JPH0572403B2 - - Google Patents

Info

Publication number
JPH0572403B2
JPH0572403B2 JP59215002A JP21500284A JPH0572403B2 JP H0572403 B2 JPH0572403 B2 JP H0572403B2 JP 59215002 A JP59215002 A JP 59215002A JP 21500284 A JP21500284 A JP 21500284A JP H0572403 B2 JPH0572403 B2 JP H0572403B2
Authority
JP
Japan
Prior art keywords
parts
underwater
epoxy
epoxy resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59215002A
Other languages
Japanese (ja)
Other versions
JPS6191217A (en
Inventor
Akira Murakami
Masahito Shimizu
Shigeru Katayama
Kazufumi Hamabuchi
Hideshi Asoshina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP21500284A priority Critical patent/JPS6191217A/en
Publication of JPS6191217A publication Critical patent/JPS6191217A/en
Publication of JPH0572403B2 publication Critical patent/JPH0572403B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は氎䞭構築物の保護方法に関し曎に詳し
くは氎䞭構築物の腐食や汚損を有効に防止しおこ
れ等構築物を保護する方法に関する。 近幎海掋開発に䌎う石油掘削リグあるいは石油
備蓄パヌゞ、海䞊プラント船等の鋌構造物、海䞊
に建蚭される巚倧橋の橋脚郚、海䞊空枯の氎䞭鋌
構造物等の建造や建蚭が増加の䞀途をたど぀おい
るが、これら鋌構造物は蚭眮区域からメむンテナ
ンスのための移動がほずんど䞍可胜である。埓぀
おこれら海掋鋌構造物の氎䞭郚での、あるいはス
プラツシナゟヌン郚での防蝕塗装枅掃、保守等の
問題が生じ海䞊におけるメむンテナンスの必芁性
が倧きな課題ずな぀おいる。この課題を解決する
ための䞀぀の手段ずしお、これ等氎䞭構築物の氎
䞭郚分やスプラツシナゟヌンに、陞䞊ず同様の簡
単䞔぀容易な手段で防蝕性の優れた被膜を圢成す
る手段が考えられる。 而しお埓来から知られおいるこの様な氎䞭塗装
甚組成物ずしおは、゚ポキシ暹脂をベヌスずし、
硬化剀ずしおポリアミド又はポリアミンを䜿甚し
これに充填材を加えた組成物がある。しかしなが
らこの公知の組成物は、付着力が匱く硬化する間
に波浪等のために極めお簡単に流亡し、たたたず
え硬化したずしおも硬化物の付着性が䞍充分で長
期間の防蝕は党く期埅出来ないものである。 本発明の目的は、氎䞭でも陞䞊ず同様の操䜜に
より容易に被芆を行い埗るず共に、付着力の優れ
た䞔぀防蝕性の倧きい被膜を圢成出来る氎䞭塗装
甚組成物を開発し、ひいおはこの組成物を甚いお
氎䞭構造物を有効に保護しうる方法を提䟛するこ
ずである。 本発明の䞊蚘目的は (ã‚€) −OH結合を少くずも個有するリンの
酞、その゚ステル及びその塩の少くずも皮
ず、゚ポキシ暹脂ずから成るベヌス暹脂、及び (ロ) ゚ポキシ暹脂甚硬化剀 ずを䞻成分ずしお成る二液型組成物を甚いお氎䞭
構築物を保護するこずにより達成される。 本発明に斌いおはベヌス暹脂ずしお゚ポキシ暹
脂ずそしお特に−OH結合を少くずも個有す
るリン酞、その゚ステル又はその塩以䞋リン酞
化合物ずいうずを甚いるこずにより、゚ポキシ
暹脂の有する本来の優れた塗膜性胜ず硬化性ずを
そのたた保持するず共に、曎に䞊蚘リン酞化合物
ず゚ポキシ暹脂ずの協同䜜甚により著しく優れた
氎䞭での付着力が発珟する。このために氎䞭構築
物に䞊蚘(ã‚€)及び(ロ)かな成る組成物を適甚するず、
付着力が著しく倧きいために硬化以前に波浪など
で流亡するこずはなくそのたた硬化し、たた硬化
した被膜は付着性が倧きいので匷固に氎䞭構築物
に密着する。たた硬化塗膜ぱポキシ暹脂の本来
の優れた特性をそのたた具有しおいるので極めお
優れた防蝕性その他の特性を有し、結局これ等各
特城が総合しお極めお優れた防蝕効果を発揮し、
氎䞭構築物を有効に保護するに至るである。尚リ
ン酞化合物ず゚ポキシ暹脂ずを䜵甚するこずによ
り、゚ポキシ暹脂の氎䞭での付着力が著しく向䞊
するずいうこずは埓来党く知られおいない未知の
こずであり本発明者の氞幎の研究の結果はじめお
芋出された驚くべき新事実である。 本発明で䜿甚するベヌス暹脂は、リン酞化合物
ず゚ポキシ暹脂ずから補造するこずが出来、通垞
これ等䞡者を゚ポキシ基が残存する配合割合で、
通垞゚ポキシ暹脂䞭の゚ポキシ基圓量に察し、
リン酞化合物の氎酞基が0.05−0.9圓量奜たしく
は0.05−0.4圓量の配合割合で加熱凊理する。こ
の際の加熱枩床は通垞50−130℃皋床奜たしくは
80−110℃皋床で行う。この反応に斌いおは溶剀
は必ずしも必芁ではないが、溶剀の共存䞋に反応
をおこな぀おも良い。この際の溶剀ずしおはたず
ぞばトル゚ン、キシレン、スチレン、アセトン、
メチル・゚チル・ケトン、メチルむ゜ブチルケト
ン、メチルブチルケトン等を代衚䟋ずしお挙げる
こずができ、これ等溶剀の䜿甚量はベヌス暹脂
100重量郚圓り通垞10−100重量郚皋床である。か
くしお埗られるベヌス暹脂ずしおはその゚ポキシ
圓量は3000以䞋奜たしくは190−2000皋床である。 本発明に斌いおベヌス暹脂の原料ずしお䜿甚さ
れる゚ポキシ暹脂は、䞋蚘匏
The present invention relates to a method for protecting underwater structures, and more particularly to a method for protecting underwater structures by effectively preventing corrosion and staining of the structures. In recent years, the construction and construction of oil drilling rigs and oil stockpile purges associated with offshore development, steel structures for offshore plant ships, piers of huge bridges built on the ocean, underwater steel structures for offshore airports, etc. has been increasing. However, it is almost impossible to move these steel structures from their installation areas for maintenance. Therefore, problems such as cleaning and maintenance of anti-corrosive coatings occur in underwater parts of these marine steel structures or in splash zones, and the need for maintenance at sea has become a major issue. One possible means for solving this problem is to form a coating with excellent corrosion resistance on the underwater parts and splash zones of these underwater structures using the same simple and easy means as on land. Conventionally known underwater coating compositions include epoxy resin-based compositions,
