JPH0572172A - Enzyme electrode - Google Patents

Enzyme electrode

Info

Publication number
JPH0572172A
JPH0572172A JP3238177A JP23817791A JPH0572172A JP H0572172 A JPH0572172 A JP H0572172A JP 3238177 A JP3238177 A JP 3238177A JP 23817791 A JP23817791 A JP 23817791A JP H0572172 A JPH0572172 A JP H0572172A
Authority
JP
Japan
Prior art keywords
electrode
enzyme
sensitive
insulating
sensitive portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3238177A
Other languages
Japanese (ja)
Inventor
Satoshi Nakajima
聡 中嶋
Masato Arai
真人 荒井
Hideki Endo
英樹 遠藤
Koichi Takizawa
耕一 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP3238177A priority Critical patent/JPH0572172A/en
Publication of JPH0572172A publication Critical patent/JPH0572172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To provide an enzyme electrode of which formation of a sensitive part does not require use of photolithography technique, an exclusive manufacturing device is dispensable, dispersion of electrode output is little, responsive speed is high, measuring accuracy is high, and the price is cheap. CONSTITUTION:The enzyme electrode is constituted of an insulating electrode supporting base plate 1, a bed electrode 2 consisting of a working electrode 21 and a reference electrode 22 membrane-likely formed on the insulating electrode supporting base plate 1, and an immobilized enzyme membrane 3 formed on the insulating electrode supporting base plate 1 containing the bed electrode 2. At least the pattern width of the lead part 21b of the won-king electrode 21 is set smaller than the pattern width of the sensitive part 21a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酵素電極に関し、フ
ォトリソグラフィー技術を使用せずに下地電極の感応部
を形成し得る酵素電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an enzyme electrode, and more particularly to an enzyme electrode capable of forming a sensitive portion of a base electrode without using a photolithography technique.

【0002】[0002]

【従来の技術】図11は、従来の酵素電極を示す斜視図
である。このプレーナ型酵素電極は、絶縁性電極支持基
板1と、この絶縁性電極支持基板1上に形成された下地
電極2と、この下地電極2を含む絶縁性支持基板1上に
形成される絶縁性保護膜(感光性樹脂)6と、この絶縁
性保護膜6上に形成される固定化酵素膜3とから成る。
上記下地電極2は、リード部21bを介して一端を接続
部21cとし、他端を感応部21aとする作用電極21
と、この作用電極21に対し平行状に配備される参照電
極22とから成る。また、前記固定化酵素膜3は、図1
2で示すように、電極2側の第一の高分子膜31と、中
間層である固定化酵素層32と、表面側の第二の高分子
膜33の三層で構成されている。
2. Description of the Related Art FIG. 11 is a perspective view showing a conventional enzyme electrode. This planar type enzyme electrode includes an insulating electrode supporting substrate 1, an underlying electrode 2 formed on the insulating electrode supporting substrate 1, and an insulating property formed on the insulating supporting substrate 1 including the underlying electrode 2. It comprises a protective film (photosensitive resin) 6 and an immobilized enzyme film 3 formed on the insulating protective film 6.
The base electrode 2 has a working electrode 21 having one end as a connecting portion 21c and the other end as a sensitive portion 21a via a lead portion 21b.
And a reference electrode 22 arranged in parallel with the working electrode 21. In addition, the immobilized enzyme membrane 3 is shown in FIG.
As shown by 2, it is composed of three layers of a first polymer film 31 on the electrode 2 side, an immobilized enzyme layer 32 as an intermediate layer, and a second polymer film 33 on the surface side.

【0003】[0003]

【発明が解決しようとする課題】上記、従来のプレーナ
型酵素電極は、絶縁性電極支持基板1と固定化酵素膜
(第一の高分子膜)3との間に、絶縁性保護膜6が介在
させてある。この絶縁性保護膜6は、電極支持基板1上
に感光性樹脂を塗布し、フォトマスクをかけて露光し、
現像、リンスすることにより電極支持基板1の接続部2
1c、22c及び作用電極21の感応部21aと参照電
極22の感応部22aを除いて形成される。
In the conventional planar type enzyme electrode described above, the insulating protective film 6 is provided between the insulating electrode supporting substrate 1 and the immobilized enzyme film (first polymer film) 3. Intervened. The insulating protective film 6 is formed by applying a photosensitive resin on the electrode supporting substrate 1 and exposing it with a photomask.
The connecting portion 2 of the electrode supporting substrate 1 by developing and rinsing
1c, 22c and the sensitive portion 21a of the working electrode 21 and the sensitive portion 22a of the reference electrode 22 are formed.

