JPH0572308A - Dc-squid - Google Patents

Dc-squid

Info

Publication number
JPH0572308A
JPH0572308A JP3236181A JP23618191A JPH0572308A JP H0572308 A JPH0572308 A JP H0572308A JP 3236181 A JP3236181 A JP 3236181A JP 23618191 A JP23618191 A JP 23618191A JP H0572308 A JPH0572308 A JP H0572308A
Authority
JP
Japan
Prior art keywords
coil
squid
resistor
ring
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3236181A
Other languages
Japanese (ja)
Other versions
JP3013542B2 (en
Inventor
Akira Arakawa
彰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3236181A priority Critical patent/JP3013542B2/en
Publication of JPH0572308A publication Critical patent/JPH0572308A/en
Application granted granted Critical
Publication of JP3013542B2 publication Critical patent/JP3013542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent insulation breakdown, coil burnout, etc., of an element from being generated due to application of a spike noise by inserting a resistor between an input coil and a modulation coil. CONSTITUTION:An input coil 2 and a modulation coil 3 are connected each other through a resistor 9 and one edge of the coil 3 is connected to a GND (ground level) so that the coil 2 is also connected to the GND through the resistor 9. Its potential is fixed so that no excessive voltage is generated between the coil 2 and a ring 1 or between the coil 2 and the coil 3 even if a spike noise is applied to a SQUID ring or the coil 3. Also, since the coil 3 is in superconductive state, current which flows through the coil 3 does not flow to the resistor 9 at all, thus preventing characteristics of the DC-SQUID from being affected. Therefore, no element breakdown such as insulation breakdown and burnout, etc., of.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は微小磁束計測や生体磁
気計測等に用いられるDC−SQUIDに関し、更に詳
しくは、スパイクノイズが印加されてもSQUID素子
が損傷しにくいDC−SQUIDに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC-SQUID used for minute magnetic flux measurement, biomagnetism measurement, and the like, and more particularly to a DC-SQUID that is unlikely to damage an SQUID element even when spike noise is applied.

【0002】[0002]

【従来の技術】 超電導ループ内に2つのジョセフソン
接合部を持つSQUIDリングを用いて微小磁束等を計
測するDC−SQUIDにおいては、一般に、被測定量
である外部磁束をSQUIDリング自体で拾わず、磁束
トランス等と称される入力回路を用いてSQUIDリン
グに伝達する方法が採用される。この入力回路として
は、通常、2つのコイルにより超電導閉ループを形成し
たものが用いられ、外部磁束を拾うピックアップコイル
と、この磁束信号をSQUIDリングに伝達すべくSQ
UIDリングに対して近接配置されることによりこのS
QUIDリングと磁気的に結合された入力コイルとによ
って構成される。
2. Description of the Related Art In a DC-SQUID in which a minute magnetic flux is measured by using an SQUID ring having two Josephson junctions in a superconducting loop, the external magnetic flux, which is a measured quantity, is generally not picked up by the SQUID ring itself. A method of transmitting to the SQUID ring by using an input circuit called a magnetic flux transformer or the like is adopted. As this input circuit, a superconducting closed loop formed by two coils is usually used, and a pickup coil for picking up an external magnetic flux and an SQ for transmitting the magnetic flux signal to the SQUID ring are used.
This S by being placed close to the UID ring
It is composed of a QUID ring and an input coil that is magnetically coupled.

【0003】また、DC−SQUIDにおいては、磁束
量子よりも更に細かく磁束を分解するとともに、出力を
線形化するため、磁束ロック法と称される計測回路手段
が採用される。磁束ロック法を用いた計測回路は、基本
的には零位法を用いた計測回路であって、SQUIDリ
ングの出力の微分出力(磁束−電圧変換係数)が常に零
になるような信号をSQUIDリングに対してフィード
バックする。このフィードバック信号をSQUIDリン
グに伝達するためのコイルは変調コイルと称される。
Further, in the DC-SQUID, a measuring circuit means called a magnetic flux lock method is adopted in order to decompose the magnetic flux more finely than the magnetic flux quantum and linearize the output. The measurement circuit using the magnetic flux lock method is basically a measurement circuit using the null method, and a signal whose differential output (magnetic flux-voltage conversion coefficient) of the output of the SQUID ring is always zero is SQUID. Give feedback to the ring. The coil for transmitting this feedback signal to the SQUID ring is called a modulation coil.

