JPH0572052A - Method for measuring thin-film treating temperature - Google Patents

Method for measuring thin-film treating temperature

Info

Publication number
JPH0572052A
JPH0572052A JP23645391A JP23645391A JPH0572052A JP H0572052 A JPH0572052 A JP H0572052A JP 23645391 A JP23645391 A JP 23645391A JP 23645391 A JP23645391 A JP 23645391A JP H0572052 A JPH0572052 A JP H0572052A
Authority
JP
Japan
Prior art keywords
temperature
thin film
metal oxide
film
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23645391A
Other languages
Japanese (ja)
Inventor
Akinari Kawai
亮成 河合
Michiyoshi Kawahito
道善 川人
Hideki Tateishi
秀樹 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23645391A priority Critical patent/JPH0572052A/en
Publication of JPH0572052A publication Critical patent/JPH0572052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a method for measuring thin-film treating temperature, which can accurately and readily measure the post-treatment temperature after the formation of a metal oxide thin film with thickness of 50nm or more wherein the effects of especially the surface roughness of a substrate, combination and corrosion of the surface of the film and the like are suppressed without contaminating vacuum atmosphere. CONSTITUTION:This method is applied in temperature measurement when a resistor film is treated in a manufacturing process. A vapor deposition film having the composition of, e.g. Cr-Si-O is formed with the thickness of 0.2mum by a sputtering vapor deposition method using a Cr-SiO2 target at 60 deg.C in order to obtain a metal oxide thin film. The resistivity of the formed metal oxide film is measured before and after the heating treatment (steps 202 and 204). The temperature in heating treatment is obtained by using the relationship of a resistivity/highest-temperature curve which is calibrated beforehand (step 205).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜処理温度の測定方
法に関し、特に電子部品などに用いられる金属酸化物薄
膜の処理時の温度測定において、高精度な測定が容易に
可能とされる薄膜処理温度の測定方法に適用して有効な
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring a thin film processing temperature, and particularly to a thin film which can be easily and highly accurately measured in temperature measurement of a metal oxide thin film used for electronic parts and the like. The present invention relates to a technique effectively applied to a method for measuring a processing temperature.

【0002】[0002]

【従来の技術】従来の薄膜処理温度の測定方法として
は、たとえば自動搬送機構を持つ真空蒸着装置における
基板処理温度の測定の場合、熱電対や放射温度計が使用
できず、またヒートラベルについても真空室の真空度を
低下させ、さらに温度を断続的にしか測定できないこと
から、これらの温度測定方法は実用的ではなかった。
2. Description of the Related Art As a conventional method for measuring a thin film processing temperature, for example, in the case of measuring a substrate processing temperature in a vacuum vapor deposition apparatus having an automatic transfer mechanism, a thermocouple or a radiation thermometer cannot be used, and a heat label can also be used. These temperature measuring methods have not been practical because the degree of vacuum in the vacuum chamber is lowered and the temperature can be measured only intermittently.

【0003】このため、特開昭59−79821号公報
に記載されるように、Au、Pt、Ni、Fe、Pd、
Cu、Agなどの単体金属を用いて、それら単体金属の
真空蒸着膜の抵抗率が加熱により変化することを利用し
た温度測定方法が開示されている。
Therefore, as described in JP-A-59-79821, Au, Pt, Ni, Fe, Pd,
A temperature measuring method is disclosed in which a single metal such as Cu or Ag is used and the resistivity of a vacuum deposited film of the single metal is changed by heating.

【0004】[0004]

【発明が解決しようとする課題】ところが、前記のよう
な従来技術においては、抵抗率の小さい単体金属を用い
ているため、膜厚は抵抗測定の容易さから5〜50nm
が適当であるとしている。しかし、そのような膜厚で
は、膜を形成する基体の表面荒さや膜表面の気体などに
よる化合や腐食の影響が強く現れるために、正確な測定
ができないという問題がある。
However, in the above-mentioned prior art, since a simple metal having a low resistivity is used, the film thickness is 5 to 50 nm because of the ease of resistance measurement.
Is appropriate. However, with such a film thickness, there is a problem that accurate measurement cannot be performed because the surface roughness of the base material forming the film and the effect of chemicals and corrosion due to gas on the film surface appear strongly.

