JPH0571770A - Multiroom heating and cooling apparatus - Google Patents

Multiroom heating and cooling apparatus

Info

Publication number
JPH0571770A
JPH0571770A JP23145891A JP23145891A JPH0571770A JP H0571770 A JPH0571770 A JP H0571770A JP 23145891 A JP23145891 A JP 23145891A JP 23145891 A JP23145891 A JP 23145891A JP H0571770 A JPH0571770 A JP H0571770A
Authority
JP
Japan
Prior art keywords
pipe temperature
flow valve
heating
heat exchanger
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23145891A
Other languages
Japanese (ja)
Inventor
Kazuhiko Marumoto
一彦 丸本
Masao Kurachi
正夫 蔵地
Masayuki Tanaka
優行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP23145891A priority Critical patent/JPH0571770A/en
Publication of JPH0571770A publication Critical patent/JPH0571770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To increase a difference in level between indoor machines by providing a control device which increases resistance of the flow valve of the indoor machine in a position where resistance owing to the liquid weight of a refrigerant is low. CONSTITUTION:At a point of time when the temperature of the outlet pipings of heat-exchangers 12a and 12b on the utilization side is increased during the initial stage of the starting of heating, a flow valve 13a installed to an indoor machine 16a located in an upper part where resistance is low starts closing operation earlier than a flow valve 13b installed to an indoor machine 16b situated to a lower part by means of controlling devices 22a and 22b. Since resistance of the flow valve 13a installed to the indoor machine 16a arranged to an upper part is increased and balanced with resistance owing to a liquid refrigerant weight by means of which the interior of a multiliquid pipe is pushed up, this constitution enables circulation of a refrigerant to the indoor machine 16b arranged to the lower part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱源側冷媒サイクルと
利用側冷媒サイクルに分離された冷暖房装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating / cooling device separated into a heat source side refrigerant cycle and a use side refrigerant cycle.

【0002】[0002]

【従来の技術】従来、熱源側冷媒サイクルと利用側冷媒
サイクルに分離した冷暖房装置の冷媒サイクルは、特開
昭62−238952号公報に示されており、図7のよ
うに構成されていた。図7において、1は圧縮機、2は
熱源側四方弁、3は熱源側熱交換器、4は減圧装置であ
り、5は第1補助熱交換器でこれらを環状に連接して熱
源側冷媒サイクル6を形成している。7は第2補助熱交
換器で第1補助熱交換器5と熱交換するように一体に形
成されている。
2. Description of the Related Art Heretofore, a refrigerant cycle of a cooling and heating apparatus which is divided into a heat source side refrigerant cycle and a use side refrigerant cycle is shown in JP-A-62-238952, and is constructed as shown in FIG. In FIG. 7, 1 is a compressor, 2 is a heat source side four-way valve, 3 is a heat source side heat exchanger, 4 is a pressure reducing device, and 5 is a first auxiliary heat exchanger, which are connected in an annular shape to form a heat source side refrigerant. Forming cycle 6. A second auxiliary heat exchanger 7 is integrally formed so as to exchange heat with the first auxiliary heat exchanger 5.

【0003】8は冷媒を送出する冷媒搬送装置、9は利
用側四方弁、10は気液混合器であり、熱源側冷媒サイ
クル6と冷媒搬送装置8と利用側四方弁9と気液混合器
10は室外機11に収納されている。
Reference numeral 8 is a refrigerant transfer device for sending out a refrigerant, 9 is a use side four-way valve, 10 is a gas-liquid mixer, and a heat source side refrigerant cycle 6, a refrigerant transfer device 8, a use side four-way valve 9 and a gas-liquid mixer. 10 is housed in the outdoor unit 11.

【0004】12a,12bは利用側熱交換器、13
a,13bは流量弁で、これらは室内機16a,16b
に収納されている。室内機16a,16bは、少液側接
続配管i、少液側枝管d1,d2、多液側枝管e1,e
2と多液側接続配管jで室外機11と接続されている。
12a and 12b are heat exchangers on the use side, 13
a and 13b are flow valves, and these are indoor units 16a and 16b.
It is stored in. The indoor units 16a and 16b include the small liquid side connection pipe i, the small liquid side branch pipes d1 and d2, and the multiple liquid side branch pipes e1 and e.
2 and the multi-liquid side connection pipe j are connected to the outdoor unit 11.

【0005】そして、第2補助熱交換器7、利用側四方
弁9、気液混合器10、冷媒搬送装置8、利用側熱交換
器12a,12b、少液側接続配管i、少液側枝管d
1、d2、多液側枝管e1,e2、多液側接続配管jを
環状に連接して利用側冷媒サイクル17を形成してい
る。
The second auxiliary heat exchanger 7, the use side four-way valve 9, the gas-liquid mixer 10, the refrigerant transfer device 8, the use side heat exchangers 12a and 12b, the small liquid side connecting pipe i, and the small liquid side branch pipe. d
1, d2, the multi-liquid side branch pipes e1, e2, and the multi-liquid side connecting pipe j are connected in a ring shape to form a utilization side refrigerant cycle 17.

【0006】また、18a,18bは冷暖運転命令検知
手段、21a,21bは流量弁駆動手段であり、これら
は、制御装置22a,22bに収納されている。
Further, 18a and 18b are cooling / warming operation command detecting means, and 21a and 21b are flow rate valve driving means, which are housed in the control devices 22a and 22b.

【0007】以上のように構成された冷暖房装置につい
てその動作を説明する。先ず、冷房運転の場合を考え
る。冷暖運転命令検知手段18a,18bで冷房運転命
令を検知すると、制御装置22a,22bは流量弁駆動
手段21a,21bを用いてて流量弁13a,13bを
所定の開度に設定する。
The operation of the cooling and heating apparatus configured as described above will be described. First, consider the case of cooling operation. When the cooling / warming operation command detecting means 18a, 18b detect the cooling operation command, the control devices 22a, 22b use the flow valve driving means 21a, 21b to set the flow valves 13a, 13b to a predetermined opening degree.

【0008】冷房運転時の冷媒サイクルは図中の実線矢
印となる。熱源側冷媒サイクル6では、圧縮機1からの
高温高圧ガスは四方弁2を通り熱源側熱交換器3で放熱
して凝縮液化し減圧装置4で減圧され第1補助熱交換器
5で蒸発して熱源側四方弁2を通り圧縮機1へ循環す
る。
The refrigerant cycle during the cooling operation is indicated by a solid arrow in the figure. In the heat source side refrigerant cycle 6, the high-temperature high-pressure gas from the compressor 1 passes through the four-way valve 2 and radiates heat in the heat source side heat exchanger 3 to be condensed and liquefied to be decompressed in the decompression device 4 and evaporated in the first auxiliary heat exchanger 5. And passes through the heat source side four-way valve 2 and circulates to the compressor 1.