【0004】図2は上記した方法を採用したDC−SQ
UIDの回路構成を示すブロック図である。図において
1がSQUIDリングで1aはジョセフソン接合部であ
る。2が入力コイルで4はピックアップコイルであり、
これらで超電導閉ループを形成している。また、3がフ
ィードバック用の変調コイルである。
FIG. 2 is a DC-SQ adopting the above method.
It is a block diagram which shows the circuit structure of UID. In the figure, 1 is a SQUID ring and 1a is a Josephson junction. 2 is an input coil, 4 is a pickup coil,
These form a superconducting closed loop. Reference numeral 3 is a modulation coil for feedback.

【0005】ピックアップコイル4内に外部磁束が印加
されると、この磁束は入力コイル2を介してSQUID
リング1に伝達される。SQUIDリング1にはバイア
ス電流源5が接続されており、外部磁束に依存した電圧
を発生する。このSQUIDリング1の出力電圧は、ア
ンプ6、ロックインアンプ7およびAF発振器8からな
る磁束ロック法に基づく計測回路により電流に変換さ
れ、変調コイル3を介してSQUIDリング1に戻され
る。
When an external magnetic flux is applied to the pickup coil 4, this magnetic flux passes through the input coil 2 and becomes SQUID.
Transmitted to ring 1. A bias current source 5 is connected to the SQUID ring 1 and generates a voltage depending on the external magnetic flux. The output voltage of the SQUID ring 1 is converted into a current by a measuring circuit based on the magnetic flux lock method, which includes an amplifier 6, a lock-in amplifier 7 and an AF oscillator 8, and is returned to the SQUID ring 1 via a modulation coil 3.

【0006】このような回路において、Nb等の薄膜超電
導体を用いたDC−SQUIDにおいては、図3に模式
的断面図で例示するように、SQUIDリング1、入力
コイル2および変調コイル3が一つの基板10上に積層
され、これらがいわゆるDC−SQUID素子を構成し
ている。この図3において11は入力コイル2用の配線
で、12は絶縁層である。
In such a circuit, in the DC-SQUID using a thin film superconductor such as Nb, the SQUID ring 1, the input coil 2 and the modulation coil 3 are integrated as shown in the schematic sectional view of FIG. It is stacked on one substrate 10 and these constitute a so-called DC-SQUID element. In FIG. 3, reference numeral 11 is a wiring for the input coil 2, and 12 is an insulating layer.

【0007】[0007]

【発明が解決しようとする課題】 図2に示した従来の
回路は、スパイクノイズにより絶縁破壊やコイル等の断
線が生じるという問題があった。すなわち、図4は図2
に示したDC−SQUIDの等価回路である。この図4
において、Ls,i,p およびLm はそれぞれSQUI
Dリング1,入力コイル2,ピックアップコイル4およ
び変調コイル3のインダクタンス、M1,M2 およびM3
はSQUIDリング1と入力コイル2間、SQUIDリ
ング1と変調コイル3間、および入力コイル2と変調コ
イル3間の相互インダクタンスで、C1 〜C4はそれぞ
れ容量である。
The conventional circuit shown in FIG. 2 has a problem that spike noise causes dielectric breakdown or disconnection of a coil or the like. That is, FIG. 4 corresponds to FIG.
It is an equivalent circuit of the DC-SQUID shown in FIG. This Figure 4
, L s, L i, L p and L m are SQUI
Inductances of D ring 1, input coil 2, pickup coil 4 and modulation coil 3, M 1 , M 2 and M 3
Are mutual inductances between the SQUID ring 1 and the input coil 2, between the SQUID ring 1 and the modulation coil 3, and between the input coil 2 and the modulation coil 3, and C 1 to C 4 are capacitors.