【0005】そこで、本発明者は、単体金属を金属酸化
物とすることによって抵抗率が大きくできることに着目
し、この金属酸化物の成膜による金属酸化物薄膜の抵抗
率変化によって処理温度の測定が可能とされることを見
い出した。
Therefore, the present inventor has noticed that the resistivity can be increased by using a metal oxide as a simple substance metal, and the processing temperature is measured by the change in the resistivity of the metal oxide thin film due to the film formation of this metal oxide. I found that is possible.

【0006】すなわち、本発明の目的は、金属酸化物薄
膜、特に基体の表面荒さ、膜表面の化合および腐食など
の影響が抑制可能とされる50nm以上の厚さの金属酸
化物薄膜の成膜後処理温度を、真空雰囲気を汚さずに正
確かつ容易に測定することができる薄膜処理温度の測定
方法を提供することにある。
That is, an object of the present invention is to form a metal oxide thin film, particularly a metal oxide thin film having a thickness of 50 nm or more, which can suppress the effects of the surface roughness of the substrate, the compounding and corrosion of the film surface. It is an object of the present invention to provide a method for measuring a thin film processing temperature, which can accurately and easily measure a post processing temperature without polluting a vacuum atmosphere.

【0007】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0008】[0008]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
下記のとおりである。
Among the inventions disclosed in the present application, a brief description will be given to the outline of typical ones.
It is as follows.

【0009】すなわち、本発明の薄膜処理温度の測定方
法は、加熱処理における薄膜処理温度の測定方法であっ
て、前記加熱処理時の被測定温度より低温で成膜された
単体金属と酸素、または複数の金属と酸素とから組成さ
れる金属酸化物薄膜の処理温度を、この金属酸化物薄膜
の抵抗率変化より測定するものである。
That is, the method for measuring the thin film processing temperature of the present invention is a method for measuring the thin film processing temperature in heat treatment, in which a single metal and oxygen deposited at a temperature lower than the temperature to be measured during the heat treatment, or The treatment temperature of a metal oxide thin film composed of a plurality of metals and oxygen is measured from the change in resistivity of the metal oxide thin film.

【0010】この場合に、前記金属酸化物を、Au、C
r、Ta、NiまたはRuの単体金属と酸素、またはこ
の単体金属とSiおよび酸素とから組成される金属酸化
物とするようにしたものである。
In this case, the metal oxide is replaced by Au, C
A metal oxide composed of a simple metal of r, Ta, Ni, or Ru and oxygen, or a metal oxide composed of this simple metal, Si, and oxygen.

【0011】また、前記金属酸化物薄膜の抵抗率変化
を、任意の複数の位置で測定するようにしたものであ
る。
Further, the change in resistivity of the metal oxide thin film is measured at arbitrary plural positions.

【0012】[0012]

【作用】前記した薄膜処理温度の測定方法によれば、金
属酸化物、たとえばAu、Cr、Ta、NiまたはRu
の単体金属と酸素、またはこの単体金属とSiおよび酸
素とから組成される金属酸化物薄膜の抵抗率変化を測定
することにより、加熱処理時の処理温度を測定すること
ができる。すなわち、被測定温度より低温で所望の基体
上に形成された抵抗率の大きい金属酸化物薄膜の抵抗率
を処理前後で測定し、その抵抗率の変化から予め校正し
た抵抗率−最高温度曲線の関係を用いて処理時の温度を
求めることができる。これにより、真空雰囲気を汚すこ
となく、簡単かつ容易に処理温度の測定が可能となる。
According to the method for measuring the thin film processing temperature described above, metal oxides such as Au, Cr, Ta, Ni or Ru are used.
The treatment temperature during the heat treatment can be measured by measuring the change in resistivity of the metal oxide thin film composed of the elemental metal and oxygen or the elemental metal and Si and oxygen. That is, the resistivity of a metal oxide thin film having a large resistivity formed on a desired substrate at a temperature lower than the temperature to be measured is measured before and after the treatment, and the resistivity calibrated in advance from the change in the resistivity-maximum temperature curve The relationship can be used to determine the temperature during processing. As a result, the processing temperature can be easily and easily measured without polluting the vacuum atmosphere.

【0013】また、抵抗率変化を、金属酸化物薄膜の任
意の複数の位置で測定することにより、加熱処理時の温
度分布を求めることができる。これにより、処理温度の
温度むらおよび最高温度などの正確な測定が可能とな
る。
Further, the temperature distribution during the heat treatment can be obtained by measuring the change in resistivity at a plurality of arbitrary positions on the metal oxide thin film. As a result, it becomes possible to accurately measure the temperature unevenness of the processing temperature and the maximum temperature.