【0009】この時利用側冷媒サイクル17の第2補助
熱交換器7と第1補助熱交換器5が熱交換し、利用側冷
媒サイクル17のガス冷媒が冷却されて液化し、利用側
四方弁9、気液混合器10を通って冷媒搬送装置8に送
られ、この冷媒搬送装置8によって利用側四方弁9、多
液側接続配管j、多液側枝管e1,e2を通って流量弁
13a,13bで流量調整されて利用側熱交換器12
a,12bへ送られて冷房して吸熱蒸発し、ガス化して
少液側枝管d1,d2、少液側接続配管iを通って第2
補助熱交換器7に循環することになる。
At this time, the second auxiliary heat exchanger 7 and the first auxiliary heat exchanger 5 of the use side refrigerant cycle 17 exchange heat, the gas refrigerant of the use side refrigerant cycle 17 is cooled and liquefied, and the use side four-way valve. 9, the gas is passed through the gas-liquid mixer 10, and is sent to the refrigerant transfer device 8. By this refrigerant transfer device 8, the flow valve 13a is passed through the use-side four-way valve 9, the multi-liquid side connecting pipe j, the multi-liquid side branch pipes e1 and e2. , 13b and the flow rate is adjusted by the use side heat exchanger 12
a, 12b to be cooled and endothermic vaporized, gasified and passed through the small liquid side branch pipes d1 and d2 and the small liquid side connecting pipe i
It will be circulated to the auxiliary heat exchanger 7.

【0010】次に、暖房運転時について考える。冷暖運
転命令検知手段18a,18bで暖房運転命令を検知す
ると、制御装置22a,22bは流量弁駆動手段21
a,21bを用いて流量弁13a,13bを所定の開度
に設定する。
Next, consider the heating operation. When the heating / warming operation command is detected by the cooling / heating operation command detecting means 18a, 18b, the control devices 22a, 22b cause the flow valve driving means 21 to operate.
The flow valves 13a and 13b are set to a predetermined opening by using a and 21b.

【0011】暖房運転時の冷媒サイクルは図中の破線矢
印となる。熱源側冷媒サイクル6では、圧縮機1からの
高温高圧冷媒は熱源側四方弁2から第1補助熱交換器5
に送られ、放熱して凝縮液化し、減圧装置5で減圧し、
熱源側熱交換器3で吸熱蒸発し熱源側四方弁2を通って
圧縮機1へ循環する。
The refrigerant cycle during the heating operation is indicated by the broken line arrow in the figure. In the heat source side refrigerant cycle 6, the high temperature and high pressure refrigerant from the compressor 1 passes from the heat source side four-way valve 2 to the first auxiliary heat exchanger 5
Sent to and condensed to liquefy, and decompressed with decompression device 5,
The heat is absorbed and evaporated in the heat source side heat exchanger 3, and circulates to the compressor 1 through the heat source side four-way valve 2.

【0012】この時利用側冷媒サイクル17の第2補助
熱交換器7と第1補助熱交換器5が熱交換し、利用側冷
媒サイクル17内の液冷媒が加熱されてガス化し、少液
側接続配管i、少液側枝管d1,d2を通って利用側熱
交換器12a,12bへ送られ暖房して放熱液化し、流
量弁13a,13bで流量調整されて多液側枝管e1,
e2、多液側接続配管j利用側四方弁9を通って気液混
合機10から冷媒搬送装置8へ送られ、第2補助熱交換
器7へ循環する。
At this time, the second auxiliary heat exchanger 7 and the first auxiliary heat exchanger 5 of the use side refrigerant cycle 17 exchange heat, the liquid refrigerant in the use side refrigerant cycle 17 is heated and gasified, and the small amount side It passes through the connecting pipe i and the small liquid side branch pipes d1 and d2 and is sent to the use side heat exchangers 12a and 12b to be heated and radiated to radiate heat, and the flow rate is adjusted by the flow valves 13a and 13b, and the multi-liquid side branch pipes e1 and
e2, the multi-liquid side connection pipe j is sent from the gas-liquid mixer 10 to the refrigerant transfer device 8 through the use side four-way valve 9 and circulated to the second auxiliary heat exchanger 7.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記の
ような構成では、暖房起動初期に下部にある室内機及び
少液側枝管や多液側枝管に液冷媒が溜っているため、冷
媒搬送装置が液冷媒を循環させる際、多液管内を押し上
げる液冷媒の重量による抵抗が大となる。
However, in the above-mentioned configuration, since the liquid refrigerant is accumulated in the lower indoor unit and the small liquid side branch pipe and the multiple liquid side branch pipe at the beginning of heating, the refrigerant transfer device is When circulating the liquid refrigerant, the resistance due to the weight of the liquid refrigerant pushing up the inside of the multi-liquid pipe becomes large.

【0014】このため、室内機と室内機間の高低差があ
る値以上になると、冷媒は上部にある抵抗の小さい室内
機にのみ循環し、下部にある室内機には循環せず冷媒循
環不良となってシステムの運転が不能になるという課題
を有していた。
Therefore, when the height difference between the indoor units exceeds a certain value, the refrigerant circulates only in the upper indoor unit having a small resistance, and does not circulate in the lower indoor unit, resulting in poor refrigerant circulation. Then, there was a problem that the operation of the system became impossible.

【0015】本発明は、上記課題に鑑み、流量弁を用い
て抵抗をバランスさせることでシステムの高揚程性能を
向上することを目的としている。
In view of the above problems, it is an object of the present invention to improve the high head performance of a system by balancing resistance using a flow valve.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に、本発明の冷暖房装置は、暖房時に利用側熱交換器の
出口配管温度を検知する出口配管温度センサと、暖房時
に利用側熱交換器の入口配管温度を検知する入口配管温
度センサと、冷房運転ないし暖房運転の命令を検知する
冷暖運転命令検知手段と、流量弁の動作量を決定する動
作量決定手段と、流量弁を駆動させる流量弁駆動手段
と、暖房起動時に冷暖運転命令検知手段によって暖房運
転の命令を検知すると流量弁駆動手段によりあらかじめ
設定された所定の開度に流量弁を駆動させ、システムが
暖房運転を開始して出口配管温度センサで検知した配管
温度が所定温度に達すると、動作量決定手段により出口
配管温度センサで検知された配管温度と、入口配管温度
センサで検知された配管温度の差が、所定値より大きい
場合には流量弁を開動作させる動作量を決定し、配管温
度の差が所定値より小さい場合には流量弁を閉動作させ
る動作量を決定し、決定された動作量を流量弁駆動手段
により駆動させる制御装置を備えたものである。
In order to solve the above problems, an air conditioner according to the present invention is provided with an outlet pipe temperature sensor for detecting the outlet pipe temperature of a heat exchanger on the use side during heating and a heat exchange on the use side during heating. Inlet pipe temperature sensor for detecting the inlet pipe temperature of the heater, cooling / warming operation command detecting means for detecting an instruction for cooling operation or heating operation, operation amount determining means for determining the operation amount of the flow valve, and driving the flow valve When the flow valve drive means and the heating / cooling operation command detection means detect a heating operation command at the time of heating start, the flow valve drive means drives the flow valve to a predetermined opening and the system starts the heating operation. When the pipe temperature detected by the outlet pipe temperature sensor reaches a predetermined temperature, the pipe temperature detected by the outlet pipe temperature sensor and the pipe temperature detected by the inlet pipe temperature sensor by the operation amount determining means. If the difference in pipe temperature is larger than a specified value, the operation amount to open the flow valve is determined, and if the difference in pipe temperature is smaller than the specified value, the operation amount to close the flow valve is determined. It is provided with a control device for driving the operated amount by the flow valve driving means.