【0004】ところで、図10は、作用電極21の感応
部21aと参照電極22の感応部22aの面積比の応答
速度に対する影響を示す説明図である。図示例では、作
用電極の感応部21aを「1」としたときの参照電極の
感応部22aの面積比を横軸にとり、応答速度を縦軸に
とっている。この説明図より、作用電極の感応部21a
と参照電極の感応部22aの面積比が、1:1の時は応
答速度が約40秒と遅く、作用電極の感応部21aの面
積が「1」に対し参照電極の感応部22aの面積が
「2」以上である時、応答速度が約20秒と速いことが
明らかとなっている。したがって、迅速な応答速度を得
るためには、作用電極感応部の面積に対し参照電極感応
部の面積比を「2」以上とする必要がある。そこで、従
来の酵素電極では、微細な感応部を定めるのに最適とさ
れるフォトリソグラフィー技術を採用している。
By the way, FIG. 10 is an explanatory diagram showing the influence of the area ratio of the sensitive portion 21a of the working electrode 21 and the sensitive portion 22a of the reference electrode 22 on the response speed. In the illustrated example, the horizontal axis represents the area ratio of the sensitive portion 22a of the reference electrode when the sensitive portion 21a of the working electrode is "1", and the response speed is the vertical axis. From this illustration, the sensitive portion 21a of the working electrode
When the area ratio of the sensitive area 22a of the reference electrode is 1: 1, the response speed is as slow as about 40 seconds, and the area of the sensitive area 22a of the reference electrode is smaller than that of the sensitive area 21a of the working electrode. It is clear that when the value is "2" or more, the response speed is as fast as about 20 seconds. Therefore, in order to obtain a quick response speed, the area ratio of the reference electrode sensitive portion to the area of the working electrode sensitive portion needs to be "2" or more. Therefore, the conventional enzyme electrode employs a photolithography technique that is most suitable for defining a fine sensitive portion.

【0005】ところが、このフォトリソグラフィ技術を
用いる場合は、工程が非常に煩雑で時間を要する。更
に、専用の製造装置が必要となる許かりでなく、フォト
リソグラフィー工程が歩留り劣化の一因をなし、コスト
ダウンの妨げとなる。また、従来の作用電極では、リー
ド部と感応部との幅が同一に設定してある(単位長さ当
たりのパターン幅が同一に設定してある)。従って、仮
に作用電極感応部を形成する際(感応部設定時)に僅か
な差異が生じた場合、露出するリード部により電極出力
に大きな影響を与えることとなる。また、リンスの不徹
底による作用電極感応部面への各種物質付着により、電
極出力の低下や電極間の特性のバラツキを増大させ、測
定精度に悪影響を及ぼす等の不利があった。
However, when this photolithography technique is used, the process is very complicated and time-consuming. Further, a dedicated manufacturing apparatus is not required, and the photolithography process contributes to yield deterioration, which hinders cost reduction. Further, in the conventional working electrode, the lead portion and the sensitive portion have the same width (the pattern width per unit length is the same). Therefore, if a slight difference occurs when the working electrode sensitive portion is formed (when the sensitive portion is set), the exposed lead portion greatly affects the electrode output. Further, due to various substances adhering to the sensitive surface of the working electrode due to imperfect rinsing, there are disadvantages such as a decrease in electrode output and an increase in variation in characteristics between electrodes, which adversely affects measurement accuracy.

【0006】この発明では、以上のような課題を解消さ
せ、感応部の形成にフォトリソグラフィー技術を使用せ
ず、専用の製造装置が不要であり、電極出力のバラツキ
が少なく、応答速度が速く、且つ測定精度の高い安価な
酵素電極を提供することを目的とする。
In the present invention, the above problems are solved, the photolithography technique is not used for forming the sensitive portion, a dedicated manufacturing apparatus is not required, the variation in electrode output is small, and the response speed is fast, Moreover, it is an object to provide an inexpensive enzyme electrode with high measurement accuracy.