【0014】[0014]

【実施例】図1は本発明の薄膜処理温度の測定方法の一
実施例に用いられる基板を示す斜視図、図2は本実施例
に用いられる基板の処理温度の測定手順を示すフロー
図、図3は本実施例において、Cr−Si−Oの組成を
有する蒸着膜を60℃でスパッタ蒸着法により成膜した
薄膜の加熱によるシート抵抗値の変化を示す説明図、図
4は本実施例において、任意の複数の位置で測定した場
合の温度分布を示す説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a perspective view showing a substrate used in an embodiment of the thin film processing temperature measuring method of the present invention, and FIG. 2 is a flow chart showing the processing temperature measuring procedure of the substrate used in this embodiment. FIG. 3 is an explanatory diagram showing a change in sheet resistance value due to heating of a thin film formed by a sputter deposition method at 60 ° C. in a vapor deposition film having a composition of Cr—Si—O in the present embodiment, and FIG. 3 is an explanatory view showing a temperature distribution when measured at arbitrary plural positions. FIG.

【0015】まず、図1により本実施例に用いられる基
板の構成を説明する。
First, the structure of the substrate used in this embodiment will be described with reference to FIG.

【0016】本実施例の基板は、たとえば製造プロセス
における抵抗膜処理時の温度測定に適用され、ガラス、
セラミック、プラスチックなどの絶縁材料による絶縁性
の基体1上に、金属酸化物薄膜2を得るために、たとえ
ばCr−Si−Oの組成を有する蒸着膜が、60℃にて
Cr−SiO2 ターゲットを使用してスパッタ蒸着法に
よって0.2μmの膜厚で成膜されている。
The substrate of the present embodiment is applied to, for example, temperature measurement at the time of resistance film processing in the manufacturing process, and glass,
In order to obtain the metal oxide thin film 2 on the insulating base 1 made of an insulating material such as ceramic or plastic, a vapor deposition film having a composition of Cr-Si-O, for example, is used as a Cr-SiO 2 target at 60 ° C. It is used to form a film with a thickness of 0.2 μm by the sputter deposition method.

【0017】次に、本実施例の作用について、図2に基
づいて処理温度の測定フローを説明する。
Next, the operation of the present embodiment will be described with reference to FIG.

【0018】始めに、スパッタ蒸着法により、被測定温
度より低温の60℃で基体1上に金属酸化物薄膜2を成
膜する(ステップ201)。そして、成膜後、すなわち
加熱処理前に金属酸化物薄膜2のシート抵抗値を測定す
る(ステップ202)。
First, the metal oxide thin film 2 is formed on the substrate 1 at 60 ° C., which is lower than the temperature to be measured, by the sputter deposition method (step 201). After the film formation, that is, before the heat treatment, the sheet resistance value of the metal oxide thin film 2 is measured (step 202).

【0019】さらに、加熱処理(ステップ203)後、
再び金属酸化物薄膜2のシート抵抗値を測定する(ステ
ップ204)。そして、シート抵抗値の変化率から加熱
処理時の処理温度を求める(ステップ205)。
Further, after the heat treatment (step 203),
The sheet resistance value of the metal oxide thin film 2 is measured again (step 204). Then, the processing temperature during the heat treatment is obtained from the rate of change of the sheet resistance value (step 205).

【0020】この場合に、抵抗率は、膜のシート抵抗値
と膜厚を測定することで得られるが、金属膜または金属
酸化物膜の場合には被測定温度加熱前後での膜厚変化は
微少であることから、膜のシート抵抗値測定のみで被測
定温度の最高温度を求めることが可能である。
In this case, the resistivity can be obtained by measuring the sheet resistance value and film thickness of the film. In the case of a metal film or a metal oxide film, the change in film thickness before and after heating at the temperature to be measured does not occur. Since it is very small, it is possible to obtain the maximum temperature to be measured only by measuring the sheet resistance value of the film.

【0021】すなわち、成膜した金属酸化物薄膜2の処
理温度(T)は、加熱温度に対するシート抵抗値の初期
値(R0 )と加熱後(R)の変化率((R−R0 )/R
0 )の関係から求めることができる。
That is, the treatment temperature (T) of the formed metal oxide thin film 2 is the rate of change ((R-R 0 )) between the initial value (R 0 ) of the sheet resistance and the temperature after heating (R) with respect to the heating temperature. / R
It can be obtained from the relationship of 0 ).

【0022】たとえば、処理前のシート抵抗値が200
Ω、処理後のシート抵抗値が140Ωの場合は、変化率
=(140−200)/200×100が−30%とな
るので、図3に示す予め校正した抵抗率−最高温度曲線
の関係を用いて処理温度が300℃であると判断するこ
とができる。
For example, the sheet resistance before treatment is 200
When the sheet resistance after treatment is 140Ω, the rate of change = (140−200) / 200 × 100 is −30%. Therefore, the relationship between the previously calibrated resistivity and the maximum temperature curve shown in FIG. It can be determined that the treatment temperature is 300 ° C.

【0023】従って、本実施例に用いられる基板の処理
温度の測定によれば、加熱処理時の被測定温度より低温
で成膜された金属酸化物薄膜2の抵抗率を加熱処理の前
後で測定することにより、従来のような触針または電極
形成を必要とすることなく、処理前後の抵抗率の変化か
ら予め校正した抵抗率−最高温度曲線の関係を用いて加
熱処理時の温度を求めることができる。
Therefore, according to the measurement of the processing temperature of the substrate used in this embodiment, the resistivity of the metal oxide thin film 2 formed at a temperature lower than the temperature to be measured during the heat treatment is measured before and after the heat treatment. By doing so, it is possible to obtain the temperature during the heat treatment by using the relationship of the resistivity-maximum temperature curve that has been calibrated in advance from the change in the resistivity before and after the treatment, without the need to form a stylus or electrodes as in the past. You can

【0024】また、この場合に、金属酸化物薄膜2の抵
抗率変化をメッシュ状に分割して複数の位置で測定する
ことにより、たとえば図4に示すような加熱処理時の温
度分布を得ることができるので、温度むらおよび最高温
度などを正確に求めることが可能となる。
Further, in this case, the change in resistivity of the metal oxide thin film 2 is divided into meshes and measured at a plurality of positions to obtain a temperature distribution during the heat treatment as shown in FIG. 4, for example. Therefore, it becomes possible to accurately determine the temperature unevenness and the maximum temperature.

【0025】以上、本発明者によってなされた発明を実
施例に基づき具体的に説明したが、本発明は前記実施例
に限定されるものではなく、その要旨を逸脱しない範囲
で種々変更可能であることはいうまでもない。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the embodiments and various modifications can be made without departing from the scope of the invention. Needless to say.

【0026】たとえば、本実施例の処理温度の測定につ
いては、金属酸化物薄膜2としてCr−Si−Oの組成
を有する蒸着膜である場合について説明したが、本発明
は前記実施例に限定されるものではなく、Au、Ta、
NiまたはRuの単体金属とO、またはこれらの単体金
属とSiおよびOとから組成される金属酸化物について
も広く適用可能であり、特に抵抗率の大きな金属による
酸化金属物薄膜であることが望ましい。
For example, regarding the measurement of the treatment temperature in this embodiment, the case where the metal oxide thin film 2 is a vapor deposition film having a composition of Cr--Si--O has been described, but the present invention is not limited to the above embodiment. Not Au, Ta,
The present invention is widely applicable to metal oxides composed of Ni or Ru simple metals and O, or these simple metals and Si and O, and it is particularly preferable that the metal oxide thin film is a metal having a large resistivity. ..

【0027】また、基体1としては、表面を絶縁処理し
た導体基板、たとえばSi基板にSiO2 またはSiN
2 を処理した基体などについても適用可能である。
As the substrate 1, a conductor substrate whose surface has been subjected to an insulation treatment, for example, a Si substrate, is formed of SiO 2 or SiN.
It is also applicable to a substrate treated with 2 .

【0028】さらに、金属酸化物薄膜2の膜厚について
は、Au、Cr、Ta、Ni、Ruなどの単体金属とS
iとOから組成される高比抵抗を有する金属酸化物薄膜
は、触針によるシート抵抗測定は膜厚を0.1〜1μm
に、電極形成による抵抗測定は膜厚を0.01〜1μmに
するのが適当であるが、本実施例については必ずしもこ
の範囲に限定されるものではない。
Further, regarding the film thickness of the metal oxide thin film 2, a single metal such as Au, Cr, Ta, Ni and Ru and S are used.
The metal oxide thin film composed of i and O has a high specific resistance, and the film thickness is 0.1 to 1 μm when the sheet resistance is measured with a stylus.
In addition, it is appropriate to set the film thickness to 0.01 to 1 μm for resistance measurement by electrode formation, but the present embodiment is not necessarily limited to this range.

【0029】以上の説明では、主として本発明者によっ
てなされた発明をその利用分野である電子部品などに用
いられる金属酸化物薄膜2の処理温度測定に適用した場
合について説明したが、これに限定されるものではな
く、たとえばベーク炉またはスパッタ装置などの半導体
集積回路装置の製造プロセスなど、特に搬送系が複雑で
真空状態での処理が必要とされる他の薄膜処理温度の測
定方法についても広く適用可能である。
In the above description, the case where the invention made by the present inventor is mainly applied to the measurement of the processing temperature of the metal oxide thin film 2 used in the electronic parts and the like which is the field of application thereof has been described, but the invention is not limited to this. However, it is not limited to this, and is widely applied to other thin film processing temperature measurement methods, particularly those for manufacturing semiconductor integrated circuit devices such as bake furnaces or sputtering devices, where the transport system is complicated and requires processing in a vacuum state. It is possible.

【0030】[0030]

【発明の効果】本願において開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
下記のとおりである。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.
It is as follows.

【0031】すなわち、加熱処理時の被測定温度より低
温で成膜された単体金属と酸素、または複数の金属と酸
素とから組成される金属酸化物薄膜の処理温度を、この
金属酸化物薄膜の抵抗率変化より測定することにより、
その抵抗率変化から予め校正した抵抗率−最高温度曲線
の関係を用いて加熱処理時の処理温度を求めることがで
きるので、真空雰囲気を汚すことなく、簡単かつ容易に
処理温度の測定が可能となる。
That is, the treatment temperature of a metal oxide thin film composed of a single metal and oxygen or a plurality of metals and oxygen formed at a temperature lower than the measured temperature at the time of heat treatment is By measuring from the change in resistivity,
Since the processing temperature at the time of heat processing can be obtained from the resistivity-maximum temperature curve that has been calibrated in advance from the change in resistivity, it is possible to easily and easily measure the processing temperature without polluting the vacuum atmosphere. Become.

【0032】また、金属酸化物薄膜の抵抗率変化を任意
の複数の位置で測定することにより、加熱処理時の温度
分布を求めることができるので、処理温度の温度むらお
よび最高温度などが正確に測定され、高精度な温度測定
が可能となる。
Further, since the temperature distribution during the heat treatment can be obtained by measuring the resistivity change of the metal oxide thin film at arbitrary plural positions, the temperature unevenness of the treatment temperature and the maximum temperature can be accurately measured. It is possible to measure with high accuracy.

【0033】この結果、電子部品などに用いられる金属
酸化物薄膜の処理時の温度測定が可能となり、特に基体
の表面荒さ、膜表面の化合および腐食などの影響が抑制
され、また測定基板に必ずしも電極が必要でないため
に、簡単かつ容易な温度測定が可能とされる薄膜処理温
度の測定方法を得ることができる。
As a result, it becomes possible to measure the temperature of the metal oxide thin film used for electronic parts and the like during processing, and in particular, the effects of the surface roughness of the substrate, the compounding and corrosion of the film surface are suppressed, and the measurement substrate is not always required. Since no electrode is required, a thin film processing temperature measuring method can be obtained which enables simple and easy temperature measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄膜処理温度の測定方法の一実施例に
用いられる基板を示す斜視図である。
FIG. 1 is a perspective view showing a substrate used in an embodiment of a thin film processing temperature measuring method of the present invention.

【図2】本実施例に用いられる基板の処理温度の測定手
順を示すフロー図である。
FIG. 2 is a flowchart showing a procedure for measuring a processing temperature of a substrate used in this embodiment.

【図3】本実施例において、Cr−Si−Oの組成を有
する蒸着膜を60℃でスパッタ蒸着法により成膜した薄
膜の、加熱によるシート抵抗値の変化を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a change in sheet resistance value due to heating of a thin film formed by a sputter deposition method at 60 ° C. in a vapor deposition film having a composition of Cr—Si—O in this example.

【図4】本実施例において、任意の複数の位置で測定し
た場合の温度分布を示す説明図である。
FIG. 4 is an explanatory diagram showing a temperature distribution when measured at arbitrary plural positions in the present embodiment.