【0017】また、暖房時に利用側熱交換器の出口配管
温度を検知する出口配管温度センサと、暖房時に利用側
熱交換器の入口配管温度を検知する入口配管温度センサ
と、冷房運転ないし暖房運転の命令を検知する冷暖運転
命令検知手段と、流量弁の動作量を決定する動作量決定
手段と、流量弁を駆動させる流量弁駆動手段と、圧縮機
及び冷媒搬送装置の起動を検知する起動検知手段と、暖
房起動時に冷暖運転命令検知手段によって暖房運転の命
令を検知すると流量弁を所定の開度に設定を行い、起動
検知手段によって、圧縮機及び冷媒搬送装置の起動を検
知すると、流量弁を配管温度センサで検知した配管温度
が所定温度に達するまで流量弁駆動手段により一定時間
毎に所定量を開動作させ、利用側熱交換器の出口配管温
度が所定温度に達すると、動作量決定手段により出口配
管温度センサで検知された配管温度と、入口配管温度セ
ンサで検知された配管温度の差が、所定値より大きい場
合には流量弁を開動作させる動作量を決定し、配管温度
の差が所定値より小さい場合には流量弁を閉動作させる
動作量を決定し、決定された動作量を流量弁駆動手段に
より駆動させる制御装置を備えたものである。
Further, an outlet pipe temperature sensor for detecting the outlet pipe temperature of the use side heat exchanger during heating, an inlet pipe temperature sensor for detecting the inlet pipe temperature of the use side heat exchanger during heating, and a cooling operation or a heating operation. Cooling / warming operation command detecting means for detecting the command, operation amount determining means for determining the operation amount of the flow valve, flow valve driving means for driving the flow valve, and start detection for detecting the start of the compressor and the refrigerant transfer device. Means, and when the heating / cooling operation command detection means detects a heating operation command when the heating is started, the flow valve is set to a predetermined opening, and when the start detection means detects the start of the compressor and the refrigerant transfer device, the flow valve is set. Is opened by the flow valve driving means until the pipe temperature detected by the pipe temperature sensor reaches the predetermined temperature, and the outlet pipe temperature of the usage-side heat exchanger reaches the predetermined temperature. Then, when the difference between the pipe temperature detected by the outlet pipe temperature sensor and the pipe temperature detected by the inlet pipe temperature sensor by the operation amount determining means is larger than a predetermined value, the operation amount for opening the flow valve is set. When the difference between the pipe temperatures is smaller than a predetermined value, the operation amount for closing the flow valve is determined, and the flow valve drive means drives the determined operation amount.

【0018】[0018]

【作用】本発明は、上記した構成によって暖房起動初期
に利用側熱交換器の出口配管温度が上昇した時点で、抵
抗の小さな上部にある室内機に設置された流量弁が下部
にある室内機に設置された流量弁より早く閉動作を開始
するので、上部にある室内機に設置された流量弁の抵抗
が増加し、多液管内を押し上げる液冷媒重量による抵抗
とバランスするため、下部にある室内機へも冷媒を循環
させることができる。
According to the present invention, when the temperature of the outlet pipe of the heat exchanger on the use side rises in the initial stage of heating operation, the indoor unit having the lower flow resistance valve installed in the upper indoor unit having a smaller resistance is provided. Since the closing operation starts earlier than the flow valve installed in the unit, the resistance of the flow valve installed in the indoor unit in the upper part increases and balances with the resistance due to the weight of the liquid refrigerant pushing up the multi-liquid pipe, so it is in the lower part. The refrigerant can also be circulated to the indoor unit.

【0019】また、暖房起動初期に利用側熱交換器の出
口配管温度が所定の温度に上昇するまで流量弁を一定時
間毎に所定値づつ開動作させることで流量弁による抵抗
を低減でき冷媒循環速度を向上できるので、室内機と室
内機間の高低差が大きい場合にも下部にある室内機へ速
く冷媒循環させることができる。
Further, the resistance of the flow valve can be reduced by opening the flow valve by a predetermined value at regular time intervals until the outlet pipe temperature of the use side heat exchanger rises to a predetermined temperature at the beginning of heating. Since the speed can be improved, even if there is a large difference in height between the indoor units, the refrigerant can be quickly circulated to the indoor units located below.

【0020】[0020]

【実施例】以下、本発明の一実施例の多室冷暖房装置に
ついて、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A multi-room air conditioner according to an embodiment of the present invention will be described below with reference to the drawings.

【0021】図1は、本発明の実施例における多室冷暖
房装置の冷媒サイクルを示すものである。図1におい
て、従来例と同じ構成のものは同一符号を付し、その詳
細な説明は省略する。14a,14bは暖房時に利用側
熱交換器12a,12bの出口配管温度を検知する出口
配管温度センサである。15a,15bは暖房時に利用
側熱交換器12a,12bの入口配管温度を検知する入
口配管温度センサである。20a,20bは流量弁13
a,13bの動作量を決定する動作量決定手段である。
FIG. 1 shows a refrigerant cycle of a multi-room cooling and heating apparatus according to an embodiment of the present invention. In FIG. 1, the same components as those of the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted. 14a and 14b are outlet pipe temperature sensors for detecting the outlet pipe temperature of the use side heat exchangers 12a and 12b during heating. Reference numerals 15a and 15b are inlet pipe temperature sensors for detecting the inlet pipe temperature of the use side heat exchangers 12a and 12b during heating. 20a and 20b are flow valves 13
It is an operation amount determining means for determining the operation amounts of a and 13b.

【0022】22a,22bは、暖房起動時に冷暖運転
命令検知手段18a,18bによって暖房運転の命令を
検知すると流量弁駆動手段21a,21bを用いてあら
かじめ設定された所定の開度に流量弁13a,13bを
駆動させ、システムが暖房運転を開始して出口配管温度
センサ14a,14bで検知した利用側熱交換器12
a,12bの出口配管温度が所定温度に達すると、動作
量決定手段20a,20bは出口配管温度センサ14
a,14bによって検知された配管温度と、入口配管温
度センサ15a,15bによって検知された配管温度の
差が、所定値より大きい場合には流量弁13a,13b
を開動作させる動作量を決定し、配管温度の差が所定値
より小さい場合には流量弁13a,13bを閉動作させ
る動作量を決定し、決定された動作量を流量弁駆動手段
21a,21bを用いて駆動させる制御装置である。
When the heating / cooling operation command detecting means 18a, 18b detect a heating operation command at the time of starting the heating, the flow valves 13a, 22a, 22b are opened to a predetermined opening degree using the flow valve driving means 21a, 21b. 13b is driven, the system starts heating operation, and the use side heat exchanger 12 detected by the outlet pipe temperature sensors 14a and 14b
When the outlet pipe temperature of a, 12b reaches a predetermined temperature, the operation amount determining means 20a, 20b causes the outlet pipe temperature sensor 14 to operate.
When the difference between the pipe temperature detected by a and 14b and the pipe temperature detected by the inlet pipe temperature sensors 15a and 15b is larger than a predetermined value, the flow valves 13a and 13b.
Is determined, and when the difference in pipe temperature is smaller than a predetermined value, the operation amount for closing the flow valves 13a, 13b is determined, and the determined operation amount is determined by the flow valve driving means 21a, 21b. It is a control device driven by using.

【0023】以上のように構成された本実施例につい
て、図2の特性図と図3のフローチャートを用いて、本
実施例の制御装置22a,22bの動作、ここでは特に
問題となる暖房起動時に限って説明する。
With respect to the present embodiment configured as described above, the operation of the control devices 22a and 22b of the present embodiment will be described with reference to the characteristic diagram of FIG. 2 and the flow chart of FIG. Only explain.