【0007】[0007]

【課題を解決するための手段及び作用】この目的を達成
させるために、この発明の酵素電極では、次のような構
成としている。酵素電極は、絶縁性電極支持基板と、こ
の絶縁性電極支持基板上に形成された作用電極及び参照
電極とから成る下地電極と、この下地電極を含む絶縁性
電極支持基板上に形成された固定化酵素膜とから成る酵
素電極において、少なくとも作用電極のリード部パター
ン幅を感応部パターン幅より小さく設定したことを特徴
としている。
To achieve this object, the enzyme electrode of the present invention has the following constitution. The enzyme electrode includes an insulating electrode supporting substrate, a base electrode composed of a working electrode and a reference electrode formed on the insulating electrode supporting substrate, and a fixed electrode formed on the insulating electrode supporting substrate including the base electrode. In the enzyme electrode composed of the modified enzyme membrane, at least the lead portion pattern width of the working electrode is set smaller than the sensitive portion pattern width.

【0008】このような構成を有する酵素電極では、絶
縁性電極支持基板上に形成した下地電極(作用電極及び
参照電極)上に、直接、固定化酵素膜を形成している。
また、少なくとも作用電極(リード部の一端に接続部、
他端に感応部をもつ)は、リード部のパターン幅を感応
部のパターン幅より極端に小さく設定している。従っ
て、作用電極感応部の形成において、感応部面積(感応
部設定時における感応部対応窓孔面積)に誤差が生じた
としても、露出するリード部の面積が極めて小さく、電
極出力に大きな影響を与えることが防止できる。これに
より、従来のように感応部の形成に時間がかかり作業が
煩瑣で、専用の装置を必要とするフォトリソグラフィー
技術を使用する必要がない。従って、作用電極感応部面
への各種物質の付着がない。また、作用電極の感応部の
面積に対し、参照電極の感応部の面積比率を予め2倍以
上にパターニングしておくことで、極めて迅速な応答速
度を得ることができる。
In the enzyme electrode having such a structure, the immobilized enzyme membrane is directly formed on the base electrode (working electrode and reference electrode) formed on the insulating electrode supporting substrate.
Also, at least the working electrode (the connecting portion at one end of the lead portion,
Has a sensitive portion at the other end), the pattern width of the lead portion is set extremely smaller than the pattern width of the sensitive portion. Therefore, even if an error occurs in the area of the sensitive portion (the area of the window corresponding to the sensitive portion when the sensitive portion is set) in forming the working electrode sensitive portion, the area of the exposed lead portion is extremely small and the electrode output is greatly affected. Can be given. As a result, it takes time and labor to form the sensitive portion, unlike the conventional case, and it is not necessary to use a photolithography technique that requires a dedicated device. Therefore, there is no adhesion of various substances on the surface of the working electrode sensitive section. Further, by patterning the area ratio of the sensitive portion of the reference electrode with respect to the area of the sensitive portion of the working electrode in advance to twice or more, an extremely quick response speed can be obtained.

【0009】[0009]

【実施例】図1は、この発明に係る酵素電極の具体的な
一実施例を示す斜視図である。
EXAMPLE FIG. 1 is a perspective view showing a specific example of the enzyme electrode according to the present invention.

【0010】実施例の酵素電極は、血液中のグルコース
濃度測定用のもので、絶縁性電極支持基板1と、この電
極支持基板1上に形成された下地電極2と、絶縁性支持
基板1上に対し、下地電極2の接続部を除いて直接一体
に被覆形成された固定化酵素膜3とから成る。この酵素
電極は、下地電極2の感応部21a、22aを露出させ
る窓孔5を備えた、且つ接続部21c、22cを露出さ
せる長さの保持部材4に収納される。
The enzyme electrode of the embodiment is for measuring glucose concentration in blood, and includes an insulating electrode supporting substrate 1, a base electrode 2 formed on the electrode supporting substrate 1, and an insulating supporting substrate 1. On the other hand, it is composed of the immobilized enzyme membrane 3 which is directly and integrally formed except the connecting portion of the base electrode 2. This enzyme electrode is housed in a holding member 4 having a window hole 5 for exposing the sensitive portions 21a, 22a of the base electrode 2 and having a length for exposing the connecting portions 21c, 22c.