There are compositions in which a polyamide or polyamine is used as a hardening agent and a filler is added thereto. However, this known composition has weak adhesion and is easily washed away by waves during curing, and even if it is cured, the adhesion of the cured product is insufficient and long-term corrosion protection cannot be expected at all. It's something that doesn't exist. The purpose of the present invention is to develop an underwater coating composition that can be easily coated underwater by the same operations as on land, and that can form a coating with excellent adhesion and high corrosion resistance. An object of the present invention is to provide a method that can effectively protect underwater structures. The above objects of the present invention are (a) a base resin comprising at least one phosphorus acid having at least one P-OH bond, an ester thereof and a salt thereof, and an epoxy resin; and (b) a base resin for epoxy resin. This is achieved by protecting underwater structures using a two-component composition comprising a curing agent as a main component. In the present invention, by using an epoxy resin as a base resin, and especially phosphoric acid, its ester, or its salt (hereinafter referred to as a phosphoric acid compound) having at least one P-OH bond, the original properties of the epoxy resin can be improved. In addition to maintaining the excellent coating film performance and curability of the epoxy resin, the phosphoric acid compound and the epoxy resin exhibit extremely excellent adhesion in water. For this purpose, when a composition consisting of (a) and (b) above is applied to an underwater structure,
Because of its extremely high adhesion, it will not be washed away by waves or the like before it hardens, and will harden as it is, and the cured film will adhere firmly to underwater structures due to its high adhesiveness. In addition, the cured coating film retains the original excellent properties of epoxy resin, so it has extremely excellent corrosion resistance and other properties.In the end, all of these characteristics combine to provide extremely excellent corrosion protection.
This effectively protects underwater structures. It should be noted that the fact that the adhesion of epoxy resin in water can be significantly improved by using a phosphoric acid compound and epoxy resin together is something that was completely unknown and unknown, and was discovered for the first time as a result of many years of research by the present inventor. This is a surprising new fact discovered. The base resin used in the present invention can be manufactured from a phosphoric acid compound and an epoxy resin, and these are usually mixed in a proportion that leaves epoxy groups.
Normally, per equivalent of epoxy group in epoxy resin,
The heat treatment is performed at a blending ratio of 0.05 to 0.9 equivalents, preferably 0.05 to 0.4 equivalents of hydroxyl groups in the phosphoric acid compound. The heating temperature at this time is usually about 50-130℃, preferably
Perform at about 80-110℃. Although a solvent is not necessarily required in this reaction, the reaction may be carried out in the presence of a solvent. Examples of solvents used in this case include toluene, xylene, styrene, acetone,
Typical examples include methyl ethyl ketone, methyl isobutyl ketone, and methyl butyl ketone, and the amount of these solvents used depends on the base resin.
It is usually about 10-100 parts by weight per 100 parts by weight. The base resin thus obtained has an epoxy equivalent of 3,000 or less, preferably about 190-2,000. The epoxy resin used as a raw material for the base resin in the present invention has the following formula:

【化】 䜆しは氎玠原子、メチル基、゚チル基を瀺
すで瀺される眮換又は非眮換のグリシゞル゚ヌ
テル基を分子内に少くずも個有するものが代衚
的に䜿甚でき、䟋えばビスプノヌルのゞグリ
シゞル゚ヌテル、ビスプノヌルのシグリシゞ
ル゚ヌテル、プノヌルノボラツク゚ポキシ暹
脂、ビスプノヌル類のアルキレンオキシド付加
物のシグリシゞル゚ヌテル等を甚いるこずがで
き、゚ポキシ圓量には特に制限はないが、奜たし
くぱポキシ圓量150−1000皋床のものが良い。 本発明に斌いお䜿甚されるリン酞化合物ずしお
は少くずも個の−OH結合を有するリン酞、
その゚ステル又はその塩であり、リン酞ずしおは
䟋えばオルトリン酞、メタリン酞、ピロリン酞、
亜リン酞、ポリリン酞、ホスホン酞、ホスフむン
酞、等が挙げられ特にオルトリン酞が奜たしい。
又リン酞の゚ステルずしおは䞊蚘のリン酞の゚ス
テル、奜たしくは炭玠原子数皋床以䞋のアルキ
ル゚ステル氎酞基を個以䞊有するもの及び
ヒドロキシアルキル゚ステル、䟋えば゚チル、
−ブチル、−゚チルヘキシル、ヒドロキシ゚チ
ル、ヒドロキシブチル、ヒドロキシプロピル、ヒ
ドロキシベンチル等の基を持぀ものが挙げられ、
特に−ブチル又は−゚チルヘキシルのモノ又
はゞ・リン酞゚ステルが奜たしい。又リンの酞の
塩ずしおは䞊蚘のリン酞の塩、䟋えばカリりム、
ナトリりム、リチりム、カルシりム、亜鉛、アル
ミニりム、スズ、バリりム、等の塩が挙げられ、
就䞭カリりム、ナトリりム、カルシりムの第又
は第リン酞塩が奜たしい。 本発明に甚いられる硬化剀ずしおは、通垞の゚
ポキシ暹脂甚の硬化剀がすべお広い範囲で䜿甚可
胜であり、䟋えば脂肪族系ポリアミン、芳銙族系
倉性ポリアミン、脂環族系ポリアミン、ポリアミ
ド類、アミノ暹脂、カルボン酞類等が挙げられ
る。これ等硬化剀の䜿甚量も通垞の硬化剀ずしお
の䜿甚量であり、通垞゚ポキシ基圓量に察しア
ミノ基の堎合はアミン圓量、カルボキシル基の堎
合は、酞圓量、酞無氎物に぀いおは酞無氎物圓量
を0.5−2.5圓量皋床である。たた本発明に斌いお
は充填材を䜵甚するこずができ、この充填材の䜿
甚により粘床及び比重調敎による氎䞭斜行性向
䞊、波の圱響による塗膜のはがれ防止、塗膜の厚
み調敎及び均䞀化、レベリングの向䞊、硬化物の
機械的匷床の向䞊、応力緩和等ずいう効果が期埅
出来る。この充填材はベヌス暹脂に、或いは及び
硬化剀に予め混合しおおいおも良いし、たたベヌ
ス暹脂、硬化剀及び充填材を同時に混合しおもよ
い。この際䜿甚される充填材ずしおは広く各皮の
ものが䜿甚され、たずえば炭酞カルシりム、タル
ク、クレヌ、ベントナむト、カヌボンブラツク、
ホワむトカヌボン、等通垞のものを䟋瀺出来、こ
れ等はベヌス暹脂ず硬化剀の合蚈量100重量郚に
たいしお−300重量郚の量で䜿甚される。 本発明に斌いお䜿甚する組成物には必芁に応じ
他の゚ポキシ暹脂をはじめ各皮の添加剀を䜵甚す
るこずができ、この際の添加剀ずしおは䟋えば垌
釈剀、溶剀、着色顔料、防錆顔料、等を具䜓䟋ず
しお挙げるこずが出来る。 本発明組成物を甚いお氎䞭構築物を保護するに
際しおは氎䞭構築物の氎䞭郚分又はスプラツシナ
郚分に本発明組成物を塗装する。この際の塗装手
段ずしおは、陞䞊ず同様の各皮の手段がいずれも
有効に䜿甚でき、たずえば刷毛ぬり、ロヌル塗
装、ヘラ塗り、機械塗装等を䟋瀺出来る。刷毛塗
り、ロヌル塗りでは20−500ポむズ、ヘラ塗りで
は500−2000ポむズ皋床の粘床ずするが良い。 以䞋に実斜䟋を瀺しお本発明を具䜓的に説明す
る。䜆し以䞋の䟋に斌いお郚は重量郚を瀺す。 実斜䟋  ビスプノヌル・ゞグリシゞル゚ヌテル゚
ポキシ圓量260100郚、アルキル炭玠数18モ
ノグリシゞル゚ヌテル゚ポキシ圓量33025郚
及びオルトリン酞郚を混合し80℃で時間反応
を行いベヌス暹脂
Those having at least one substituted or unsubstituted glycidyl ether group in the molecule can be typically used, such as bisphenol A. Diglycidyl ether of bisphenol F, phenol novolac epoxy resin, siglycidyl ether of alkylene oxide adducts of bisphenols, etc. can be used, and the epoxy equivalent is not particularly limited, but preferably An epoxy equivalent of about 150-1000 is good. The phosphoric acid compounds used in the present invention include phosphoric acid having at least one P-OH bond;
It is an ester or a salt thereof, and examples of phosphoric acid include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid,
Examples include phosphorous acid, polyphosphoric acid, phosphonic acid, phosphinic acid, and orthophosphoric acid is particularly preferred.
Examples of phosphoric acid esters include the above-mentioned phosphoric acid esters, preferably alkyl esters having about 8 or less carbon atoms (those having one or more hydroxyl groups) and hydroxyalkyl esters, such as ethyl, n
-butyl, 2-ethylhexyl, hydroxyethyl, hydroxybutyl, hydroxypropyl, hydroxybentyl, etc.
Particularly preferred are mono- or di-phosphoric acid esters of n-butyl or 2-ethylhexyl. Also, examples of phosphoric acid salts include the above-mentioned phosphoric acid salts, such as potassium,
Examples include salts of sodium, lithium, calcium, zinc, aluminum, tin, barium, etc.
Among these, primary or secondary phosphates of potassium, sodium, and calcium are preferred. As the curing agent used in the present invention, all of the usual curing agents for epoxy resins can be used in a wide range, such as aliphatic polyamines, aromatic modified polyamines, alicyclic polyamines, polyamides, amino acids, etc. Examples include resins and carboxylic acids. The amount of these curing agents used is also the amount used as a normal curing agent, and usually for 1 equivalent of epoxy group, amine equivalent for amino group, acid equivalent for carboxyl group, and acid anhydride for acid anhydride. The physical equivalent is about 0.5-2.5 equivalent. In addition, in the present invention, a filler can be used in combination, and the use of this filler improves underwater workability by adjusting viscosity and specific gravity, prevents peeling of the coating film due to the influence of waves, and adjusts and uniformizes the thickness of the coating film. Effects such as improved leveling, improved mechanical strength of the cured product, and stress relaxation can be expected. This filler may be mixed in advance with the base resin or with the curing agent, or the base resin, curing agent, and filler may be mixed at the same time. A wide variety of fillers are used at this time, including calcium carbonate, talc, clay, bentonite, carbon black,
Common examples include white carbon, which is used in an amount of 1 to 300 parts by weight per 100 parts by weight of the base resin and curing agent. Various additives including other epoxy resins can be used in combination with the composition used in the present invention, if necessary. Examples of additives in this case include diluents, solvents, coloring pigments, and antirust pigments. , etc. can be cited as specific examples. When protecting an underwater structure using the composition of the present invention, the composition of the present invention is applied to the underwater part or splash part of the underwater structure. As the coating means at this time, any of the various means similar to those used on land can be effectively used, such as brush coating, roll coating, spatula coating, mechanical coating, etc. The viscosity should be 20-500 poise for brush or roll application, and 500-2000 poise for spatula application. EXAMPLES The present invention will be specifically described below with reference to Examples. However, in the following examples, parts indicate parts by weight. Example 1 100 parts of bisphenol A diglycidyl ether (epoxy equivalent: 260), 25 parts of alkyl (carbon number 18) monoglycidyl ether (epoxy equivalent: 330), and 6 parts of orthophosphoric acid were mixed and reacted at 80°C for 5 hours. base resin