【0024】図2は暖房運転の経過時間と出口配管温度
センサ14a,14bの値及び流量弁13a,13bの
開度の関係を示している。図2は、時間経過とともに出
口配管温度が上昇し、下部に位置する室内機16bの利
用側熱交換器12bの出口配管温度の上昇が上部に位置
する室内機16aの利用側熱交換器12aの出口配管温
度の上昇より遅いことを示している。
FIG. 2 shows the relationship between the elapsed time of heating operation, the values of the outlet pipe temperature sensors 14a and 14b, and the openings of the flow valves 13a and 13b. In FIG. 2, the outlet pipe temperature rises with the passage of time, and the rise in the outlet pipe temperature of the use side heat exchanger 12b of the indoor unit 16b located in the lower portion of the use side heat exchanger 12a of the indoor unit 16a located in the upper portion. It shows that it is slower than the rise of the outlet pipe temperature.

【0025】また、暖房運転命令を検知した室内機16
a,16bの流量弁13a,13bは所定値に設定さ
れ、時間の経過とともに上部位置する室内機16aの流
量弁13aが先に閉動作を開始し、続いて下部位置する
室内機16bの流量弁13bが先に閉動作を開始してい
ることを示している。
Further, the indoor unit 16 which has detected the heating operation command
The flow valves 13a and 13b of the indoor units 16a and 16b are set to predetermined values, and the flow valve 13a of the indoor unit 16a located at the upper position first starts the closing operation with the passage of time, and then the flow valve of the indoor unit 16b located at the lower position. 13b indicates that the closing operation is started first.

【0026】図3において、STEP1は、冷房運転命
令・暖房運転命令の判断ルーチンであり、冷暖運転検知
手段18a、18bにて行う。命令を検知した時点で流
量弁13a、13bをあらかじめ決められた初期開度に
設定を行う。もし、暖房運転命令ならSTEP2へ移行
し、冷房運転命令なら冷房ルーチンへ移行する。
In FIG. 3, STEP 1 is a determination routine of the cooling operation command / heating operation command, which is performed by the cooling / heating operation detecting means 18a, 18b. When the command is detected, the flow valves 13a and 13b are set to a predetermined initial opening. If it is a heating operation command, the process proceeds to STEP 2, and if it is a cooling operation command, the process proceeds to a cooling routine.

【0027】STEP2は、出口配管温度が所定値に達
したがどうかを判断するルーチンで、出口配管温度が所
定値に達していなければ、STEP2をループし、出口
配管温度が所定値に達すればSTEP3に移行する。
STEP 2 is a routine for judging whether the outlet pipe temperature has reached a predetermined value. If the outlet pipe temperature has not reached the predetermined value, STEP 2 is looped, and if the outlet pipe temperature reaches the predetermined value, STEP 3 Move to.

【0028】STEP3は、流量弁13a、13bの動
作量を決定するルーチンで動作量決定手段20a,20
bにて行う。図2で示すように時間Aで暖房運転命令を
検知した室内機16a,16bは流量弁13a,13b
を所定開度Xに設定し、時間Bまでは出口配管温度が所
定値Tに達していないので、STEP2をループし流量
弁13a、13bは初期開度のまま維持される。
STEP 3 is a routine for determining the operation amounts of the flow valves 13a, 13b, and operation amount determining means 20a, 20
b. As shown in FIG. 2, the indoor units 16a and 16b that have detected the heating operation command at time A are the flow valves 13a and 13b.
Is set to a predetermined opening X, and the outlet pipe temperature has not reached the predetermined value T until time B, so STEP2 is looped and the flow valves 13a and 13b are maintained at the initial opening.

【0029】時間Bから時間Cでは室内機16aの利用
側熱交換器12aの出口配管温度が所定値Tに達したの
で、流量弁13aの動作量を決定するが、室内機16b
の利用側熱交換器12bの出口配管温度が所定値Tに達
していないので流量弁13bはSTEP2をループし初
期開度のまま維持され、時間C以降は流量弁13a,1
3bの動作量を決定する。また、暖房起動時には、利用
側熱交換器12a,12bの出口配管温度と入口配管温
度の差は所定値より小さいので、流量弁13a,13b
を閉動作する動作量が決定され、STEP4に移行す
る。
From time B to time C, the outlet pipe temperature of the use side heat exchanger 12a of the indoor unit 16a has reached the predetermined value T, so the operation amount of the flow valve 13a is determined, but the indoor unit 16b is determined.
Since the outlet piping temperature of the use side heat exchanger 12b of 1 has not reached the predetermined value T, the flow valve 13b loops STEP2 and is maintained at the initial opening, and after the time C, the flow valves 13a, 1
The movement amount of 3b is determined. Further, at the time of starting the heating, since the difference between the outlet pipe temperature and the inlet pipe temperature of the use side heat exchangers 12a and 12b is smaller than a predetermined value, the flow rate valves 13a and 13b.
Is determined and the process proceeds to STEP4.

【0030】STEP4では、決定された流量弁13
a,13bを閉動作する動作量に従って流量弁13a,
13bを動作させる。
In STEP 4, the determined flow valve 13
According to the operation amount for closing a and 13b, the flow valve 13a,
13b is operated.

【0031】この結果、冷媒の液重量による抵抗の小さ
い位置にある室内機12aの流量弁13aが冷媒の液重
量による抵抗の大きい位置にある室内機12bの流量弁
13bより先に閉動作を開始することになる。
As a result, the flow valve 13a of the indoor unit 12a in the position where the resistance due to the liquid weight of the refrigerant is small starts the closing operation before the flow valve 13b of the indoor unit 12b in the position where the resistance due to the liquid weight of the refrigerant is large. Will be done.

【0032】このようにして、冷媒の液重量による抵抗
の小さい位置にある室内機16aの流量弁13aの抵抗
が大きくなることで冷媒の液重量による抵抗の大きい位
置にある室内機16bとの抵抗がバランスすることにな
り、冷媒の液重量による抵抗の大きい位置にある室内機
12bへも冷媒循環が得られ、利用者側冷媒サイクルを
形成することができ暖房を行うものである。
In this way, the resistance of the flow rate valve 13a of the indoor unit 16a located at a position where the resistance of liquid due to the liquid weight of the refrigerant is small is increased, so that the resistance to the indoor unit 16b located at a position where the resistance of liquid weight of the refrigerant is large is increased. Therefore, the refrigerant can be circulated to the indoor unit 12b at the position where the resistance due to the liquid weight of the refrigerant is large, and the user side refrigerant cycle can be formed to perform heating.

【0033】次に第2の実施例について説明を行う。図
4において、14a,14bは暖房時に利用側熱交換器
12a,12bの出口配管温度を検知する出口配管温度
センサである。15a,15bは暖房時に利用側熱交換
器12a,12bの入口配管温度を検知する入口配管温
度センサである。20a,20bは流量弁13a,13
bの動作量を決定する動作量決定手段である。
Next, the second embodiment will be described. In FIG. 4, 14a and 14b are outlet pipe temperature sensors for detecting the outlet pipe temperature of the use side heat exchangers 12a and 12b during heating. Reference numerals 15a and 15b are inlet pipe temperature sensors for detecting the inlet pipe temperature of the use side heat exchangers 12a and 12b during heating. 20a and 20b are flow valves 13a and 13
It is a motion amount determining means for determining the motion amount of b.