【0011】図3乃至図5は、実施例酵素電極の製造工
程を示す説明図である。絶縁性電極支持基板1は、例え
ば50×50mm、厚さ100μのポリイミドフィルム
が用いられる。このプラスチックフィルム等の絶縁性電
極支持基板1上に、作用電極21と参照電極22が形成
され、作用電極21と参照電極22とで一対の下地電極
2が構成され、この下地電極2が多数絶縁性支持基板1
上に形成される。この下地電極2は、スパッタリング、
真空蒸着、イオンプレーティング等の手段を用いて、白
金を帯状に膜形成する。実施例では、下地電極2は2m
m×20mm、厚さ1500Åの膜形成が行われてい
る。この下地電極2の電極材料としては、白金に限定さ
れず、且つ形成手段もメッキや箔の粘着等で実施ても良
い。更に、電極支持基板1上には、接続部21c、22
cを除いて酵素膜3が形成される。この酵素膜3は、図
5で示すように、電極2側の第一の高分子膜31と、中
間層である固定化酵素層32と、表面側の第二の高分子
膜33を積層した三層構造とされる。実施例では、第一
の高分子膜31及び第二の高分子膜33は、ナフィオン
を採用している。ナフィオン(Nafion)は、アメ
リカ・デュポン車の商品名で、陽イオン交換性の高分
子、Polyperfluorosulfuric a
cidである。このナフィオンは、5%溶液(溶媒は低
級アルコール)が市販されており、膜形成が容易であ
る。本実施例では、ディップコーティングにより膜形成
している。この際、図4のように、電極支持基板1を半
分に切断してディップコーテティングする。また、酵素
膜32は酵素液よりディップコーティングして膜形成さ
れる。酵素液は、0.1モルのリン酸緩衝液(pH7.
0)に、酵素グルコースオキシダーゼ(GOD)10
%、牛血清アルブミン7.5%及びグルタルアルデヒド
0.5%の濃度になるように調整して実施される。酵素
膜3装着後、一個の酵素電極に切り取って使用する(図
1参照)。
3 to 5 are explanatory views showing the manufacturing process of the enzyme electrode of the embodiment. For the insulating electrode supporting substrate 1, for example, a polyimide film having a size of 50 × 50 mm and a thickness of 100 μ is used. A working electrode 21 and a reference electrode 22 are formed on an insulating electrode supporting substrate 1 such as a plastic film, and the working electrode 21 and the reference electrode 22 form a pair of base electrodes 2, and a large number of the base electrodes 2 are insulated. Support substrate 1
Formed on. The base electrode 2 is formed by sputtering,
A film of platinum is formed into a band using a means such as vacuum deposition or ion plating. In the embodiment, the base electrode 2 is 2 m
A film of m × 20 mm and a thickness of 1500Å is formed. The electrode material of the base electrode 2 is not limited to platinum, and the forming means may be plating or adhesion of foil. Further, on the electrode supporting substrate 1, the connecting portions 21c, 22
The enzyme membrane 3 is formed except for c. As shown in FIG. 5, the enzyme membrane 3 is formed by laminating a first polymer membrane 31 on the electrode 2 side, an immobilized enzyme layer 32 as an intermediate layer, and a second polymer membrane 33 on the surface side. It has a three-layer structure. In the embodiment, Nafion is used for the first polymer film 31 and the second polymer film 33. Nafion is a trade name of DuPont cars in the United States, and is a cation-exchangeable polymer, Polyfluorosulfurica.
cid. A 5% solution (solvent is lower alcohol) of this Nafion is commercially available, and it is easy to form a film. In this embodiment, the film is formed by dip coating. At this time, as shown in FIG. 4, the electrode supporting substrate 1 is cut in half and dip coated. The enzyme film 32 is formed by dip coating with an enzyme solution. The enzyme solution was 0.1 molar phosphate buffer solution (pH 7.
0) to the enzyme glucose oxidase (GOD) 10
%, Bovine serum albumin 7.5% and glutaraldehyde 0.5%. After mounting the enzyme membrane 3, it is cut into one enzyme electrode for use (see FIG. 1).