【】を埗た。 該ベヌス暹脂I got [ ]. The base resin

【】100郚に察しお芳銙族倉性
ポリアミンアミン䟡270、芳銙族ゞアミノゞ
プニルメタン、分子量25035郚、タルク20郚
及びガラスフレヌク30郚を混合し、本発明組成物
を埗た。この組成物を甚いお鋌板に塗装したずき
の初期付着性、硬化埌の密着力、凝集砎壊率及び
錆の発生を枬定した。この結果を埌蚘第衚に瀺
す。䜆し䜿甚した鋌板はシペツトブラスト盎埌に
塩氎䞭に日浞挬した鋌板である。 実斜䟋  実斜䟋に斌ける硬化剀ずしおの芳銙族系倉性
ポリアミン30郚の単独䜿甚に代えおその30郚のう
ちの郚を暹脂族系ポリアミンアミン䟡370、
メタキシリレンゞアミン、分子量250を䜿甚し、
その他はすべお実斜䟋ず同様に凊理した。 実斜䟋  ビスプノヌル・ゞグリシゞル゚ヌテル゚
ポキシ圓量280100郚、ビスプノヌル・プ
ロピレンオキサむド付加物のゞグリシゞル゚ヌテ
ル゚ポキシ圓量34050郚及び第リン酞カ
リりム17郚ずを混合しお110℃で時間撹拌反応
を行぀おベヌス暹脂
[ ] 35 parts of aromatic modified polyamine (amine value: 270, aromatic: diaminodiphenylmethane, molecular weight: 250), 20 parts of talc and 30 parts of glass flakes were mixed with 100 parts to obtain a composition of the present invention. When this composition was applied to a steel plate, the initial adhesion, adhesion after curing, cohesive failure rate, and rust occurrence were measured. The results are shown in Table 1 below. However, the steel plate used was one that had been immersed in 3% salt water for one day immediately after shot blasting. Example 2 Instead of using 30 parts of the aromatic modified polyamine alone as the curing agent in Example 1, 5 parts of the 30 parts were replaced with resin polyamine (amine value 370,
Using meta-xylylene diamine (molecular weight 250),
All other treatments were carried out in the same manner as in Example 1. Example 3 100 parts of bisphenol F/diglycidyl ether (epoxy equivalent: 280), 50 parts of diglycidyl ether of bisphenol A/propylene oxide adduct (epoxy equivalent: 340), and 17 parts of dibasic potassium phosphate were mixed. The base resin was then reacted with stirring at 110°C for 5 hours.