【0034】22a,22bは、暖房起動時に冷暖運転
命令検知手段18a,18bによって暖房運転の命令を
検知すると流量弁駆動手段21a,21bを用いてあら
かじめ設定された所定の開度に流量弁13a,13bを
駆動させ、起動検知手段19a,19bによって圧縮器
1及び冷媒搬送装置8の起動を検知すると、出口配管温
度センサで14a,14bで検知した出口配管温度が所
定温度に達するまでは、流量弁13a,13bを一定時
間毎に所定動作量づつ開動作させ出口配管温度センサ1
4a,14bで検知した利用側熱交換器12a,12b
の出口配管温度が所定温度に達すると、動作量決定手段
20a,20bは出口配管温度センサ14a,14bに
よって検知された配管温度と、入口配管温度センサ15
a,15bによって検知された配管温度との差が、所定
値より大きい場合には流量弁13a,13bを開動作さ
せる動作量を決定し、配管温度の差が所定値より小さい
場合には流量弁13a,13bを閉動作させる動作量を
決定し、決定された動作量を流量弁駆動手段21a,2
1bを用いて駆動させる制御装置である。
When the heating / warming operation command detecting means 18a, 18b detect the heating operation command at the time of starting the heating, the flow valves 13a, 22a, 22b are set to predetermined opening degrees by using the flow valve driving means 21a, 21b. 13b is driven, and when the activation detection means 19a, 19b detect activation of the compressor 1 and the refrigerant transfer device 8, until the outlet pipe temperature detected by the outlet pipe temperature sensor 14a, 14b reaches a predetermined temperature, the flow valve The outlet pipe temperature sensor 1 is operated by opening 13a and 13b at predetermined time intervals by a predetermined operation amount.
Use side heat exchangers 12a and 12b detected by 4a and 14b
When the outlet pipe temperature of the device reaches the predetermined temperature, the operation amount determining means 20a, 20b causes the pipe temperature detected by the outlet pipe temperature sensors 14a, 14b and the inlet pipe temperature sensor 15 to be detected.
When the difference between the pipe temperature detected by a and 15b is larger than a predetermined value, the operation amount for opening the flow valves 13a and 13b is determined. When the difference between the pipe temperatures is smaller than the predetermined value, the flow valve is opened. The operation amount for closing 13a, 13b is determined, and the determined operation amount is used as the flow valve driving means 21a, 2
It is a control device driven by using 1b.

【0035】以上のように構成された本実施例につい
て、図5の特性図と図6のフローチャートを用いて、本
実施例の制御装置22a,22bの動作について説明す
る。
The operation of the control devices 22a and 22b of the present embodiment configured as described above will be described with reference to the characteristic diagram of FIG. 5 and the flowchart of FIG.

【0036】図5は暖房運転の経過時間と出口配管温度
センサ14a,14bの値及び流量弁13a,13bの
開度の関係を示している。図5は、時間経過とともに出
口配管温度が上昇し、下部に位置する室内機16bの利
用側熱交換器12bの出口配管温度の上昇が上部に位置
する室内機16aの利用側熱交換器12aの出口配管温
度の上昇より遅いことを示している。
FIG. 5 shows the relationship between the elapsed time of heating operation, the values of the outlet pipe temperature sensors 14a and 14b, and the openings of the flow valves 13a and 13b. In FIG. 5, the outlet pipe temperature rises with the passage of time, and the rise in the outlet pipe temperature of the use side heat exchanger 12b of the indoor unit 16b located in the lower portion of the use side heat exchanger 12a of the indoor unit 16a located in the upper portion. It shows that it is slower than the rise of the outlet pipe temperature.

【0037】また、暖房運転命令を検知した室内機16
a,16bの流量弁13a,13bは所定値に設定さ
れ、起動検知手段によって圧縮機1及び冷媒搬送装置8
の起動を検知すると室内機16a,16bの流量弁13
a,13bは一定時間毎に所定値づつ開動作し、時間の
経過とともに上部位置する室内機16aの流量弁13a
が先に閉動作を開始し、続いて下部位置する室内機16
bの流量弁13bが先に閉動作を開始していることを示
している。
Further, the indoor unit 16 which has detected the heating operation command
The flow valves 13a and 13b of a and 16b are set to predetermined values, and the compressor 1 and the refrigerant transfer device 8 are set by the start detection means.
When the start-up of the indoor unit 16a, 16b is detected,
a and 13b are opened by a predetermined value at regular time intervals, and the flow valve 13a of the indoor unit 16a located at the upper position with the passage of time.
First starts the closing operation, and then the indoor unit 16 located at the bottom
It indicates that the flow valve 13b of b has started the closing operation first.

【0038】図6において、STEP1は、冷房運転命
令・暖房運転命令の判断ルーチンであり、冷暖運転検知
手段18a,18bにて行う。命令を検知した時点で流
量弁13a,13bをあらかじめ決められた初期開度に
設定を行う。もし、暖房運転命令ならSTEP2へ移行
し、冷房運転命令なら冷房ルーチンへ移行する。
In FIG. 6, STEP 1 is a determination routine for the cooling operation command / heating operation command, which is performed by the cooling / heating operation detecting means 18a, 18b. When the command is detected, the flow valves 13a and 13b are set to a predetermined initial opening. If it is a heating operation command, the process proceeds to STEP 2, and if it is a cooling operation command, the process proceeds to a cooling routine.

【0039】STEP2は、圧縮機1及び冷媒搬送装置
8が起動したかどうかを判断するルーチンで起動してい
なければSTEP2をループして起動判断を続け、起動
を検知すれば、STEP3移行にする。また、STEP
2は、起動検知手段によって行われる。
Step 2 is a routine for judging whether the compressor 1 and the refrigerant transfer device 8 are activated. If not activated, loops STEP 2 to continue activation determination, and if activation is detected, shifts to STEP 3. Also, STEP
Step 2 is performed by the activation detection means.

【0040】STEP3は、出口配管温度が所定値に達
したがどうかを判断するルーチンで、出口配管温度が所
定値に達していなければ、一定時間毎に流量弁13a,
13bを所定動作量づつ開動作させ、出口配管温度が所
定値に達すればSTEP4に移行する。
STEP 3 is a routine for judging whether the outlet pipe temperature has reached the predetermined value. If the outlet pipe temperature has not reached the predetermined value, the flow valve 13a,
13b is opened by a predetermined operation amount, and when the outlet pipe temperature reaches a predetermined value, the process proceeds to STEP4.

【0041】また、STEP4は、流量弁13a,13
bの動作量を決定するルーチンで動作量決定手段20
a,20bにて行う。
Further, in STEP 4, the flow valves 13a, 13
In the routine for determining the movement amount of b, the movement amount determining means 20
a, 20b.

【0042】図5で示すように、時間Dで暖房運転命令
を検知した室内機16a,16bは流量弁13a,13
bを所定開度Xに設定し、時間Eで圧縮機及び冷媒搬送
装置の起動を検知すると利用側熱交換器12a,12b
の出口配管温度は所定値Tに達していないので、STE
P2をループし流量弁13a、13bは一定時間毎に所
定動作量づつ開動作する。
As shown in FIG. 5, the indoor units 16a and 16b, which have detected the heating operation command at the time D, have the flow valves 13a and 13b.
When b is set to a predetermined opening X and the activation of the compressor and the refrigerant transfer device is detected at time E, the use side heat exchangers 12a and 12b are detected.
Since the outlet pipe temperature of has not reached the predetermined value T, STE
P2 is looped to open the flow valves 13a and 13b by a predetermined operation amount at regular intervals.