【0008】このような回路において、変調コイル3の
両端、またはジョセフソン接合部1aにスパイクノイズ
が加わると、M1,M3 、C3,4 等によって、入力コイ
ル2とSQUIDリング1、あるいは入力コイル2と変
調コイル3間に過電圧ないしは過電流が発生する。その
ため、図3の構造において図中クロスハッチングで示す
部分に絶縁破壊が生じたり、あるいはコイル配線が断線
してしまうという問題があった。
In such a circuit, when spike noise is applied to both ends of the modulation coil 3 or the Josephson junction 1a, the input coil 2 and the SQUID ring 1 are caused by M 1 , M 3 , C 3, C 4 and the like. Alternatively, an overvoltage or an overcurrent is generated between the input coil 2 and the modulation coil 3. Therefore, in the structure of FIG. 3, there is a problem that dielectric breakdown occurs in a portion indicated by cross hatching in the drawing or the coil wiring is broken.

【0009】[0009]

【課題を解決するための手段】 本発明はスパイクノイ
ズの印加による素子の絶縁破壊等の発生を防止すべくな
されたもので、その特徴とするところは、実施例に対応
する図1に示すように、入力コイル2と変調コイル3の
間に抵抗9を挿入した点にある。
Means for Solving the Problems The present invention has been made to prevent the occurrence of dielectric breakdown of an element due to the application of spike noise, and its characteristic feature is as shown in FIG. 1 corresponding to the embodiment. In addition, a resistor 9 is inserted between the input coil 2 and the modulation coil 3.

【0010】[0010]

【作用】 図2に示す従来の回路構成においては、入力
コイル2は電位的に浮いた状態となっている。一方、変
調コイル3の一端はGND(接地レベル)に接続され、
電位は固定されている。そこで、本発明の構成のように
入力コイル2と変調コイル3とを抵抗9を介して接続す
ると、入力コイル2は抵抗9を介してGNDに接続され
ることになり、電位が固定され、上記のような過電圧は
生じない。
In the conventional circuit configuration shown in FIG. 2, the input coil 2 is in a potential floating state. On the other hand, one end of the modulation coil 3 is connected to GND (ground level),
The potential is fixed. Therefore, when the input coil 2 and the modulation coil 3 are connected through the resistor 9 as in the configuration of the present invention, the input coil 2 is connected to the GND through the resistor 9, and the potential is fixed, The overvoltage like the above does not occur.

【0011】[0011]

【実施例】 図1は本発明実施例の回路構成図である。
SQUIDリング1、入力コイル2、変調コイル3、ピ
ックアップコイル4、バイアス電流源5、アンプ6、ロ
ックインアンプ7およびAF発振器8等の各回路要素は
図2に示した公知の従来例と同等であり、ここでは特に
詳細な説明を省略する。
Embodiment FIG. 1 is a circuit configuration diagram of an embodiment of the present invention.
Circuit elements such as the SQUID ring 1, the input coil 2, the modulation coil 3, the pickup coil 4, the bias current source 5, the amplifier 6, the lock-in amplifier 7 and the AF oscillator 8 are equivalent to those of the known conventional example shown in FIG. Therefore, a detailed description is omitted here.

【0012】この例における特徴は、入力コイル2と変
調コイル3とが抵抗9を介して相互に接続されている点
である。この構成において、変調コイル3の一端はGN
Dに接続されており、従って入力コイル2は、抵抗9を
介してGNDに接続されることになり、その電位は固定
されることになる。その結果、SQUIDリング1や変
調コイル3にスパイクノイズが加わっても、入力コイル
2とSQUIDリング1間、あるいは入力コイル2と変
調コイル3間に過電圧が発生しない。
The feature of this example is that the input coil 2 and the modulation coil 3 are connected to each other via a resistor 9. In this configuration, one end of the modulation coil 3 has a GN
Since the input coil 2 is connected to D, the input coil 2 is connected to GND via the resistor 9, and the potential thereof is fixed. As a result, even if spike noise is applied to the SQUID ring 1 and the modulation coil 3, an overvoltage does not occur between the input coil 2 and the SQUID ring 1 or between the input coil 2 and the modulation coil 3.