【符号の説明】[Explanation of symbols]

1 基体 2 金属酸化物薄膜 1 substrate 2 metal oxide thin film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加熱処理における薄膜処理温度の測定方
法であって、前記加熱処理時の被測定温度より低温で成
膜された単体金属と酸素、または複数の金属と酸素とか
ら組成される金属酸化物薄膜の処理温度を、該金属酸化
物薄膜の抵抗率変化より測定することを特徴とする薄膜
処理温度の測定方法。
1. A method for measuring a thin film processing temperature in a heat treatment, comprising a single metal and oxygen formed at a temperature lower than a temperature to be measured during the heat treatment, or a metal composed of a plurality of metals and oxygen. A method for measuring a thin film processing temperature, which comprises measuring a processing temperature of an oxide thin film from a change in resistivity of the metal oxide thin film.
【請求項2】 前記金属酸化物を、Au、Cr、Ta、
NiまたはRuの単体金属と酸素、または該単体金属と
Siおよび酸素とから組成される金属酸化物とすること
を特徴とする請求項1記載の薄膜処理温度の測定方法。
2. The metal oxide is Au, Cr, Ta,
The thin film processing temperature measuring method according to claim 1, wherein a metal oxide composed of a single metal of Ni or Ru and oxygen, or a metal oxide of the single metal and Si and oxygen.
【請求項3】 前記金属酸化物薄膜の抵抗率変化を、任
意の複数の位置で測定することを特徴とする請求項1記
載の薄膜処理温度の測定方法。
3. The method for measuring a thin film processing temperature according to claim 1, wherein the change in the resistivity of the metal oxide thin film is measured at arbitrary plural positions.
JP23645391A 1991-09-17 1991-09-17 Method for measuring thin-film treating temperature Pending JPH0572052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23645391A JPH0572052A (en) 1991-09-17 1991-09-17 Method for measuring thin-film treating temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23645391A JPH0572052A (en) 1991-09-17 1991-09-17 Method for measuring thin-film treating temperature

Publications (1)

Publication Number Publication Date
JPH0572052A true JPH0572052A (en) 1993-03-23

Family

ID=17000977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23645391A Pending JPH0572052A (en) 1991-09-17 1991-09-17 Method for measuring thin-film treating temperature

Country Status (1)

Country Link
JP (1) JPH0572052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059820A1 (en) * 2016-12-05 2018-06-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives TEMPERATURE MEASURING METHOD
FR3059821A1 (en) * 2016-12-05 2018-06-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives TEMPERATURE MEASURING METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059820A1 (en) * 2016-12-05 2018-06-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives TEMPERATURE MEASURING METHOD
FR3059821A1 (en) * 2016-12-05 2018-06-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives TEMPERATURE MEASURING METHOD

Similar Documents

Publication Publication Date Title
GB2181298A (en) Platinum resistance thermometer and manufacture thereof
KR101886400B1 (en) Thin-film thermistor element and method of manufacturing the same
TWI261671B (en) Contact temperature probe and process
JP4802013B2 (en) Temperature sensor and manufacturing method thereof
JPH0572052A (en) Method for measuring thin-film treating temperature
TW201231962A (en) Physical quantity measuring device and physical quantity measuring method
GB1202280A (en) Improvements in or relating to the measurement of maximum temperatures
JP2001291607A (en) Method of manufacturing platinum thin-film resistor
Tong et al. Temperature dependence of resistance in reactively sputtered RuO~ 2 thin films
Cho et al. Preparation of Cr–Si multilayer structures for thin film heater applications
JPH0340483B2 (en)
JP2000348905A (en) Thin-film thermistor element and manufacture of the same
JP4136755B2 (en) PTC thermistor made of ternary alloy material
JP2001303257A (en) Method for manufacturing thin film and method for manufacturing thin-film platinum temperature sensor
JP2004022476A (en) Ceramics heater and its manufacturing method
JPH06275409A (en) Manufacture of thin-film resistive element
JP3288241B2 (en) Resistive material and resistive material thin film
JPS5813007B2 (en) Manufacturing method of tantalum nitride thin film resistor element
JP2005327934A (en) Thin-film resistance device, and method for adjusting resistance-temperature characteristic
JP4279400B2 (en) Thin film thermistor element and method for manufacturing thin film thermistor element
JP2007287812A (en) Thermistor thin film, infrared detection sensor and method of manufacturing them
Hoffman et al. Cermet Resistors on Ceramic Substrates
JP2717221B2 (en) Temperature measurement method
JPH03212903A (en) Manufacture of thin film temperature measuring resistor
GB1002358A (en) Improvements in and relating to the manufacture of electrical components by coating of metal on to an insulating substrate