【0043】時間Fから時間Gでは室内機16aの利用
側熱交換器12aの出口配管温度が所定値Tに達したの
で、流量弁13aの動作量を決定するが、室内機16b
の利用側熱交換器12bの出口配管温度は所定値Tに達
していないので流量弁13bはSTEP2をループし一
定時間毎に所定動作量づつ開動作し、時間G以降は流量
弁13a、13bの動作量を決定する。
From time F to time G, the outlet pipe temperature of the use side heat exchanger 12a of the indoor unit 16a has reached the predetermined value T, so the operation amount of the flow valve 13a is determined, but the indoor unit 16b is determined.
Since the outlet pipe temperature of the use side heat exchanger 12b does not reach the predetermined value T, the flow valve 13b loops STEP2 and opens for a predetermined operation amount at regular time intervals, and after time G, the flow valve 13a, 13b Determine the amount of movement.

【0044】また、暖房起動時には、出口配管温度と入
り口配管温度の差は所定値より小さいので、流量弁13
a,13bを閉動作する動作量が決定され、STEP5
に移行する。
When the heating is started, the difference between the outlet pipe temperature and the inlet pipe temperature is smaller than the predetermined value, so the flow valve 13
The operation amount for closing a and 13b is determined, and STEP 5
Move to.

【0045】STEP5では、決定された流量弁13
a,13bを閉動作する動作量に従って流量弁13a,
13bを動作させる。
In STEP 5, the determined flow valve 13
According to the operation amount for closing a and 13b, the flow valve 13a,
13b is operated.

【0046】この結果、暖房起動初期に流量弁13a,
13bによる抵抗が軽減されるとともに、冷媒の液重量
による抵抗の小さい位置にある室内機12aの流量弁1
3aが冷媒の液重量による抵抗の大きい位置にある室内
機12bの流量弁13bより先に閉動作を開始すること
になる。
As a result, the flow rate valve 13a,
The flow valve 1 of the indoor unit 12a at the position where the resistance due to 13b is reduced and the resistance due to the liquid weight of the refrigerant is small
3a will start the closing operation prior to the flow valve 13b of the indoor unit 12b at the position where the resistance due to the liquid weight of the refrigerant is large.

【0047】このようにして、冷媒の液重量による抵抗
の小さい位置にある室内機12aの流量弁13aの抵抗
が大きくなることで冷媒の液重量による抵抗の大きい位
置にある室内機12bとの抵抗がバランスすることにな
り、冷媒の液重量による抵抗の大きい位置にある室内機
12bへも冷媒循環が得られる。
In this way, the resistance of the flow valve 13a of the indoor unit 12a at the position where the resistance due to the liquid weight of the refrigerant is small becomes large, so that the resistance to the indoor unit 12b at the position where the resistance due to the liquid weight of the refrigerant is large. Is balanced, and the refrigerant can be circulated to the indoor unit 12b at a position where the resistance due to the liquid weight of the refrigerant is large.

【0048】また、冷媒の循環速度が向上し短時間で利
用側冷媒サイクル17を形成でき短時間で快適性を得る
ことのできる暖房を行うものである。
Further, the circulation speed of the refrigerant is improved, and the heating side refrigerant cycle 17 can be formed in a short time so that the comfort can be obtained in a short time.

【0049】[0049]

【発明の効果】以上説明したように本発明の多室冷暖房
装置は、暖房時に利用側熱交換器の出口配管温度を検知
する出口配管温度センサと、暖房時に利用側熱交換器の
入口配管温度を検知する入口配管温度センサ冷房運転な
いし暖房運転の命令を検知する冷暖運転命令検知手段
と、流量弁の動作量を決定する動作量決定手段と、流量
弁を駆動させる流量弁駆動手段と、暖房起動時に冷暖運
転命令検知手段によって暖房運転の命令を検知すると流
量弁駆動手段によりあらかじめ設定された所定の開度に
流量弁を駆動させ、システムが暖房運転を開始して出口
配管温度センサで検知した配管温度が所定温度に達する
と、動作量決定手段により出口配管温度センサで検知さ
れた配管温度と、入口配管温度センサで検知された配管
温度の差が、所定値より大きい場合には流量弁を開動作
させる動作量を決定し、配管温度の差が所定値より小さ
い場合には流量弁を閉動作させる動作量を決定し、決定
された動作量を流量弁駆動手段により駆動させる制御装
置を備えたものである。
As described above, in the multi-room cooling and heating apparatus of the present invention, the outlet pipe temperature sensor for detecting the outlet pipe temperature of the utilization side heat exchanger during heating, and the inlet pipe temperature of the utilization side heat exchanger during heating. An inlet pipe temperature sensor for detecting the cooling / heating operation command detecting means for detecting an instruction for cooling operation or heating operation, an operation amount determining means for determining the operation amount of the flow valve, a flow valve driving means for driving the flow valve, and a heating device. When the cooling / warming operation command detecting means detects the heating operation command at the time of startup, the flow valve drive means drives the flow valve to a predetermined opening, and the system starts the heating operation and the outlet pipe temperature sensor detects it. When the pipe temperature reaches a predetermined temperature, the difference between the pipe temperature detected by the outlet pipe temperature sensor and the pipe temperature detected by the inlet pipe temperature sensor by the operation amount determining means is a predetermined value. If the difference is larger than the specified value, the operation amount to open the flow valve is determined.If the difference in pipe temperature is smaller than the specified value, the operation amount to close the flow valve is determined, and the determined operation amount is driven by the flow valve. The control device is driven by the means.

【0050】そのため、冷媒の液重量による抵抗の小さ
い位置にある室内機の流量弁の抵抗が大きくなることで
冷媒の液重量による抵抗の大きい位置にある室内機との
抵抗がバランスすることになり、冷媒の液重量による抵
抗の大きい位置にある室内機へも冷媒循環が得られ、シ
ステム停止を防止でき、室内機と室内機間の高低差をよ
り大きくする効果がある。
Therefore, the resistance of the flow valve of the indoor unit located at the position where the resistance of the refrigerant is small becomes large, so that the resistance of the indoor unit at the position where the resistance of the refrigerant is large is balanced. The refrigerant circulation can be obtained even in the indoor unit located at a position where the resistance of the refrigerant is large due to the liquid weight, the system stop can be prevented, and the height difference between the indoor unit and the indoor unit can be further increased.

【0051】また、 暖房時に利用側熱交換器の出口配
管温度を検知する出口配管温度センサと、暖房時に利用
側熱交換器の入口配管温度を検知する入口配管温度セン
サと、冷房運転ないし暖房運転の命令を検知する、冷暖
運転命令検知手段と、流量弁の動作量を決定する動作量
決定手段と、流量弁を駆動させる流量弁駆動手段と、圧
縮機及び冷媒搬送装置の起動を検知する、起動検知手段
と、暖房起動時に冷暖運転命令検知手段によって暖房運
転の命令を検知すると流量弁を所定の開度に設定を行
い、起動検知手段によって、圧縮機及び冷媒搬送装置の
起動を検知すると、流量弁を配管温度センサで検知した
配管温度が所定温度に達するまで流量弁駆動手段により
一定時間毎に所定量を開動作させ、利用側熱交換器の出
口配管温度が所定温度に達すると、動作量決定手段によ
り出口配管温度センサで検知された配管温度と、入口配
管温度センサで検知された配管温度の差が、所定値より
大きい場合には流量弁を開動作させる動作量を決定し、
配管温度の差が所定値より小さい場合には流量弁を閉動
作させる動作量を決定し、決定された動作量を前記流量
弁駆動手段により駆動させる制御装置を備えたものであ
る。
Further, an outlet pipe temperature sensor for detecting the outlet pipe temperature of the utilization side heat exchanger during heating, an inlet pipe temperature sensor for detecting the inlet pipe temperature of the utilization side heat exchanger during heating, and a cooling operation or a heating operation. The cooling / warming operation command detecting means, the operation amount determining means for determining the operation amount of the flow valve, the flow valve driving means for driving the flow valve, the start of the compressor and the refrigerant transfer device are detected, When the startup detection means and the heating / cooling operation command detection means detect the heating operation command when the heating is started, the flow valve is set to a predetermined opening, and when the startup detection means detects the startup of the compressor and the refrigerant transfer device, The flow valve driving means opens a predetermined amount at regular intervals until the pipe temperature detected by the pipe temperature sensor reaches the predetermined temperature. If the difference between the pipe temperature detected by the outlet pipe temperature sensor and the pipe temperature detected by the inlet pipe temperature sensor by the operation amount determining means is larger than a predetermined value, the operation amount for opening the flow valve. Decide
When the difference between the pipe temperatures is smaller than a predetermined value, a control device for determining an operation amount for closing the flow valve and driving the determined operation amount by the flow valve driving means is provided.