【0012】図6乃至図9は、作用電極21と参照電極
22のパターン例を示している。図6に示す電極パター
ン例では、図1と同様に、作用電極21及び参照電極2
2が共に、一本の細いリード部(リード線状)21b、
22bを介して、それぞれ感応部21a、22aと接続
部21c、22cを導通させている。そして、参照電極
22の感応部22a面積を、作用電極21の感応部21
a面積の2倍に設定してある。図7に示す電極パターン
例は、作用電極21のリード部21bを一本のリード線
状とし、感応部21aと接続部21cを導通させ、参照
電極22については、感応部22aとリード22b、リ
ード部22bと接続部22cの境においてパターン幅の
変化がない例を示している。参照電極22の場合は、リ
ード部22bと感応部22aとのパターン幅に差異がな
くとも殆ど精度に影響を与えないため、これで充分であ
ることによる。また、図8に示す電極パターン例では、
作用電極21のリード部21bを感応部21aに接続す
る部分を幅狭に設定し、感応部21aと接続部21cと
を導通している。参照電極については、感応部22aと
リード部22b、リード部22bと接続部22cの境に
おいてパターン幅の変化のない例を示している。更に、
図9の電極パターン例は、作用電極21については、二
本の細いリード部(リード線状)21b、21bで感応
部21aと接続部21cを導通させ、参照電極について
は感応部22aとリード部22b、リード部22bと接
続部22cとの境においてパターン幅の変化のない例を
示している。図7乃至図9の例は、いずれも参照電極2
2の感応部22aが、作用電極21の感応部21aの面
積の二倍以上となるように設定してある。
6 to 9 show pattern examples of the working electrode 21 and the reference electrode 22. In the example of the electrode pattern shown in FIG. 6, the working electrode 21 and the reference electrode 2 are the same as in FIG.
2 is one thin lead portion (lead wire) 21b,
The sensitive portions 21a and 22a and the connecting portions 21c and 22c are electrically connected to each other via 22b. Then, the area of the sensitive portion 22 a of the reference electrode 22 is set to the sensitive portion 21 a of the working electrode 21.
The area is set to twice the area. In the example of the electrode pattern shown in FIG. 7, the lead portion 21b of the working electrode 21 is formed into a single lead wire, and the sensitive portion 21a and the connecting portion 21c are electrically connected. For the reference electrode 22, the sensitive portion 22a, the lead 22b, and the lead An example is shown in which the pattern width does not change at the boundary between the portion 22b and the connecting portion 22c. In the case of the reference electrode 22, the accuracy is hardly affected even if there is no difference in the pattern width between the lead portion 22b and the sensitive portion 22a, and this is sufficient. In addition, in the electrode pattern example shown in FIG.
The portion connecting the lead portion 21b of the working electrode 21 to the sensitive portion 21a is set to be narrow, and the sensitive portion 21a and the connecting portion 21c are electrically connected. Regarding the reference electrode, an example in which the pattern width does not change at the boundary between the sensitive portion 22a and the lead portion 22b and between the lead portion 22b and the connection portion 22c is shown. Furthermore,
In the example of the electrode pattern of FIG. 9, for the working electrode 21, two thin lead portions (lead wire shapes) 21b, 21b connect the sensitive portion 21a and the connecting portion 21c to each other, and for the reference electrode, the sensitive portion 22a and the lead portion. 22b shows an example in which the pattern width does not change at the boundary between the lead portion 22b and the connecting portion 22c. In each of the examples of FIGS. 7 to 9, the reference electrode 2 is used.
The second sensitive portion 22a is set to be twice the area of the sensitive portion 21a of the working electrode 21 or more.

【0013】この酵素電極は、図1及び図2で示すよう
に、各感応部21a、22aが露出した状態で保持部材
4に封入される。
As shown in FIGS. 1 and 2, the enzyme electrode is enclosed in the holding member 4 with the sensitive portions 21a and 22a exposed.

【0014】このような構成を有する酵素電極では、絶
縁性電極支持基板1上に形成した下地電極(作用電極2
1及び参照電極22)2上に、直接、固定化酵素膜3を
形成している。従って、作用電極の感応部21a面と酵
素層3がより密着し迅速な応答速度が得られる。また、
少なくとも作用電極21は、リード部21bのパターン
幅を感応部21aのパターン幅より極端に小さく設定し
ている。従って、作用電極感応部21aの形成におい
て、感応部21aに対応する開口部面積(保持部材4の
開口窓孔5面積)に誤差が生じたとしても、露出するリ
ード部21bの面積が極めて小さく、電極出力に大きな
影響を与えることを防止できる。これにより、従来のよ
うに感応部21aの形成に時間がかかり作業が煩瑣で、
専用の装置を必要とするフォトリソグラフィー技術を使
用する必要がない。従って、作用電極感応部21a面へ
の各種物質の付着がない。また、作用電極21の感応部
21aの面積に対し、参照電極22の感応部22aの面
積比率を予め2倍以上にパターニングしておくことで、
極めて迅速な応答速度を得ることができる。
In the enzyme electrode having such a structure, the base electrode (working electrode 2) formed on the insulating electrode supporting substrate 1 is used.
Immobilized enzyme membrane 3 is directly formed on 1 and reference electrode 22) 2. Therefore, the surface of the sensitive portion 21a of the working electrode and the enzyme layer 3 are more closely attached, and a quick response speed can be obtained. Also,
At least the working electrode 21 sets the pattern width of the lead portion 21b to be extremely smaller than the pattern width of the sensitive portion 21a. Therefore, in forming the working electrode sensitive portion 21a, even if an error occurs in the opening area corresponding to the sensitive portion 21a (the area of the opening window hole 5 of the holding member 4), the exposed area of the lead portion 21b is extremely small, It is possible to prevent a great influence on the electrode output. As a result, it takes time and labor to form the sensitive portion 21a as in the conventional case.
There is no need to use photolithography techniques that require specialized equipment. Therefore, various substances are not attached to the surface of the working electrode sensitive portion 21a. Further, by patterning the area ratio of the sensitive portion 22a of the reference electrode 22 with respect to the area of the sensitive portion 21a of the working electrode 21 in advance to twice or more,
An extremely quick response speed can be obtained.

【0015】[0015]

【発明の効果】この発明では、以上のように、絶縁性電
極支持基板上に形成される膜状の下地電極の少なくとも
作用電極のリード部幅を感応部の幅よりも小さく設定
し、この下地電極の上面に接続部を除いて直接固定化酵
素膜を形成することとしたから、フォトリソグラフィー
工程が省略でき、製造時間の短縮は勿論、専用の製造装
置が不要であり、大幅なコストダウンを実現できる。ま
た、作用電極感応部面への各種物質の付着がなく、電極
出力の低下や電極間の特性のバラツキがなくなり、測定
精度を向上させ得る。更に、作用電極感応部面と酵素層
がより密着するため、迅速な応答速度が得られる。ま
た、作用電極のリード部幅は感応部幅に比較して小さい
ため、仮に保持部材の開口部にリード部が露出しても、
電極出力に対するリード部の与える影響は非常に小さく
無視できる。しかも、作用電極の感応部の面積に対し参
照電極の面積比率を二倍以上としたから、極めて迅速な
応答速度を得られる許かりでなく、この面積比を得るた
めに複数の参照電極を採用しても良く、適用範囲の広い
測定系が設定できる等、発明目的を達成した優れた効果
を有する。
As described above, according to the present invention, at least the lead portion width of the working electrode of the film-shaped base electrode formed on the insulating electrode supporting substrate is set to be smaller than the width of the sensitive portion. Since the immobilized enzyme membrane was directly formed on the upper surface of the electrode except for the connection part, the photolithography process can be omitted, the manufacturing time can be shortened, and a dedicated manufacturing device is not required, resulting in a significant cost reduction. realizable. In addition, various substances do not adhere to the surface of the working electrode sensitive portion, the electrode output is not reduced and the characteristics of the electrodes are not varied, and the measurement accuracy can be improved. Furthermore, since the surface of the sensitive part of the working electrode and the enzyme layer are in close contact with each other, a quick response speed can be obtained. Further, since the width of the lead portion of the working electrode is smaller than the width of the sensitive portion, even if the lead portion is exposed in the opening of the holding member,
The influence of the lead portion on the electrode output is very small and can be ignored. Moreover, because the area ratio of the reference electrode to the area of the sensitive part of the working electrode is more than doubled, it is not possible to obtain an extremely quick response speed, and multiple reference electrodes are used to obtain this area ratio. However, it is possible to set a measuring system having a wide range of application, and it has an excellent effect of achieving the object of the invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例酵素電極を示す斜視図である。FIG. 1 is a perspective view showing an example enzyme electrode.