【0013】この回路構成において、この抵抗9はDC
−SQUIDの特性に顕著な影響を与えない。何故なら
ば、デバイスの動作状態において変調コイル3が超電導
体状態にあるため、変調コイル3を流れる電流が、抵抗
9には全く流れないからである。しかし、図4に示した
等価回路から明らかなように、抵抗9の抵抗値によって
は磁束−電圧変換特性に影響がでる可能性もある。この
影響を調査するため、抵抗9の抵抗値を1KΩとしてデ
バイスを動作させたところ、磁束−電圧変換特性やノイ
ズ特性には影響がでないことが確認され、スパイクノイ
ズによる絶縁破壊が他に影響することなく防止できるこ
とが確かめられた。
In this circuit configuration, the resistor 9 is DC
-No significant effect on SQUID properties. This is because the modulation coil 3 is in the superconductor state in the operating state of the device, so that the current flowing through the modulation coil 3 does not flow through the resistor 9 at all. However, as is clear from the equivalent circuit shown in FIG. 4, the magnetic flux-voltage conversion characteristics may be affected depending on the resistance value of the resistor 9. In order to investigate this effect, the device was operated with the resistance value of the resistor 9 set to 1 KΩ, and it was confirmed that there was no effect on the magnetic flux-voltage conversion characteristics and noise characteristics, and dielectric breakdown due to spike noise has other effects. It was confirmed that it can be prevented without any trouble.

【0014】[0014]

【発明の効果】 以上説明したように、本発明によれ
ば、磁束トランスを用いた入力回路と磁束ロック法を用
いた計測回路を有するDC−SQUIDにおいて、入力
コイルと変調コイルの間を抵抗を介して接続しているの
で、入力コイルが抵抗を介してGNDに接続されること
になって、入力コイルの電位が固定されるので、SQU
IDリングまたは変調コイルにスパイクノイズが印加さ
れても、これらと入力コイルとの間に過電圧が生じるこ
とがなくなり、その結果として絶縁破壊やコイルの断線
等の素子破壊が生じることがなくなった。
As described above, according to the present invention, in the DC-SQUID having the input circuit using the magnetic flux transformer and the measuring circuit using the magnetic flux lock method, a resistance is provided between the input coil and the modulation coil. Since the input coil is connected via the resistor, the input coil is connected to the GND via the resistor, and the potential of the input coil is fixed.
Even if spike noise is applied to the ID ring or the modulation coil, overvoltage does not occur between them and the input coil, and as a result, element breakdown such as insulation breakdown or coil disconnection does not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明実施例の回路構成図FIG. 1 is a circuit configuration diagram of an embodiment of the present invention.

【図2】 従来のDC−SQUIDの回路構成図FIG. 2 is a circuit configuration diagram of a conventional DC-SQUID.

【図3】 薄膜を用いた従来のSQUID素子の構造を
示す模式的断面図
FIG. 3 is a schematic cross-sectional view showing the structure of a conventional SQUID element using a thin film.

【図4】 図2に示した従来のDC−SQUIDの等価
回路図
4 is an equivalent circuit diagram of the conventional DC-SQUID shown in FIG.

【符号の説明】[Explanation of symbols]