【】を埗た。このベヌス暹
脂
I got [ ]. This base resin

【】100郚に察しお゚ポキシ暹脂硬化剀ずし
お芳銙族系倉性ポリアミンアミン䟡27030郚、
キシレン50郚、硫酞バリりム20郚及びガラスフレ
ヌム30郚を混合しお本発明組成物ずした。これを
甚いお実斜䟋ず同様の物性を枬定した。この結
果を埌蚘第衚に䜵蚘する。 比范䟋  未倉性ビスプノヌル・ゞグリシゞル゚ヌテ
ル゚ポキシ圓量190100郚に察しお、脂肪族
系ポリアミンアミン䟡37045郚、タルク20
郚及びガラスフレヌク郚を混合し比范組成物
を埗た。この組成物を甚いお実斜䟋ず同様に物
性を枬定した。この結果を埌蚘第衚に瀺す。 比范䟋  未倉性ビスプノヌル・ゞグリシゞル゚ヌテ
ル゚ポキシ圓量19075郚ずビスプノヌル
・プロピレンオキサむド付加物のゞグリシゞル
゚ヌテル゚ポキシ圓量34025郚に察しお、
芳銙族系倉性ポリアミンアミン䟡27040郚、
タルク20郚、及びガラスフレヌク30郚を混合し、
比范組成物を埗た。これを甚いお実斜䟋ず同様
の詊隓を行぀た。この結果を埌蚘第衚に瀺す。
䜆し埌蚘第衚䞭の各物性の枬定方法は倫々次の
通りである。 鋌板  ×100×100mmのダル鋌板 塗装方法  䞊蚘鋌板を塩氎䞭に所定の時間浞挬
埌、浞挬したたたの状態で組成物を刷毛塗り
し、垂盎状態で硬化した。 初期付着性刷毛塗り盎埌の状態を芳察し次の評
䟡に埓぀た ○  良奜はけを圓おるだけで付着する △  可胜−床はけで぀けるず付着す
る ×  䞍良付着しない 硬化埌の密着力塗装サンプルを倧気䞭23℃、
65RHに取り出し、日経過埌塗膜をカツ
タヌで切り、枬定甚ドリヌを接着剀を甚いお接
着し、30分埌に23℃、60RH䞋に、゚ルコメ
ヌタヌを甚いお枬定した。 鏡の発生衚面を肉県で芳察しおその有無を調べ
た。
[ ] 30 parts of aromatic modified polyamine (amine value 270) as an epoxy resin curing agent per 100 parts,
A composition of the present invention was prepared by mixing 50 parts of xylene, 20 parts of barium sulfate, and 30 parts of glass frame. Using this, the same physical properties as in Example 1 were measured. The results are also listed in Table 1 below. Comparative Example 1 100 parts of unmodified bisphenol A diglycidyl ether (epoxy equivalent: 190), 45 parts of aliphatic polyamine (amine value: 370), 20 parts of talc
and 30 parts of glass flakes were mixed to obtain a comparative composition. Physical properties were measured in the same manner as in Example 1 using this composition. The results are shown in Table 1 below. Comparative Example 2 For 75 parts of unmodified bisphenol A/diglycidyl ether (epoxy equivalent: 190) and 25 parts of bisphenol A/propylene oxide adduct diglycidyl ether (epoxy equivalent: 340),
40 parts of aromatic modified polyamine (amine value 270),
Mix 20 parts of talc and 30 parts of glass flakes,
A comparative composition was obtained. Using this, the same test as in Example 1 was conducted. The results are shown in Table 1 below.
However, the methods for measuring each physical property in Table 1 below are as follows. Steel plate: Dull steel plate of 9 x 100 x 100 mm Coating method: The above steel plate was immersed in salt water for a predetermined time, and the composition was applied with a brush while immersed, and cured in a vertical position. Initial adhesion: Observe the condition immediately after brush application and follow the following evaluation: ○...Good (adheres just by brushing) △...Possible (adheres after brushing 2-3 times) × ...Poor (does not adhere) Adhesion after curing: Paint sample is placed in the atmosphere (23℃,
After one day, the coating film was cut with a cutter, a measurement dolly was attached using adhesive, and 30 minutes later, measurements were taken at 23°C and 60% RH using an Elcometer. Occurrence of mirrors: The presence or absence of mirrors was examined by observing the surface with the naked eye.

【衚】 比范䟋  「゚ピコヌト815」65重量郚に察しお、ポリ
アミド暹脂「トヌマむド5002」商品名富士化
成工業(æ ª)35郚、ガラスフレヌク「CCF−45」
商品名日本硝子繊維(æ ª)52郚、硫酞バリりム
27重量郚、二酞化チタン20重量郚、「ベントン34」
商品名ナシペナルレツド瀟郚をデむスパ
ヌ型攪拌機で混合分散し、氎䞭硬化型塗料組成物
を埗た。 比范䟋  ビスプノヌルA1モルに察しおゞ゚チレント
リアミン1.2モルを混合しお硬化剀を合成した。
この硬化剀10を「゚ピコヌト828」10ず
のTiO2の混合物である䞻剀ず混合しお、氎䞭
硬化型塗料組成物を埗た。 比范䟋  「スミ・゚ポキシELA−125 」䜏友化孊(æ ª)
商品名ビスプノヌル系゚ポキシ暹脂100
郚に号硅砂30郚、炭酞カルシりム10郚、「ゞ゚
ツトセメント」䜏友セメント(æ ª)商品名10郚を
混緎埌、アニリンずホルムアルデヒドずの反応に
より4′−ゞアミノゞプニルメタンを補造し
たずきに副生する蒞留残枣軟化点44℃、窒玠含
量14200郚を攪拌機、枩床蚈、還流冷华管、
滎䞋ロヌトを備えたフラスコに仕蟌み、90℃に加
熱する。90〜100℃で−ブチルグリシゞル゚ヌ
テル32.5郚を添加した埌、100℃で時間保枩し、
反応を完結させた。この反応物にゞ−−ブチル
フタレヌト230郚および促進剀ずしおサリチル酞
46郚を添加混合した硬化剀を60郚を混合しお塗料
を埗た。 比范䟋  ダりケミカル瀟補゚ポキシ暹脂「DER−331J」
゚ポキシ圓量186〜192100郚ず−ト
リアミノメチルヘキサン15郚を混合し、氎䞭硬化
型塗料組成物を埗た。 比范䟋  ビスプノヌルゞグリシゞル゚ヌテル゚ポ
キシ圓量260100郚ず「アデカグリシロヌル
ED−501」゚ポキシ圓量30025郚ずオルトリ
ン酞郚を混合し、80℃で時間反応を行い、埗
られた予備瞮合物をずする。 予備瞮合物100郚に察しお゚ポキシ暹脂
硬化剀ずしおポリアミドアミン䟡34030郚
を加え、氎䞭硬化型塗料組成物を埗た。 䞊蚘、比范䟋〜に぀いおその各皮物性を実
斜䟋ず同様に枬定した。この結果を第衚に瀺
す。
[Table] Comparative Example 3 65 parts by weight of "Epicoat #815", 35 parts of polyamide resin "Tomide 5002" (product name: Fuji Kasei Kogyo Co., Ltd.), and glass flake "CCF-45"
(Product name: Nippon Glass Fiber Co., Ltd.) 52 parts, barium sulfate
27 parts by weight, 20 parts by weight of titanium dioxide, "Bentone 34"
(Product name: National Red Co., Ltd.) 1 part was mixed and dispersed using a disper type stirrer to obtain an underwater curable coating composition. Comparative Example 4 A curing agent was synthesized by mixing 1.2 mol of diethylenetriamine with 1 mol of bisphenol A.
Add 10g of this curing agent to 10g of "Epicoat #828" and 3
g of TiO 2 as a base agent to obtain an underwater curable coating composition. Comparative Example 5 “Sumi Epoxy ELA-125” (Sumitomo Chemical Co., Ltd.)
Product name: Bisphenol A epoxy resin) 100
After kneading 30 parts of No. 7 silica sand, 10 parts of calcium carbonate, and 10 parts of "diet cement" (trade name of Sumitomo Cement Co., Ltd.), 4,4'-diaminodiphenylmethane was produced by the reaction between aniline and formaldehyde. 200 parts of the distillation residue (softening point: 44°C, nitrogen content: 14%), which is a by-product during the production, was added to a stirrer, a thermometer, a reflux condenser,
Pour into a flask equipped with a dropping funnel and heat to 90°C. After adding 32.5 parts of n-butyl glycidyl ether at 90 to 100°C, the mixture was kept at 100°C for 1 hour.
The reaction was completed. This reactant was added with 230 parts of di-n-butyl phthalate and salicylic acid as a promoter.
A paint was obtained by mixing 60 parts of a curing agent with 46 parts added thereto. Comparative example 6 Dow Chemical epoxy resin “DER-331J”
(Epoxy equivalent: 186-192) and 15 parts of 1,3,6-triaminomethylhexane were mixed to obtain an underwater curable coating composition. Comparative Example 7 100 parts of bisphenol A diglycidyl ether (epoxy equivalent = 260) and
25 parts of "ED-501" (epoxy equivalent = 300) and 6 parts of orthophosphoric acid were mixed and reacted at 80°C for 5 hours, and the obtained precondensate was designated as [1]. 30 parts of polyamide (amine value = 340) as an epoxy resin curing agent was added to 100 parts of precondensate [1] to obtain an underwater curable coating composition. Various physical properties of the above Comparative Examples 3 to 7 were measured in the same manner as in Example 1. The results are shown in Table 2.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  (ã‚€) −OH結合を少くなくずも固有する
リン酞、その゚ステル及びその塩の少くなくず
も皮ず゚ポキシ暹脂ずから埗られるベヌス暹
脂、及び (ロ) ゚ポキシ暹脂甚硬化剀 ずを䞻成分ずしお成る二液型組成物を甚いお氎䞭
構築物を保護するこずを特城ずする氎䞭構築物の
保護方法。  䞊蚘ベヌス暹脂、及び又は硬化剀に充填材を
含有せしめたこずを特城ずする特蚱請求の範囲第
項蚘茉の保護方法。
[Scope of Claims] 1. (a) A base resin obtained from an epoxy resin and at least one of phosphoric acid, its ester, and its salt having at least one P-OH bond, and (b) an epoxy resin. 1. A method for protecting an underwater structure, which comprises protecting the underwater structure using a two-component composition containing a curing agent for resin as a main component. 2. The protection method according to claim 1, wherein the base resin and/or the curing agent contain a filler.
JP21500284A 1984-10-12 1984-10-12 Protection of underwater structure Granted JPS6191217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21500284A JPS6191217A (en) 1984-10-12 1984-10-12 Protection of underwater structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21500284A JPS6191217A (en) 1984-10-12 1984-10-12 Protection of underwater structure

Publications (2)

Publication Number Publication Date
JPS6191217A JPS6191217A (en) 1986-05-09
JPH0572403B2 true JPH0572403B2 (en) 1993-10-12

Family

ID=16665075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21500284A Granted JPS6191217A (en) 1984-10-12 1984-10-12 Protection of underwater structure

Country Status (1)

Country Link
JP (1) JPS6191217A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333479A (en) * 1986-07-25 1988-02-13 Nippon Paint Co Ltd Coating material composition for underwater coating
JP3904315B2 (en) * 1998-01-28 2007-04-11 株匏䌚瀟 Polyol resin composition
JP5713518B2 (en) * 2006-12-08 2015-05-07 䞭囜塗料株匏䌚瀟 Laminated antifouling coating film, substrate antifouling method, substrate with laminated antifouling coating film, and primer composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917500A (en) * 1972-06-05 1974-02-15
JPS51102028A (en) * 1975-03-05 1976-09-09 Sumitomo Chemical Co SUICHUKOKAGATATORYO
JPS5827756A (en) * 1981-08-12 1983-02-18 Agency Of Ind Science & Technol Curing agent for underwater paint
JPS5863758A (en) * 1981-10-09 1983-04-15 Asahi Denka Kogyo Kk Coating composition
JPS58225161A (en) * 1982-06-23 1983-12-27 Nippon Oil & Fats Co Ltd Submarine curable coating material composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917500A (en) * 1972-06-05 1974-02-15
JPS51102028A (en) * 1975-03-05 1976-09-09 Sumitomo Chemical Co SUICHUKOKAGATATORYO
JPS5827756A (en) * 1981-08-12 1983-02-18 Agency Of Ind Science & Technol Curing agent for underwater paint
JPS5863758A (en) * 1981-10-09 1983-04-15 Asahi Denka Kogyo Kk Coating composition
JPS58225161A (en) * 1982-06-23 1983-12-27 Nippon Oil & Fats Co Ltd Submarine curable coating material composition

Also Published As

Publication number Publication date
JPS6191217A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
DE69635805T2 (en) One component epoxy resin composition, one component corrosion resistant LCK composition, method for coating this composition
KR100829071B1 (en) Epoxy resin, epoxy resin composition having the same, paint composition and method of forming a coating layer using the same
KR20160007493A (en) Epoxy resin compositions
KR102180243B1 (en) Curable polyurethane coating composition and method of preparing the same
US20150329738A1 (en) Modified epoxy resins
JPH0572403B2 (en)
JPH09328650A (en) Phosphorus-modified coating agent, its production and its use
JPS5863758A (en) Coating composition
KR20080023885A (en) Epoxy zinc coating composition having high friction coefficient
JPH09176292A (en) Aqueous epoxy resin hardening composition
JP2000144046A (en) Modified epoxy resin-based coating composition
JPS592468B2 (en) Epoxy resin anticorrosive paint composition
JPS6355551B2 (en)
CN115427476A (en) Amine-epoxy resin adducts
JPH0521949B2 (en)
CN115135690A (en) Curing agent for epoxy resin coating
JP3904315B2 (en) Polyol resin composition
JPS62270668A (en) Method of imparting corrosion-proofness to steel structure under water
JPS62135517A (en) Underwater-curable epoxy resin composition
JP2000169673A (en) One-pack type epoxy resin composition and one-pack type corrosion-resistant coating composition
JPH0649392A (en) Primer for corrosion prevention
JPH0465107B2 (en)
JPH0463910B2 (en)
JPH01259070A (en) Coating for application to wet surface
JPH01131284A (en) Heavy duty corrosionproof coating resin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term