【図2】実施例酵素電極を示す断面図である。FIG. 2 is a cross-sectional view showing an example enzyme electrode.

【図3】実施例酵素電極の製造工程を示す説明図であ
る。
FIG. 3 is an explanatory view showing a manufacturing process of the enzyme electrode of the example.

【図4】実施例酵素電極の製造工程を示す説明図であ
る。
FIG. 4 is an explanatory view showing a manufacturing process of the enzyme electrode of the example.

【図5】実施例酵素電極の製造工程を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing the manufacturing process of the enzyme electrode of the example.

【図6】実施例酵素電極の下地電極のパターン例を示す
説明図である。
FIG. 6 is an explanatory diagram showing an example of a pattern of a base electrode of the enzyme electrode of Example.

【図7】実施例酵素電極の下地電極の他のパターン例を
示す説明図である。
FIG. 7 is an explanatory view showing another pattern example of the base electrode of the example enzyme electrode.

【図8】実施例酵素電極の下地電極の更に他のパターン
例を示す説明図である。
FIG. 8 is an explanatory view showing still another pattern example of the base electrode of the example enzyme electrode.

【図9】実施例酵素電極の下地電極のパターン例を示す
説明図である。
FIG. 9 is an explanatory diagram showing a pattern example of a base electrode of an example enzyme electrode.

【図10】感応部の面積比による応答速度に対する影響
を示す説明図である。
FIG. 10 is an explanatory diagram showing the influence of the area ratio of the sensitive section on the response speed.

【図11】従来の酵素電極を示す斜視図である。FIG. 11 is a perspective view showing a conventional enzyme electrode.

【図12】従来の酵素電極を示す断面図である。FIG. 12 is a cross-sectional view showing a conventional enzyme electrode.

【符号の説明】[Explanation of symbols]

1 絶縁性電極支持基板 2 下地電極 3 固定化酵素膜 21 作用電極 21 a感応部 21 bリード部 1 Insulating Electrode Support Substrate 2 Base Electrode 3 Immobilized Enzyme Membrane 21 Working Electrode 21 a Sensitive Part 21 b Lead Part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 英樹 京都市下京区中堂寺南町17番地 サイエン スセンタービル 株式会社オムロンライフ サイエンス研究所内 (72)発明者 滝沢 耕一 京都市下京区中堂寺南町17番地 サイエン スセンタービル 株式会社オムロンライフ サイエンス研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Endo 17 Nakadoji-Minami-cho, Shimogyo-ku, Kyoto Science Center Building Co., Ltd. inside the Omron Life Science Research Institute (72) Inventor Koichi Takizawa 17-City, Minami-cho, Shimogyo-ku, Kyoto Saien Center Center Omron Life Science Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁性電極支持基板と、この絶縁性電極支
持基板上に膜状に形成された作用電極及び参照電極とか
ら成る下地電極と、この下地電極を含む絶縁性電極支持
基板上に形成された固定化酵素膜とから成る酵素電極に
おいて、 少なくとも作用電極のリード部パターン幅を感応部パタ
ーン幅より小さく設定したことを特徴とする酵素電極。
1. A base electrode comprising an insulating electrode supporting substrate, a working electrode and a reference electrode formed in a film on the insulating electrode supporting substrate, and an insulating electrode supporting substrate including the base electrode. An enzyme electrode comprising a formed immobilized enzyme membrane, wherein at least the lead portion pattern width of the working electrode is set smaller than the sensitive portion pattern width.
JP3238177A 1991-09-18 1991-09-18 Enzyme electrode Pending JPH0572172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3238177A JPH0572172A (en) 1991-09-18 1991-09-18 Enzyme electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3238177A JPH0572172A (en) 1991-09-18 1991-09-18 Enzyme electrode

Publications (1)

Publication Number Publication Date
JPH0572172A true JPH0572172A (en) 1993-03-23

Family

ID=17026322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3238177A Pending JPH0572172A (en) 1991-09-18 1991-09-18 Enzyme electrode

Country Status (1)

Country Link
JP (1) JPH0572172A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159366A (en) * 1993-12-07 1995-06-23 Omron Corp Portable measuring instrument
WO2001036953A1 (en) * 1999-11-15 2001-05-25 Matsushita Electric Industrial Co., Ltd. Biosensor, method of forming thin-film electrode, and method and apparatus for quantitative determination
US7294246B2 (en) * 2003-11-06 2007-11-13 3M Innovative Properties Company Electrode for electrochemical sensors
US8529742B2 (en) 2010-02-24 2013-09-10 Matthew K. Musho Electrochemical sensor with controlled variation of working electrode
US9046480B2 (en) 2006-10-05 2015-06-02 Lifescan Scotland Limited Method for determining hematocrit corrected analyte concentrations
US10041901B2 (en) 2013-03-15 2018-08-07 Roche Diabetes Care, Inc. Electrode configuration for a biosensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159366A (en) * 1993-12-07 1995-06-23 Omron Corp Portable measuring instrument
WO2001036953A1 (en) * 1999-11-15 2001-05-25 Matsushita Electric Industrial Co., Ltd. Biosensor, method of forming thin-film electrode, and method and apparatus for quantitative determination
US6875327B1 (en) 1999-11-15 2005-04-05 Matsushita Electric Industrial Co., Ltd. Biosensor, method of forming thin-film electrode, and method and apparatus for quantitative determination
US7998325B2 (en) 1999-11-15 2011-08-16 Panasonic Corporation Biosensor, thin film electrode forming method, quantification apparatus, and quantification method
US8025780B2 (en) 1999-11-15 2011-09-27 Panasonic Corporation Biosensor, thin film electrode forming method, quantification apparatus, and quantification method
US8142629B2 (en) 1999-11-15 2012-03-27 Panasonic Corporation Biosensor, thin film electrode forming method, quantification apparatus, and quantification method
US8349157B2 (en) 1999-11-15 2013-01-08 Panasonic Corporation Biosensor, thin film electrode forming method, quantification apparatus, and quantification method
US7294246B2 (en) * 2003-11-06 2007-11-13 3M Innovative Properties Company Electrode for electrochemical sensors
US9046480B2 (en) 2006-10-05 2015-06-02 Lifescan Scotland Limited Method for determining hematocrit corrected analyte concentrations
US8529742B2 (en) 2010-02-24 2013-09-10 Matthew K. Musho Electrochemical sensor with controlled variation of working electrode
US10041901B2 (en) 2013-03-15 2018-08-07 Roche Diabetes Care, Inc. Electrode configuration for a biosensor
US10996184B2 (en) 2013-03-15 2021-05-04 Roche Diabetes Care, Inc. Electrode configuration for a biosensor

Similar Documents

Publication Publication Date Title
JPH0572171A (en) Enzyme electrode
US4781798A (en) Transparent multi-oxygen sensor array and method of using same
KR100340174B1 (en) Electrochemical Biosensor Test Strip, Fabrication Method Thereof and Electrochemical Biosensor
EP0432188B1 (en) Improvements in sensitivity and selectivity of ion channel membrane biosensors
US5672256A (en) Multi-electrode biosensor and system and method for manufacturing same
JPH0572172A (en) Enzyme electrode
JPH03502135A (en) chemical sensitive transducer
JP3515908B2 (en) Micro online biosensor and production method thereof
JP5385225B2 (en) Biological substance measuring device and manufacturing method thereof
JPH02129541A (en) Disposable type enzyme electrode
JPH04132949A (en) Enzyme immobilization electrode
KR100533229B1 (en) Multi-layer electrochemical biosensor
JPH04194661A (en) Enzyme electrode
WO1986006484A1 (en) Transparent multi-oxygen sensor array
JP2537135Y2 (en) Enzyme electrode
JPH0372254A (en) Enzyme electrode
JPH09182738A (en) Oxygen electrode and manufacture thereof
JP3764550B2 (en) Small oxygen electrode and manufacturing method thereof
JPH0560720A (en) Anperometric electrode
CA2595870A1 (en) Method for fabricating sensor chip, and sensor chip
JPH0198955A (en) Enzyme electrode
US20090050986A1 (en) Method for Fabricating Sensor Chip, and Sensor Chip
JP2003004689A (en) Biosensor and biosensor manufacturing method
JPH0777509A (en) Electrode for electrochemical measurement
JPH04166755A (en) Enzyme electrode