1・・・・SQUIDリング 1a・・・・ジョセフソン接合部 2・・・・入力コイル 3・・・・変調コイル 4・・・・ピックアップコイル 5・・・・バイアス電流源 6・・・・アンプ 7・・・・ロックインアンプ 8・・・・AF発振器 9・・・・抵抗 10・・・・基板 11・・・・入力コイル用配線 12・・・・絶縁層 1 ... SQUID ring 1a ... Josephson junction 2 ... Input coil 3 ... Modulation coil 4 ... Pickup coil 5 ... Bias current source 6 ... Amplifier 7 ... Lock-in amplifier 8 ... AF oscillator 9 ... Resistor 10 ... Substrate 11 ... Input coil wiring 12 ... Insulation layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超電導ループ内に2つのジョセフソン接
合部を持つSQUIDリングと、このSQUIDリング
に近接配置され、このSQUIDリングに対して外部磁
場を伝達する入力コイルと、磁束ロック法に基づく計測
回路からのフィードバック信号を上記SQUIDリング
に伝達する変調コイルを備えた回路において、上記入力
コイルと変調コイルの間に抵抗が挿入されていることを
特徴とするDC−SQUID。
1. A SQUID ring having two Josephson junctions in a superconducting loop, an input coil arranged close to the SQUID ring and transmitting an external magnetic field to the SQUID ring, and measurement based on a magnetic flux lock method. A DC-SQUID, characterized in that in a circuit including a modulation coil for transmitting a feedback signal from the circuit to the SQUID ring, a resistor is inserted between the input coil and the modulation coil.
JP3236181A 1991-09-17 1991-09-17 DC-SQUID Expired - Fee Related JP3013542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3236181A JP3013542B2 (en) 1991-09-17 1991-09-17 DC-SQUID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3236181A JP3013542B2 (en) 1991-09-17 1991-09-17 DC-SQUID

Publications (2)

Publication Number Publication Date
JPH0572308A true JPH0572308A (en) 1993-03-26
JP3013542B2 JP3013542B2 (en) 2000-02-28

Family

ID=16996974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3236181A Expired - Fee Related JP3013542B2 (en) 1991-09-17 1991-09-17 DC-SQUID

Country Status (1)

Country Link
JP (1) JP3013542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322886A (en) * 2005-05-20 2006-11-30 Toyohashi Univ Of Technology Planar thin-film squid differential magnetic flux sensor and non-destructive inspection apparatus using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322886A (en) * 2005-05-20 2006-11-30 Toyohashi Univ Of Technology Planar thin-film squid differential magnetic flux sensor and non-destructive inspection apparatus using it
JP4635199B2 (en) * 2005-05-20 2011-02-16 国立大学法人豊橋技術科学大学 Planar thin film type SQUID differential type magnetic flux sensor and non-destructive inspection apparatus using the same

Also Published As

Publication number Publication date
JP3013542B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
EP0545948B1 (en) High symmetry dc squid system
US5656937A (en) Low-noise symmetric dc SQUID system having two pairs of washer coils and a pair of Josephson junctions connected in series
US6169397B1 (en) Damped superconducting coil system having a multiturn, planar geometry superconducting coil and shunt resistors electrically connecting successive coil turns
US5831426A (en) Magnetic current sensor
Stolz et al. LTS SQUID sensor with a new configuration
US7453263B2 (en) Reference current optimizing apparatus for controlling magnetic flux-voltage conversion characteristic of double relaxation oscillation squid
JP2749048B2 (en) Superconducting quantum interferometer
JP3013542B2 (en) DC-SQUID
Keene et al. Low noise HTS gradiometers and magnetometers constructed from YBa/sub 2/Cu/sub 3/O/sub 7-x//PrBa/sub 2/Cu/sub 3/O/sub 7-y/thin films
Foglietti et al. A double dc-SQUID device for flux locked loop operation
ter Brake et al. Temperature dependence of the effective sensing area of high-dc SQUIDs
Foglietti et al. Performance of a flux locked series SQUID array
JPH06194433A (en) Magnetometer
JP2587002B2 (en) SQUID magnetometer
JPS61121483A (en) Dc-driven type superconducting quantative interference element
EP0829016B1 (en) Squid magnetometer
JP3246774B2 (en) DC superconducting quantum interference device
Shimizu et al. Performance of DC SQUIDs fabricated on 4-inch silicon wafer
JP2943293B2 (en) DC-SQUID magnetometer
KR100235993B1 (en) A magnetometer using squid
Heiden SQUID and SQUID system developments for biomagnetic applications
JPS61284679A (en) Superconductive quantum interference device
Kostyurina et al. Developing topologies of thin-film SQUID sensors for measuring extremely subtle magnetic fields
Schilling et al. DC-SQUIDs and flux transformers in YBa/sub 2/Cu/sub 3/O/sub 7/magnetometers at 77 K
Keene et al. HTS SQUID magnetometers with intermediate flux transformers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees