to the vertical pipe 5 through the inlet 3. Inflow. The hot water rising in the vertical pipe 5 is ejected from the nozzle 6, but the nozzle 6 is formed in a so-called shower head shape, and the hot water is formed in the bowl-shaped member 11 as described later. It sprays like a shower onto the layer 17 and collides with the inner surface of the bowl-shaped member 11.

【0023】 ここで、温水がノズル6の噴出口6aから椀状部材11へ噴出するまでの間の 圧力変化は、図4に示したように噴出口6aの圧力損失、噴出口6aからの噴出 直後の縮流による流速の増大等のために局部的に著しく低下する。そしてこの局 部的な低下により空気の溶解量が少なくなり、温水から分離寸前の状態にある微 細気泡は次々と温水から分離する。温水は、このように局部的に低下した圧力に 対する空気の飽和状態になり、次いで、本体2内の圧力にまでその圧力を回復し ながら椀状部材11の内面に衝突する。Here, the pressure change until the hot water is ejected from the ejection port 6a of the nozzle 6 to the bowl-shaped member 11 includes the pressure loss of the ejection port 6a and the ejection from the ejection port 6a as shown in FIG. Immediately after that, the flow velocity is increased due to the contraction, which causes a significant decrease locally. Due to this local decrease, the amount of air dissolved decreases, and the fine bubbles that are on the verge of separation from the hot water are separated from the hot water one after another. The hot water is saturated with air against the locally reduced pressure, and then collides with the inner surface of the bowl-shaped member 11 while recovering the pressure to the pressure in the main body 2.

【0024】 椀状部材11に衝突した温水は、そのときの衝撃や方向変化による反動によっ て微小な運動エネルギの変化が生じており、しかもこのとき温水が活性化状態に あるため、さらに微細気泡が分離され続けると共に、衝突の際に一部の温水が小 滴となって飛び散り、これにより一層気泡分離は助長される。 この結果、椀状部材11の内部には次第に分離した空気が溜まって空気層17 を形成し、維持する。椀状部材11内に充満した空気が椀状部材11の内部に収 容しきれなくなると、かかる空気は大きな粒状になって椀状部材11の下端縁か ら流出し、それ自身の浮力によって上昇する。 そして上昇した空気は支持板9の開口9bを通過して自動空気抜き弁14に到 達し、更にその排出管13を介して大気中に排出せしめられる。The warm water that has collided with the bowl-shaped member 11 undergoes a minute change in kinetic energy due to a reaction at that time and a reaction due to a change in direction. As the bubbles continue to separate, some of the hot water becomes droplets and scatters upon collision, which further promotes bubble separation. As a result, gradually separated air is accumulated inside the bowl-shaped member 11 to form and maintain the air layer 17. When the air filled in the bowl-shaped member 11 cannot be completely contained in the bowl-shaped member 11, the air becomes large particles and flows out from the lower edge of the bowl-shaped member 11, and rises due to its own buoyancy. To do. Then, the air that has risen passes through the opening 9b of the support plate 9 and reaches the automatic air bleeding valve 14, and is further discharged into the atmosphere through the discharge pipe 13.

【0025】 なお、当初上記椀状部材11の内部に温水が充満している場合、ノズル6の噴 出口6aから噴出する温水は、充満している温水から受ける流体抵抗のためにそ の流速が減速し、そのために前記図4に示した局所的な縮流による減圧効果は小 さくなり、それにより空気分離効果も小さくなるが、これは一時的なものでやが て椀状部材11内には温水が溜まって、前記のように空気層17が形成される。 このように本考案では椀状部材11内の空気層17に温水を噴出させるように したことにより、局所的な減圧効果を一層高め、空気分離効果を増大することが できる。When the inside of the bowl-shaped member 11 is initially filled with hot water, the flow velocity of the hot water jetted from the jet outlet 6a of the nozzle 6 is high because of the fluid resistance received from the filled hot water. The speed is reduced, and therefore the decompression effect due to the local contraction flow shown in FIG. 4 is small, and the air separation effect is also small. However, this is temporary, and eventually within the bowl-shaped member 11. The warm water collects and the air layer 17 is formed as described above. As described above, in the present invention, the hot water is jetted to the air layer 17 in the bowl-shaped member 11, so that the local decompression effect can be further enhanced and the air separation effect can be enhanced.

【0026】 一方、椀状部材11内へ噴出した温水の溶存空気量は、上記のようにかなりの 量の溶存空気を分離することができた結果、給水条件における空気溶解量の飽和 値よりもかなり小さい状態となって、椀状部材11の下端から本体2の底部2a へ移動して出口4から第2戻り管29bを経て貯湯タンク24へ戻る。On the other hand, the amount of dissolved air of hot water ejected into the bowl-shaped member 11 is larger than the saturated value of the amount of dissolved air under the water supply condition as a result of being able to separate a considerable amount of dissolved air as described above. In a considerably small state, it moves from the lower end of the bowl-shaped member 11 to the bottom portion 2a of the main body 2 and returns from the outlet 4 to the hot water storage tank 24 through the second return pipe 29b.

【0027】 次に、本案分離除去装置1を実際の給湯システムに設置して行った具体的な実 験例を説明する。 この実験では上記本体2等を透明アクリル製の材料により製作し、分離除去装 置1の内部を観察し得るようにして行ったが、さらにシステムの作動条件を次の ように設定した。即ち、熱源28からの出湯量3リットル/分,温水圧力1.6 kgf/cm2 ,温水温度51°C(一定)である。なお、椀状部材11の内径 等は前記具体的数値例となるように設定されている。Next, a concrete example of an experiment conducted by installing the separation and removal device 1 of the present invention in an actual hot water supply system will be described. In this experiment, the main body 2 and the like were made of a transparent acrylic material so that the inside of the separation / removal device 1 could be observed. Further, the operating conditions of the system were set as follows. That is, the amount of hot water discharged from the heat source 28 was 3 liters / minute, the hot water pressure was 1.6 kgf / cm 2 , and the hot water temperature was 51 ° C. (constant). The inner diameter and the like of the bowl-shaped member 11 are set so as to correspond to the specific numerical examples.

【0028】 実験に際して、温水温度は最初、常温(17°C,溶解酸素量10.2ppm )にしておき、椀状部材11内には空気層17は全く形成されていない状態で開 始した。そして温水の温度が約50°Cになると徐々に微細気泡が分離し始め、 米粒大のものから小豆粒大のものが次第に増加し、やがて椀状部材11内に充満 して大きな気泡が椀状部材11の下端縁から流出してそれ自身の浮力によって上 昇していく現象が確認された。この実験例から明らかなように、本案分離除去装 置1によれば、当初、椀状部材11内に空気層17を形成しておかなくとも、そ の自給作用により空気層17が自然形成される。 上記実験結果によれば、1時間当たり約350ccの空気が分離され、それは 自動空気抜き弁14によって大気中に排出せしめられた。In the experiment, the temperature of hot water was first set to room temperature (17 ° C., dissolved oxygen amount 10.2 ppm), and the heating was started without forming the air layer 17 in the bowl-shaped member 11. Then, when the temperature of the warm water reaches about 50 ° C, fine air bubbles gradually begin to separate, gradually increasing from rice grain size to azuki bean size, and eventually the bowl-shaped member 11 is filled with large air bubbles. It was confirmed that the member 11 flows out from the lower end edge and rises due to its own buoyancy. As is clear from this experimental example, according to the separation and removal apparatus 1 of the present invention, even if the air layer 17 is not initially formed in the bowl-shaped member 11, the air layer 17 is naturally formed by its self-sufficiency action. It According to the above experimental results, about 350 cc of air was separated per hour, which was discharged into the atmosphere by the automatic air vent valve 14.

【0029】 上記実施例において、空気分離効果は、椀状部材11の各寸法を大きくしたり 、または温水が該椀状部材11の内面に衝突する力を大きくする等の方法を講じ ることにより、さらに一層高められる。その場合、かかる衝突力を大きくするた めには、ノズル6の噴出口6aの圧力損失の大きさ(該噴出口6aの入口側及び 出口側の差圧にほぼ一致する)に対して、温水循環ポンプ26の吐出圧力(揚程 )を高めれば良く、通常この揚程は1kgf/cm2 で十分である。なお、それ 以上の揚程のものでは、大型になってしまい、動力費としても高価になる。本考 案の場合には高々0.03〜0.05kgf/cm2 程度の圧力損失で済むため 、従来の循環ポンプをそのまま使用することができる。 また、本案分離除去装置1の設置位置は上記実施例のように、熱源28の出口 管側直後に設ける場合に、最も高い空気分離効果を得ることができるが、これ以 外の位置において温水温度が約50°C以下の場合であってもノズル6及び椀状 部材11等の形状・寸法を適宜選択することにより高い空気分離効果を得るよう にすることができる。In the above embodiment, the air separation effect is obtained by increasing the size of the bowl-shaped member 11 or increasing the force with which hot water collides with the inner surface of the bowl-shaped member 11. , Even higher. In that case, in order to increase the impact force, the amount of pressure loss at the ejection port 6a of the nozzle 6 (substantially equal to the pressure difference between the inlet side and the outlet side of the ejection port 6a) It suffices to increase the discharge pressure (lifting height) of the circulation pump 26, and this lifting height of 1 kgf / cm 2 is usually sufficient. If the head is higher than that, the size will be large and the power cost will be high. In the case of the present proposal, a pressure loss of 0.03 to 0.05 kgf / cm 2 at most is sufficient, so that the conventional circulation pump can be used as it is. Further, when the installation position of the separation and removal device 1 of the present invention is provided immediately after the outlet pipe side of the heat source 28 as in the above embodiment, the highest air separation effect can be obtained. Even when the temperature is about 50 ° C. or less, a high air separation effect can be obtained by appropriately selecting the shape and dimensions of the nozzle 6, the bowl-shaped member 11, and the like.

【0030】[0030]

【考案の効果】[Effect of the device]

上述したように本考案によれば、溶存空気の分離除去装置において、本体の内 部にノズル及び椀状部材を収容し、該ノズルの噴出口から椀状部材に対して空気 層を通過させて温水を噴射せしめる構造にしたことにより、透過膜や超音波発生 手段等の特別な装置を必要でなくすることができ、また、脱気送水ポンプ,フィ ルタまたは減圧弁等の設備を特別必要としないで従来の給湯設備に容易に取り付 けることができる。 さらに、本案分離除去装置によれば、熱源付近の温水の溶 存空気を給水条件における空気溶解量の飽和値よりもかなり小さくすることがで きるので、かかる温水が貯湯タンクを経てカランから吐出するまで間に、バルブ やエルボ等によって気泡が再分離した場合でも、かかる再分離した気泡が直ちに 再び温水に溶解するため、気泡が大きな空気の塊りに成長して循環ポンプを焼損 したり、または配管を腐食せしめたりする等の危険が全くなくなる。このように 従来の脱気設備に比べて極めて簡単な構造であり、しかもコストが安価であるこ とに加え、透過膜のように使用上、温度の制約を受けることがなく、また定期的 な部品交換等が必要でなくなる等、実用上極めて優れた利点を有している。 As described above, according to the present invention, in the apparatus for separating and removing dissolved air, the nozzle and the bowl-shaped member are housed inside the main body, and the air layer is passed from the ejection port of the nozzle to the bowl-shaped member. The structure that sprays hot water eliminates the need for a special device such as a permeable membrane or ultrasonic wave generation means, and also requires special equipment such as a degassing water pump, filter or pressure reducing valve. Without it, it can be easily installed in conventional hot water supply equipment. Furthermore, according to the separation and removal device of the present invention, the dissolved air of the hot water near the heat source can be made considerably smaller than the saturation value of the amount of dissolved air under the water supply conditions, so such hot water is discharged from the currant through the hot water storage tank. In the meantime, even if air bubbles are re-separated by a valve or elbow, etc., the re-separated air bubbles immediately dissolve in hot water again, so that the air bubbles grow into large air lumps and burn the circulation pump. There is no danger of corroding the piping. In this way, the structure is extremely simple compared to conventional degassing equipment, and the cost is low. In addition, there is no temperature limitation in use like a permeable membrane, and periodic parts are used. It has extremely excellent practical advantages such as no need for replacement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案による溶存空気の分離除去装置の一実施
例の縦断面図である。
FIG. 1 is a vertical sectional view of an embodiment of a device for separating and removing dissolved air according to the present invention.

【図2】本考案による溶存空気の分離除去装置に用いる
支持板の平面図である。
FIG. 2 is a plan view of a support plate used in the apparatus for separating and removing dissolved air according to the present invention.

【図3】本考案による溶存空気の分離除去装置の配設位
置回りの温水給湯システム構成を示す図である。
FIG. 3 is a view showing a configuration of a hot water supply system around a disposition position of a device for separating and removing dissolved air according to the present invention.

【図4】本考案による溶存空気の分離除去装置における
ノズル及び椀状部材の領域の温水の圧力変化の様子を示
すグラフである。
FIG. 4 is a graph showing a change in pressure of hot water in a region of a nozzle and a bowl-shaped member in the apparatus for separating and removing dissolved air according to the present invention.

【図5】従来の脱気手段を備えたビルの集中給湯システ
ムの概略構成を示す図である。
FIG. 5 is a diagram showing a schematic configuration of a centralized hot water supply system for a building equipped with a conventional degassing unit.

【図6】温水に対する酸素の溶解量を温水温度との関係
で示す図である。
FIG. 6 is a diagram showing the amount of oxygen dissolved in warm water in relation to the warm water temperature.

【符号の説明】[Explanation of symbols]

1 分離除去装置 2 本体 3 入口 4 出口 5 垂直管 6 ノズル 7 蓋体 8 ガスケット 9 支持板 10 ボルト 11 椀状部材 12 ボルト 13 排出管 14 自動空気抜き弁 1 Separation and removal device 2 Main body 3 Inlet 4 Outlet 5 Vertical pipe 6 Nozzle 7 Lid body 8 Gasket 9 Support plate 10 Bolt 11 Bowl-shaped member 12 Bolt 13 Exhaust pipe 14 Automatic air vent valve

Claims (1)

【実用新案登録請求の範囲】 【請求項1】 給湯設備の熱源の出口管側に設置される
ようになっていて温水の入口と出口とを有する本体と、
該本体内でその底部から立設していて下端が上記入口と
接続すると共に上端にノズルが設けられている垂直管
と、上記本体上部の蓋体に取り付けられた空気排気手段
と、上記ノズルを覆うように取付板を介して上記本体に
固定された椀状部材と、を備えている溶存空気の分離除
去装置。
[Claims for utility model registration] [Claim 1] A main body having an inlet and an outlet for hot water, which is installed on the outlet pipe side of a heat source of hot water supply equipment,
A vertical pipe which is erected from the bottom in the main body, has a lower end connected to the inlet and has a nozzle provided at the upper end, an air exhaust unit attached to a lid on the upper part of the main body, and the nozzle. A bowl-shaped member fixed to the main body via a mounting plate so as to cover it, and a device for separating and removing dissolved air.
JP1991054272U 1991-07-12 1991-07-12 Dissolved air separation and removal device Expired - Lifetime JPH0721201Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991054272U JPH0721201Y2 (en) 1991-07-12 1991-07-12 Dissolved air separation and removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991054272U JPH0721201Y2 (en) 1991-07-12 1991-07-12 Dissolved air separation and removal device

Publications (2)

Publication Number Publication Date
JPH057304U true JPH057304U (en) 1993-02-02
JPH0721201Y2 JPH0721201Y2 (en) 1995-05-17

Family

ID=12965943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991054272U Expired - Lifetime JPH0721201Y2 (en) 1991-07-12 1991-07-12 Dissolved air separation and removal device

Country Status (1)

Country Link
JP (1) JPH0721201Y2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296470A (en) * 1992-04-23 1993-11-09 Tokyo Gas Co Ltd Water feeding method for hot water circulating type heating system
WO2006112457A1 (en) * 2005-04-20 2006-10-26 Hsp Co., Ltd. Apparatus for removing bubbles
JP2007203262A (en) * 2006-02-06 2007-08-16 Act Five Kk Apparatus for removing gas and foreign matter simultaneously
JP2012024717A (en) * 2010-07-26 2012-02-09 Daihatsu Motor Co Ltd Gas-liquid separator
JP2013010510A (en) * 2011-06-28 2013-01-17 Taisei Lamick Co Ltd Wrapped object filling device
CN109354100A (en) * 2018-12-19 2019-02-19 珠海格力电器股份有限公司 Exhaust structure, faucet, water treatment system and water purification equipment
KR20190024320A (en) * 2017-08-31 2019-03-08 공주대학교 산학협력단 Fountain-type milk bubble removing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141245U (en) * 1974-09-19 1976-03-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141245U (en) * 1974-09-19 1976-03-27

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296470A (en) * 1992-04-23 1993-11-09 Tokyo Gas Co Ltd Water feeding method for hot water circulating type heating system
WO2006112457A1 (en) * 2005-04-20 2006-10-26 Hsp Co., Ltd. Apparatus for removing bubbles
JP2007203262A (en) * 2006-02-06 2007-08-16 Act Five Kk Apparatus for removing gas and foreign matter simultaneously
JP4641266B2 (en) * 2006-02-06 2011-03-02 アクトファイブ株式会社 Deaeration and foreign substance removal device
JP2012024717A (en) * 2010-07-26 2012-02-09 Daihatsu Motor Co Ltd Gas-liquid separator
JP2013010510A (en) * 2011-06-28 2013-01-17 Taisei Lamick Co Ltd Wrapped object filling device
KR20190024320A (en) * 2017-08-31 2019-03-08 공주대학교 산학협력단 Fountain-type milk bubble removing device
CN109354100A (en) * 2018-12-19 2019-02-19 珠海格力电器股份有限公司 Exhaust structure, faucet, water treatment system and water purification equipment

Also Published As

Publication number Publication date
JPH0721201Y2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
US9399200B2 (en) Foaming of liquids
US9079131B2 (en) Wet scrubber and a method of cleaning a process gas
JP4309021B2 (en) Wastewater treatment system
CN200998638Y (en) Combined type defroster
CN102423597A (en) Intelligent anti-blocking demister used for wet flue gas desulfurization
JPH0786547B2 (en) Nuclear facility with containment vessel
CN101721842A (en) Defoaming device
JPH057304U (en) Dissolved air separation and removal device
JP3372246B2 (en) Method and apparatus for purifying harmful gases containing harmful substances such as dioxin
JP2971614B2 (en) Reactor containment vessel decompression device
JPH0593502U (en) Dissolved air separation and removal device
KR100742131B1 (en) Dust collector by flushing
US6001313A (en) Stack device capable of removing dust particles, sulfur oxides and nitrogen oxides
CN211302619U (en) Waste gas spray tower
CN110482753B (en) High-concentration industrial waste liquid separation device and method
CN210044948U (en) Desulfurization and denitrification tower defogging device
CN203577602U (en) Semidry-process neutralizing tower applied to treatment of pesticide package waste incineration tail gas
CN219117250U (en) Ozone catalytic oxidation reactor
CN214715531U (en) Waste gas spray tower
CN112479348A (en) Remote control system and method for black and odorous water
US5656047A (en) Wet gas scrubber
CN212283330U (en) Coarse fuel gas purification spray tower
CN214809779U (en) Double-stage partition spraying desulfurization tower
CN219646953U (en) Combined demister
CN218810538U (en) Infrared detection defoamer of denitrification tower