【0052】そのため、冷媒の液重量による抵抗の小さ
い位置にある室内機の流量弁の抵抗が大きくなることで
冷媒の液重量による抵抗の大きい位置にある室内機との
抵抗がバランスすることになり、冷媒の液重量による抵
抗の大きい位置にある室内機へも冷媒循環が得られま
た、冷媒の循環速度が向上し短時間で利用側冷媒サイク
ルを形成できシステム停止を防止できるとともに短時間
で快適性を得ることのでき、室内機と室内機間の高低差
をより大きくする効果がある。
Therefore, the resistance of the flow valve of the indoor unit located at the position where the resistance of the refrigerant is small becomes large, and the resistance of the indoor unit at the position where the resistance of the refrigerant is large is balanced. , Refrigerant circulation can be obtained even to the indoor unit in the position where the resistance of the refrigerant is large due to the liquid weight, and the circulation speed of the refrigerant is improved so that the user side refrigerant cycle can be formed in a short time and the system stop can be prevented and the comfort in a short time. And the effect of increasing the height difference between the indoor units can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における冷暖房装置の冷
媒サイクル図
FIG. 1 is a refrigerant cycle diagram of an air conditioner according to a first embodiment of the present invention.

【図2】同実施例の冷暖房装置における経過時間と出口
配管温度及び流量弁開度の相関を示す特性図
FIG. 2 is a characteristic diagram showing a correlation between an elapsed time, an outlet pipe temperature, and a flow valve opening degree in the cooling and heating apparatus of the same embodiment.

【図3】同実施例の冷暖房装置のフローチャートFIG. 3 is a flowchart of the cooling and heating device of the same embodiment.

【図4】本発明の第2の実施例における冷暖房装置の冷
媒サイクル図
FIG. 4 is a refrigerant cycle diagram of an air conditioner according to a second embodiment of the present invention.

【図5】同実施例の冷暖房装置における経過時間と出口
配管温度及び流量弁開度の相関を示す特性図
FIG. 5 is a characteristic diagram showing a correlation between an elapsed time, an outlet pipe temperature, and a flow valve opening degree in the cooling and heating apparatus of the same embodiment.

【図6】同実施例の冷暖房装置のフローチャートFIG. 6 is a flowchart of the cooling and heating device of the same embodiment.

【図7】従来の冷暖房装置の冷媒サイクル図FIG. 7 is a refrigerant cycle diagram of a conventional cooling and heating device.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 熱源側四方弁 3 熱源側熱交換機 4 減圧装置 5 第1補助熱交換器 6 熱源側冷媒サイクル 7 第2補助熱交換器 8 冷媒搬送装置 9 利用側四方弁 12a、12b 利用側熱交換器 13a、13b 流量弁 14a、14b 出口配管温度センサ 15a、15b 入口配管温度センサ 17 利用側冷媒サイクル 18a、18b 冷暖運転命令検知手段 19a、19b 起動検知手段 20a、20b 動作量決定手段 21a、21b 流量弁駆動手段 22a、22b 制御装置 1 Compressor 2 Heat Source Side Four Way Valve 3 Heat Source Side Heat Exchanger 4 Pressure Reduction Device 5 First Auxiliary Heat Exchanger 6 Heat Source Side Refrigerant Cycle 7 Second Auxiliary Heat Exchanger 8 Refrigerant Transfer Device 9 Use Side Four Way Valve 12a, 12b Use Side Heat Exchanger 13a, 13b Flow valve 14a, 14b Outlet piping temperature sensor 15a, 15b Inlet piping temperature sensor 17 User side refrigerant cycle 18a, 18b Cooling / warming operation command detecting means 19a, 19b Startup detecting means 20a, 20b Operating amount determining means 21a, 21b Flow valve driving means 22a, 22b Control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と熱源側四方弁と熱源側熱交換器
と減圧装置及び第1補助熱交換器とを環状に連接しなる
熱源側冷媒サイクルと、前記第1補助熱交換器と一体に
形成し熱交換する第2補助熱交換器と利用側四方弁と冷
媒搬送装置と冷媒流量を調整する流量弁と利用側熱交換
器とを環状に連接した利用側冷媒サイクルと、暖房時に
前記利用側熱交換器の出口配管温度を検知する出口配管
温度センサと、暖房時に前記利用側熱交換器の入口配管
温度を検知する入口配管温度センサと、冷房運転ないし
暖房運転の命令を検知する冷暖運転命令検知手段と、前
記流量弁の動作量を決定する動作量決定手段と、前記流
量弁を駆動させる流量弁駆動手段と、暖房起動時に前記
冷暖運転命令検知手段によって暖房運転の命令を検知す
ると前記流量弁駆動手段を用いてあらかじめ設定された
所定の開度に前記流量弁を駆動させ、システムが暖房運
転を開始し前記出口配管温度センサで検知した配管温度
が所定温度に達すると、前記動作量決定手段により前記
出口配管温度センサで検知された配管温度と、前記入口
配管温度センサで検知された配管温度の差が、所定値よ
り大きい場合には前記流量弁を開動作させる動作量を決
定し、配管温度の差が所定値より小さい場合には前記流
量弁を閉動作させる動作量を決定し、決定された動作量
を前記流量弁駆動手段を用いて駆動させる制御装置によ
り構成されている多室冷暖房装置。
1. A heat source side refrigerant cycle in which a compressor, a heat source side four-way valve, a heat source side heat exchanger, a pressure reducing device and a first auxiliary heat exchanger are connected in an annular shape, and the first auxiliary heat exchanger is integrated. A second auxiliary heat exchanger that forms and exchanges heat, a use-side four-way valve, a refrigerant transfer device, a flow valve that adjusts the refrigerant flow rate, and a use-side heat exchanger, and a use-side refrigerant cycle; An outlet pipe temperature sensor that detects the outlet pipe temperature of the use-side heat exchanger, an inlet pipe temperature sensor that detects the inlet pipe temperature of the use-side heat exchanger during heating, and a cooling and heating that detects an instruction for cooling operation or heating operation. When a command for heating operation is detected by the operation command detection unit, the operation amount determination unit that determines the operation amount of the flow valve, the flow valve drive unit that drives the flow valve, and the cooling / heating operation command detection unit at the time of heating startup. Flow valve drive When the flow valve is driven to a predetermined opening set in advance using a means, the system starts heating operation and the pipe temperature detected by the outlet pipe temperature sensor reaches a predetermined temperature, the operation amount determination means causes When the difference between the pipe temperature detected by the outlet pipe temperature sensor and the pipe temperature detected by the inlet pipe temperature sensor is larger than a predetermined value, the operation amount for opening the flow valve is determined, and the pipe temperature Is smaller than a predetermined value, a multi-chamber cooling / heating device configured by a control device that determines an operation amount for closing the flow valve and drives the determined operation amount using the flow valve driving means. ..
【請求項2】 圧縮機と熱源側四方弁と熱源側熱交換器
と減圧装置及び第1補助熱交換器とを環状に連接しなる
熱源側冷媒サイクルと、前記第1補助熱交換器と一体に
形成し熱交換する第2補助熱交換器と利用側四方弁と冷
媒搬送装置と冷媒流量を調整する流量弁と利用側熱交換
器とを環状に連接した利用側冷媒サイクルと、暖房時に
前記利用側熱交換器の出口配管温度を検知する出口配管
温度センサと、暖房時に前記利用側熱交換器の入口配管
温度を検知する入口配管温度センサと、冷房運転ないし
暖房運転の命令を検知する冷暖運転命令検知手段と、前
記流量弁の動作量を決定する動作量決定手段と、前記流
量弁を駆動させる流量弁駆動手段と、前記圧縮機及び冷
媒搬送装置の起動を検知する起動検知手段と、暖房起動
時に前記冷暖運転命令検知手段によって暖房運転の命令
を検知すると前記流量弁を所定の開度に設定を行い、前
記起動検知手段によって、前記圧縮機及び前記冷媒搬送
装置の起動を検知すると、前記流量弁を前記配管温度セ
ンサで検知した配管温度が所定温度に達するまで前記流
量弁駆動手段により一定時間毎に所定量を開動作させ、
前記利用側熱交換器の出口配管温度が所定温度に達する
と、前記動作量決定手段により前記出口配管温度センサ
で検知された配管温度と、前記入口配管温度センサで検
知された配管温度の差が、所定値より大きい場合には前
記流量弁を開動作させる動作量を決定し、配管温度の差
が所定値より小さい場合には前記流量弁を閉動作させる
動作量を決定し、決定された動作量を前記流量弁駆動手
段により駆動させる制御装置により構成されている多室
冷暖房装置。
2. A heat source side refrigerant cycle in which a compressor, a heat source side four-way valve, a heat source side heat exchanger, a pressure reducing device, and a first auxiliary heat exchanger are connected annularly, and the first auxiliary heat exchanger is integrated. A second auxiliary heat exchanger that forms and exchanges heat, a use-side four-way valve, a refrigerant transfer device, a flow valve that adjusts the refrigerant flow rate, and a use-side heat exchanger, and a use-side refrigerant cycle; An outlet pipe temperature sensor that detects the outlet pipe temperature of the use-side heat exchanger, an inlet pipe temperature sensor that detects the inlet pipe temperature of the use-side heat exchanger during heating, and a cooling and heating that detects an instruction for cooling operation or heating operation. An operation command detection unit, an operation amount determination unit that determines an operation amount of the flow valve, a flow valve drive unit that drives the flow valve, a start detection unit that detects the start of the compressor and the refrigerant transfer device, The above-mentioned cooling / heating operation life when heating is started When the command for heating operation is detected by the command detecting means, the flow valve is set to a predetermined opening degree, and when the start detecting means detects the start of the compressor and the refrigerant transfer device, the flow valve is connected to the pipe. A predetermined amount is opened at regular intervals by the flow valve driving means until the pipe temperature detected by the temperature sensor reaches a predetermined temperature,
When the outlet pipe temperature of the utilization side heat exchanger reaches a predetermined temperature, the difference between the pipe temperature detected by the outlet pipe temperature sensor by the operation amount determining means and the pipe temperature detected by the inlet pipe temperature sensor is If the difference is greater than a predetermined value, the operation amount for opening the flow valve is determined, and if the difference in pipe temperature is less than the predetermined value, the operation amount for closing the flow valve is determined, and the determined operation is determined. A multi-chamber cooling and heating device configured by a control device that drives an amount by the flow valve driving means.
JP23145891A 1991-09-11 1991-09-11 Multiroom heating and cooling apparatus Pending JPH0571770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23145891A JPH0571770A (en) 1991-09-11 1991-09-11 Multiroom heating and cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23145891A JPH0571770A (en) 1991-09-11 1991-09-11 Multiroom heating and cooling apparatus

Publications (1)

Publication Number Publication Date
JPH0571770A true JPH0571770A (en) 1993-03-23

Family

ID=16923829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23145891A Pending JPH0571770A (en) 1991-09-11 1991-09-11 Multiroom heating and cooling apparatus

Country Status (1)

Country Link
JP (1) JPH0571770A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281642A (en) * 2008-05-21 2009-12-03 Daikin Ind Ltd Heat source device of air conditioning system
WO2012160605A1 (en) * 2011-05-26 2012-11-29 三菱電機株式会社 Air conditioning device
WO2013027233A1 (en) * 2011-08-19 2013-02-28 三菱電機株式会社 Air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281642A (en) * 2008-05-21 2009-12-03 Daikin Ind Ltd Heat source device of air conditioning system
WO2012160605A1 (en) * 2011-05-26 2012-11-29 三菱電機株式会社 Air conditioning device
EP2716997A1 (en) * 2011-05-26 2014-04-09 Mitsubishi Electric Corporation Air conditioning device
EP2716997A4 (en) * 2011-05-26 2014-11-05 Mitsubishi Electric Corp Air conditioning device
JP5642270B2 (en) * 2011-05-26 2014-12-17 三菱電機株式会社 Air conditioner
WO2013027233A1 (en) * 2011-08-19 2013-02-28 三菱電機株式会社 Air conditioner
CN103733002A (en) * 2011-08-19 2014-04-16 三菱电机株式会社 Air conditioner
US10006678B2 (en) 2011-08-19 2018-06-26 Mitsubishi Electric Corporation Air-conditioning apparatus

Similar Documents

Publication Publication Date Title
US20110138839A1 (en) Water circulation apparatus associated with refrigerant system
JPH03102132A (en) Air conditioner
JP2007163071A (en) Heat pump type cooling/heating system
WO2010131516A1 (en) Hot-water supply system
JPH0571770A (en) Multiroom heating and cooling apparatus
JP7174732B2 (en) heat pump water heater
JPH10148409A (en) Air conditioner
JP3703594B2 (en) Temperature controller for combined hot water heating system
JP3448682B2 (en) Absorption type cold heat generator
JP3546102B2 (en) Engine driven air conditioner
JP2004232937A (en) Heat pump water heater
JP2002122334A (en) Heat-pump type floor-heating equipment
JP2002340401A (en) Heat pump type hot water supplier
JPH07151359A (en) Refrigerant circulation type air conditioning system
JP2000161777A (en) Hot water supply apparatus
JPH10227536A (en) Heat pump hot-water supply
JP4194286B2 (en) Air conditioner
JP2000039229A (en) Air conditioner
JPH0350438A (en) Heating and cooling device
JP2002340403A (en) Heat pump type hot water supplier
JP2796681B2 (en) heater
JP2001116392A (en) Air conditioner
KR20200049035A (en) Air Conditioning system
JP2806110B2 (en) Heat transfer device
JPH1096560A (en) Air conditioner