JPH0571652A - Flow controller - Google Patents

Flow controller

Info

Publication number
JPH0571652A
JPH0571652A JP26314191A JP26314191A JPH0571652A JP H0571652 A JPH0571652 A JP H0571652A JP 26314191 A JP26314191 A JP 26314191A JP 26314191 A JP26314191 A JP 26314191A JP H0571652 A JPH0571652 A JP H0571652A
Authority
JP
Japan
Prior art keywords
spool
oil
throttle
pressure
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26314191A
Other languages
Japanese (ja)
Inventor
Masanaka Kobayashi
正中 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP26314191A priority Critical patent/JPH0571652A/en
Publication of JPH0571652A publication Critical patent/JPH0571652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)

Abstract

PURPOSE:To get such a characteristic that a delivery quantity to the destination becomes lessened contrariwise when a supply flow rate is much, stably in a simple structure. CONSTITUTION:A throttle plate 4 (second fixed throttle), where supply oil flows, is set up in and around the opening end of a supply oil passage 10 for a supply chamber A, and another throttle plate 4 (second fixed throttle), where delivery oil flows, in an interval between the supply chamber A and a delivery chamber B, respectively, and then there is provided a sub spool 5 responding to hydraulic pressure F0 at a front side of the throttle plate 3. A main spool 2, distributing the supply oil for the supply chamber A to the delivery chamber B and a reflux oil passage 11 according to the motion, is made up of installing both first and second lands 21, 22 with a large area and a third land 23 with a small area. In addition, a front side of the throttle plate 4, namely, internal pressure P1 in the supply chamber A is always received by the first land 21, while a rear side of the throttle plate 4, namely, the receiving range of internal pressure P2 in the delivery chamber B is varied in a range from the whole surface of the second land 22 to that of the third land 23 according to the operation of the sub spool.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポンプの吐出側と吐出
流体の送出先との間に介装されて、該送出先への送出流
量を制御する流量制御装置に関し、特に、前記ポンプの
吐出流量の増加に応じて送出流量を逆に減じる動作を行
う流量制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate control device which is interposed between a discharge side of a pump and a delivery destination of a delivery fluid to control a delivery flow rate to the delivery destination, and more particularly to a flow control device for the pump. The present invention relates to a flow rate control device that performs an operation of reducing the delivery flow rate conversely according to the increase of the discharge flow rate.

【0002】[0002]

【従来の技術】多くの流体圧回路において、圧力発生源
となるポンプでは、これの駆動条件に応じた量の流体が
一方的に吐出されるのに対し、この流体の供給により所
定の動作を行う送出先では、そのときの動作条件に応じ
た量の流体を必要とするに過ぎないことから、ポンプの
吐出側と送出先との間に、前記ポンプの吐出流体の一部
を吸込側に還流させて、前記送出先への送出流量を制御
する流量制御装置が付設されている。
2. Description of the Related Art In many fluid pressure circuits, a pump serving as a pressure generation source unilaterally discharges an amount of fluid according to its driving condition, while supplying this fluid causes a predetermined operation. Since the destination to perform only needs the amount of fluid corresponding to the operating condition at that time, a part of the discharge fluid of the pump is transferred to the suction side between the discharge side of the pump and the destination. A flow rate control device for recirculating and controlling the delivery flow rate to the delivery destination is attached.

【0003】例えば、舵取機構中に配された油圧アクチ
ュエータに舵輪(ステアリング)の操作に応じて作動油
を送給し、該油圧アクチュエータの発生力にて操舵補助
力を得るべく構成された自動車の動力舵取装置(パワー
ステアリング装置)においては、作動油の発生源たる油
圧ポンプは一般的にエンジンにより駆動されており、該
油圧ポンプの吐出油量は車速の増大に伴って増大する一
方、舵取りに際して車輪に加わる路面反力は、停止時及
び低速走行時には大きく高速走行時には小さいことか
ら、前記油圧アクチュエータは車速の遅速に応じて大小
となる操舵補助力を発生する必要がある。
For example, an automobile configured to supply hydraulic oil to a hydraulic actuator arranged in a steering mechanism in response to an operation of a steering wheel (steering) and obtain a steering assist force by the generated force of the hydraulic actuator. In the power steering apparatus (power steering apparatus), the hydraulic pump, which is the source of hydraulic oil, is generally driven by the engine, and the amount of oil discharged from the hydraulic pump increases as the vehicle speed increases. The road surface reaction force applied to the wheels during steering is large during stoppage and low-speed traveling and small during high-speed traveling. Therefore, the hydraulic actuator needs to generate a steering assist force that becomes large or small according to the slow speed of the vehicle.

【0004】即ち、前記動力舵取装置においては、油圧
の発生源である前記油圧ポンプの吐出油量の如何に拘わ
らず、この油圧の送油先である前記油圧アクチュエータ
への送出油量を略一定に維持すること、更に望ましく
は、吐出油量が少ない停止時及び低速走行時に十分な送
出油量を確保し、逆に吐出油量が多い高速走行時に送出
油量を少なくすることが要求され、前記油圧ポンプに
は、このような送出油量の自動調節を可能とするための
流量制御装置が付設されている。
That is, in the power steering apparatus, regardless of the amount of oil discharged from the hydraulic pump that is the source of hydraulic pressure, the amount of oil that is sent to the hydraulic actuator that is the destination of this hydraulic pressure is approximately It is required to maintain a constant amount, and more desirably, to secure a sufficient amount of oil to be delivered at the time of stop and low speed traveling with a small amount of discharged oil, and conversely to reduce the amount of delivered oil during high speed traveling with a large amount of discharged oil. The hydraulic pump is provided with a flow rate control device for enabling such automatic adjustment of the delivered oil amount.

【0005】この種の流量制御装置の代表的な構成とし
て、特公平1-27308号公報及び特公平3-550号公報に開
示された流量制御装置がある。図7は、この流量制御装
置の模式図である。
As a typical configuration of this type of flow rate control device, there are flow rate control devices disclosed in Japanese Patent Publication No. 1-27308 and Japanese Patent Publication No. 3-550. FIG. 7 is a schematic diagram of this flow rate control device.

【0006】本図に示す如くこの流量制御装置は、油圧
ポンプのハウジングに穿設された弁孔1の内奥側に軸長
方向への摺動自在に流量調節スプール7を内嵌し、弁孔
1の底面との間に介装した押しばね70により開口側(図
の左側)に向けて付勢する一方、弁孔1の開口側に筒形
をなすスプールハウジング8を、これよりも更に開口側
に円板形の絞り板9を夫々内嵌固定し、更に、スプール
ハウジング8に軸長方向への摺動自在に絞りスプール80
を内嵌して、絞り板9との間に介装した押しばね81によ
り弁孔1の内奥側(図の右側)に向けて付勢し、同側の
スプールハウジング8の内周に係止されたストッパ82に
押し付けた構成となっている。
As shown in the figure, in this flow control device, a flow rate adjusting spool 7 is fitted inside a valve hole 1 formed in a housing of a hydraulic pump so as to be slidable in the axial direction, and a valve is provided. A pressing spring 70 interposed between the bottom surface of the hole 1 and the opening side (left side in the drawing) urges the spool housing 8 into a cylindrical shape on the opening side of the valve hole 1. Disc-shaped diaphragm plates 9 are fitted and fixed on the opening side, respectively, and further, the spool spool 8 is slidable in the axial direction in the spool housing 8.
Is internally fitted, and is biased toward the inner depth side (right side in the figure) of the valve hole 1 by a push spring 81 interposed between the spool plate 8 and the throttle plate 9. The structure is such that it is pressed against the stopped stopper 82.

【0007】前記絞り板9には、中央部を厚さ方向に貫
通する絞り孔90と、これの周囲に等配され、同じく厚さ
方向に貫通する複数の絞り孔91,91…とが形成してあ
る。また前記絞りスプール80には、流量調節スプール7
側に軸心部において開口し、半径方向外向きに傾斜する
一対の傾斜孔に分岐されて絞り板9側に開口する通油孔
83が形成され、また絞り板9側の軸心部に、これの中央
の絞り孔90に臨ませて突起84が突設してある。
The diaphragm plate 9 is formed with a diaphragm hole 90 penetrating the central portion in the thickness direction, and a plurality of diaphragm holes 91, 91 ... Which are equally arranged around the diaphragm hole and also penetrate in the thickness direction. I am doing it. Further, the throttle spool 80 includes a flow rate adjusting spool 7
Oil passage hole that is open to the diaphragm plate 9 side by being branched into a pair of inclined holes that are open at the axial center portion and that are inclined outward in the radial direction.
83 is formed, and a projection 84 is provided at the axial center of the diaphragm plate 9 so as to face the diaphragm hole 90 at the center thereof.

【0008】前記弁孔1には、油圧ポンプの吐出側に連
なる吐出油路10と吸込側に連なる還流油路11とが軸長方
向に適長離隔して開口しており、吐出油路10の開口端
は、スプールハウジング8の周壁により常時閉止され、
また還流油路11の開口端は、押しばね70の付勢力に抗し
て生じる流量調節スプール7の摺動に応じて開口するよ
うになしてある。
A discharge oil passage 10 connected to the discharge side of the hydraulic pump and a return oil passage 11 connected to the suction side of the valve hole 1 are opened at an appropriate distance in the axial direction, and the discharge oil passage 10 is formed. The open end of is always closed by the peripheral wall of the spool housing 8,
Further, the open end of the return oil passage 11 is adapted to open in response to the sliding of the flow rate adjusting spool 7 which is generated against the biasing force of the push spring 70.

【0009】而して、吐出油路10から弁孔1内に供給さ
れる油は、スプールハウジング8の周壁に貫通形成され
た絞り孔85を経てスプールハウジング8内側の供給室A
に流入し、流量調節スプール7の摺動に応じて開口する
還流油路11と、絞りスプール80に形成された通油孔83と
に分岐する。そして、前者は油圧ポンプの吸込側に還流
し、後者は前記通油孔83を経て絞り板9の前側に流入し
て、更に絞り孔90及び絞り孔91,91…を通過して絞り板
9の後側の送出室Bに流入し、該送出室Bに接続された
所定の送油先に送出される。
Thus, the oil supplied from the discharge oil passage 10 into the valve hole 1 passes through the throttle hole 85 formed through the peripheral wall of the spool housing 8 and the supply chamber A inside the spool housing 8.
To the return oil passage 11 which opens according to the sliding of the flow rate adjusting spool 7 and the oil passage hole 83 formed in the throttle spool 80. The former flows back to the suction side of the hydraulic pump, the latter flows into the front side of the throttle plate 9 through the oil passage hole 83, and further passes through the throttle holes 90 and 91, 91 ... The oil flows into the delivery chamber B on the rear side and is delivered to a predetermined oil destination connected to the delivery chamber B.

【0010】スプールハウジング8の周壁には、これの
内側にて絞りスプール80と前記ストッパ82との間に形成
された環状室Cに連通する導圧孔86が形成してあり、ま
た、前記送出室Bの内圧は、弁孔1の長手方向に沿って
並設された連通路12により、弁孔1の底面に流量調節ス
プール7の背面側、即ち、前記押しばね70の収納室に導
かれている。
A pressure guiding hole 86 is formed on the peripheral wall of the spool housing 8 so as to communicate with an annular chamber C formed inside the spool housing 8 between the throttle spool 80 and the stopper 82. The internal pressure of the chamber B is guided to the back side of the flow rate adjusting spool 7 on the bottom surface of the valve hole 1, that is, the accommodating chamber of the pushing spring 70 by the communication passage 12 arranged in parallel along the longitudinal direction of the valve hole 1. ing.

【0011】従って前記絞りスプール80は、吐出油路10
からの供給油の全量が絞り孔85を経て供給室Aに流入す
る際に、環状室Cと供給室Aとの間、即ち吐出油路10と
供給室Aとの間に生じる圧力差を受圧し、押しばね70の
付勢力に抗して図の左方向に摺動して、軸心部に突設さ
れた突起84により絞り板9中央の絞り孔90を閉塞し、該
絞り孔90と周辺の絞り孔91,91…との合計面積を減じる
作用をなす。
Therefore, the throttle spool 80 has a discharge oil passage 10
When the total amount of the oil supplied from the tank flows into the supply chamber A through the throttle hole 85, the pressure difference generated between the annular chamber C and the supply chamber A, that is, between the discharge oil passage 10 and the supply chamber A is received. Then, it slides to the left in the figure against the urging force of the push spring 70, and the projection 84 provided at the axial center portion closes the throttle hole 90 in the center of the diaphragm plate 9, It serves to reduce the total area of the peripheral throttle holes 91, 91 ....

【0012】即ち、この流量制御装置は、スプールハウ
ジング8を貫通する絞り孔85により供給油の略全量が通
流する固定絞りを構成し、また絞りスプール80と絞り板
9とにより、前記固定絞り前後の圧力差の増加に応じて
絞り面積を減じ、送出油のみが通流する可変絞りを構成
して、この可変絞りの前後の圧力差により流量調節スプ
ール7を摺動させて、この摺動に伴う還流油路11の開口
面積の増加により供給室Aから吸込側に還流する油量を
増し、送出室Bを経て送出される油量を相対的に減じる
動作をなす。
That is, this flow rate control device constitutes a fixed throttle through which a throttle hole 85 penetrating the spool housing 8 allows almost the entire amount of the supplied oil to flow, and the throttle spool 80 and the throttle plate 9 constitute the fixed throttle. The throttle area is reduced in accordance with the increase in the pressure difference between the front and rear to form a variable throttle in which only the delivery oil flows, and the flow rate adjusting spool 7 is slid by the pressure difference between the front and rear of the variable throttle, and this sliding is performed. Due to the increase in the opening area of the return oil passage 11 due to the above, the amount of oil recirculated from the supply chamber A to the suction side is increased, and the amount of oil delivered through the delivery chamber B is relatively reduced.

【0013】従ってこの流量制御装置を備えた油圧ポン
プにおいては、ポンプ回転数が小さい範囲では、この回
転数の増加に伴って送出油量が比例的に増すが、前記可
変絞り前後の圧力差により流量調節スプール7が摺動を
開始した後は、吐出油路10からの供給油量の増加に応じ
て還流油路11への還流油量が増し、送油先への送出油量
が略一定に維持される。
Therefore, in the hydraulic pump equipped with this flow rate control device, in the range where the pump rotational speed is small, the amount of delivered oil increases proportionally as the rotational speed increases, but due to the pressure difference before and after the variable throttle. After the flow rate adjusting spool 7 starts sliding, the amount of return oil to the return oil passage 11 increases as the amount of oil supplied from the discharge oil passage 10 increases, and the amount of oil delivered to the destination is substantially constant. Maintained at.

【0014】更に供給油量が増し、前記固定絞り前後の
圧力差により絞りスプール80が摺動を開始すると、この
摺動に伴って前記可変絞りの絞り面積が減じられ、通流
抵抗が増す結果、流量調節スプール7の摺動に伴う還流
油量の増加率が供給油量の増加率を超え、ポンプ回転数
の増加に伴って送出油量が逆に減少する。
When the amount of oil supply further increases and the throttle spool 80 starts sliding due to the pressure difference before and after the fixed throttle, the throttle area of the variable throttle is reduced due to this sliding, and the flow resistance increases. The rate of increase in the amount of recirculating oil due to the sliding of the flow rate adjusting spool 7 exceeds the rate of increase in the amount of supplied oil, and the amount of delivered oil decreases conversely as the rotational speed of the pump increases.

【0015】供給油量が更に増し、絞りスプール80先端
の突起84により絞り板9中央の絞り孔90が閉止された後
においては、前記可変絞りの絞り面積が一定(周辺の絞
り孔91,91…の合計面積)となり、送油先への送出油量
は、ポンプ回転数が小さい範囲での一定域よりも少ない
量にて一定に維持される。即ち、図8に示す如き送出油
量の変化態様が得られ、このような送出油量の変化は、
動力舵取装置の油圧アクチュエータ側での要求に合致す
るものである。
After the amount of oil supplied is further increased and the projection 84 at the tip of the throttle spool 80 closes the throttle hole 90 in the center of the diaphragm plate 9, the throttle area of the variable throttle is constant (peripheral throttle holes 91, 91). (Total area of ...), and the amount of oil delivered to the oil destination is kept constant at a smaller amount than in a certain range in the range where the pump rotation speed is small. That is, a change mode of the delivered oil amount as shown in FIG. 8 is obtained, and such a change of the delivered oil amount is
It meets the requirements on the hydraulic actuator side of the power steering apparatus.

【0016】[0016]

【発明が解決しようとする課題】ところが以上の如き構
成の従来の流量制御装置においては、前記可変絞りを構
成するために、スプールハウジング8、絞り板9、絞り
スプール80、押しばね81及びストッパ82等、精密な加工
を要する多数の部品を必要とし、多大の加工工数及び組
立て工数を要するという難点がある。
However, in the conventional flow rate control device having the above-described structure, in order to configure the variable throttle, the spool housing 8, the throttle plate 9, the throttle spool 80, the pressing spring 81 and the stopper 82 are provided. As a result, a large number of parts that require precision processing are required, and a large number of processing man-hours and assembling man-hours are required.

【0017】また、送出油の全量が絞りスプール80の軸
心に形成された通油孔83を通流することから、特に、送
出油量が大なる範囲において、動圧の作用により絞りス
プール80が不安定な挙動を示し、図8に示す送出油量の
減少部分が安定して得難いという問題がある。なおこれ
は、通油孔83の面積を大きくして内部流速を低下せしめ
ることにより解消されるが、この面積増加のためには、
絞りスプール80、スプールハウジング8及び弁孔1の大
径化を必要とし、流量制御装置全体の大型化を招来す
る。
Further, since the entire amount of the delivered oil flows through the oil passage hole 83 formed in the axial center of the throttle spool 80, the throttle spool 80 is actuated by the action of dynamic pressure particularly in the range where the delivered oil amount is large. Shows unstable behavior, and there is a problem that it is difficult to stably obtain the reduced portion of the delivered oil amount shown in FIG. This can be solved by increasing the area of the oil passage hole 83 to reduce the internal flow velocity, but in order to increase this area,
The diameters of the throttle spool 80, the spool housing 8 and the valve hole 1 need to be increased, which leads to an increase in the size of the entire flow rate control device.

【0018】更に、供給室Aから送油先に連なる送出室
Bに至る流路の形状が複雑であり、例えば、寒冷地での
油圧ポンプの始動に際し、高粘度を有する油の通流阻害
に伴う高いサージ圧が発生して、耳障りな異音(ガー
音)が長時間に亘って継続する難点があり、更には、上
流側の油圧ポンプの各部、及び下流側の送油先に至る油
圧配管の破損を招来する虞さえあった。
Further, the shape of the flow path from the supply chamber A to the delivery chamber B connected to the oil destination is complicated, and for example, at the time of starting the hydraulic pump in cold regions, it prevents the passage of oil having high viscosity. Due to the high surge pressure that accompanies it, an unpleasant noise (gurgling noise) continues for a long time, and there is a further drawback. In addition, the hydraulic pressure reaching each part of the hydraulic pump on the upstream side and the oil destination on the downstream side. There was even a risk of damaging the piping.

【0019】本発明は斯かる事情に鑑みてなされたもの
であり、可変絞りを有しない簡素な構成により従来と同
等の特性を安定して得ることができ、また流路の簡素化
によりサージ圧に起因するポンプ及び配管系の破損、並
びにガー音の発生を未然に防止し得る流量制御装置を提
供することを目的とする。
The present invention has been made in view of such circumstances, and it is possible to stably obtain the same characteristics as the conventional one with a simple structure having no variable throttle, and to simplify surge pressure by simplifying the flow path. An object of the present invention is to provide a flow rate control device capable of preventing damage to the pump and piping system due to the above, and generation of ginger noise.

【0020】[0020]

【課題を解決するための手段】本発明に係る流量制御装
置は、ポンプからの供給流体が通流する第1の固定絞り
と、該固定絞りの下流側に位置し、送出先への送出流体
が通流する第2の固定絞りと、第2の固定絞り前後に生
じる圧力差の受圧により、これと常時作用する付勢力と
の力バランスに応動し、この動作に応じた量の供給流体
を前記ポンプの吸込側に還流せしめて前記送出先への送
出流量を加減する主スプールと、第1の固定絞りの上流
側の圧力に応動し、前記力バランスを変更する副スプー
ルとを具備することを特徴とする。
A flow rate control device according to the present invention includes a first fixed throttle through which a supply fluid from a pump flows, and a delivery fluid to a delivery destination located downstream of the first fixed throttle. The second fixed throttle through which the air flows and the pressure difference generated before and after the second fixed throttle responds to the force balance between the second fixed throttle and the constantly acting biasing force, and the amount of supply fluid corresponding to this operation is supplied. A main spool that recirculates to the suction side of the pump to control the delivery flow rate to the delivery destination; and a sub spool that responds to the pressure on the upstream side of the first fixed throttle and changes the force balance. Is characterized by.

【0021】更に、前記副スプールの動作により、前記
主スプールにおける圧力差の受圧面積又は前記主スプー
ルに作用する付勢力を加減することを特徴とする。
Further, the operation of the sub-spool adjusts the pressure receiving area of the pressure difference in the main spool or the urging force acting on the main spool.

【0022】[0022]

【作用】本発明においては、ポンプからの供給流体は、
まず第1の固定絞りを通流してこれの前後に圧力差を生
じ、このときの主スプールの位置に応じて送出側及び還
流側に振り分けられ、送出側の流体は、次いで第2の固
定絞りを通流してこれの前後に圧力差を生じ、所定の送
出先に送出される。主スプールの位置は、これに常時作
用する付勢力と第2の固定絞り前後の圧力差との力バラ
ンスに応じて定まるが、この力バランスは、供給流体の
全量が通流する第1の固定絞りの上流側の圧力に応動す
る副スプールの動作により、例えば、前記圧力差を受圧
する面積の加減、又は前記付勢力の加減等の手段により
変更され、供給流量の多少に応じて異なる送出流量の特
性が得られる。
In the present invention, the fluid supplied from the pump is
First, a pressure difference is generated before and after flowing through the first fixed throttle, and is distributed to the delivery side and the reflux side according to the position of the main spool at this time, and the fluid on the delivery side is then fed to the second fixed throttle. A pressure difference is generated before and after passing through, and is delivered to a predetermined destination. The position of the main spool is determined according to the force balance between the urging force that constantly acts on it and the pressure difference before and after the second fixed throttle. This force balance is determined by the first fixed flow through which the entire amount of the supply fluid flows. Due to the operation of the auxiliary spool in response to the pressure on the upstream side of the throttle, the delivery flow rate is changed depending on the supply flow rate, for example, by changing the area for receiving the pressure difference or by adjusting the biasing force. The characteristics of are obtained.

【0023】第2の固定絞りを通流して送出される送出
流量Qは、次式により表される。
The delivery flow rate Q delivered through the second fixed throttle is expressed by the following equation.

【0024】[0024]

【数1】 [Equation 1]

【0025】従来においては、可変絞りの動作により
(1)式中の絞り面積Aを変えて送出流量Qの特性を変
更するのに対し、本発明においては、副スプールの動作
により主スプールにおける力バランスを変え、(1)式
中のΔPの項を変化させて送出流量Qの特性を変更す
る。
In the prior art, the characteristic of the delivery flow rate Q is changed by changing the throttle area A in the equation (1) by the operation of the variable throttle, whereas in the present invention, the force in the main spool is changed by the operation of the auxiliary spool. The characteristics of the delivery flow rate Q are changed by changing the balance and changing the term of ΔP in the equation (1).

【0026】[0026]

【実施例】以下本発明をその実施例を示す図面に基づい
て詳述する。図1、図2及び図3は、本発明に係る流量
制御装置(以下本発明装置という)の第1実施例を示す
模式図であり、これらは、相異なる動作状態を夫々示し
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing the embodiments. 1, 2 and 3 are schematic diagrams showing a first embodiment of a flow rate control device according to the present invention (hereinafter referred to as the device of the present invention), which show different operating states, respectively.

【0027】図中1aは、円形断面を有し、一側の開口を
図示しない送油先に接続してなる主スプール孔である。
主スプール孔1aの開口側には、油圧ポンプの吐出側へ連
なる吐出油路10が、また内奥側には、同じく吸込側へ連
なる還流油路11が、相互に適長離隔して夫々開口してお
り、また主スプール孔1aの内奥側には、他部よりも小径
に加工された小径部が所定の長さ範囲に亘って形成して
ある。
Reference numeral 1a in the drawing denotes a main spool hole having a circular cross section and having an opening on one side connected to an oil destination (not shown).
A discharge oil passage 10 connected to the discharge side of the hydraulic pump is provided on the opening side of the main spool hole 1a, and a return oil passage 11 also connected to the suction side is provided on the inner back side of the main spool hole 1a with a proper distance from each other. In addition, a small-diameter portion processed to have a smaller diameter than the other portion is formed on the inner depth side of the main spool hole 1a over a predetermined length range.

【0028】また図中2は、軸長方向に並設された3つ
のランド21,22,23を備える主スプールであり、並設方
向一側の第1ランド21及び中央の第2ランド22の外径
は、主スプール孔1aの開口側の内径と略等しく設定さ
れ、また他側の第3ランド23の外径は、第1,第2ラン
ド21,22よりも小さく、前記小径部の内径と略等しく設
定されている。
Further, reference numeral 2 in the drawing is a main spool provided with three lands 21, 22, 23 arranged in parallel in the axial direction, and the first land 21 and the second land 22 at the center on one side in the arranging direction. The outer diameter is set to be substantially equal to the inner diameter on the opening side of the main spool hole 1a, and the outer diameter of the third land 23 on the other side is smaller than that of the first and second lands 21 and 22, and the inner diameter of the small diameter portion is small. Is set almost equal to.

【0029】主スプール2は、第3ランド23を奥側と
し、軸長方向への摺動自在に前記主スプール孔1aに内嵌
してあり、前記小径部の底面と該小径部に嵌入する第3
ランド23との間に介装された押しばね24により、主スプ
ール孔1aの開口側に向けて付勢されている。押しばね24
の付勢方向(図の左方向)への主スプール2の摺動は、
吐出油路10の開口位置と還流油路11の開口位置との間に
係着された止め輪25と、第1ランド21の端面との当接に
より、また逆方向への摺動は、第3ランド23の端面に突
設されたストッパ26の先端と、主スプール孔1aの底部と
の当接により、夫々制限されるようになしてある。
The main spool 2 is fitted in the main spool hole 1a slidably in the axial direction with the third land 23 on the back side, and is fitted into the bottom surface of the small diameter portion and the small diameter portion. Third
A push spring 24 interposed between the land 23 and the land 23 biases the main spool hole 1a toward the opening side. Push spring 24
The sliding of the main spool 2 in the urging direction (leftward in the figure) of
When the stop ring 25 engaged between the opening position of the discharge oil passage 10 and the opening position of the return oil passage 11 and the end surface of the first land 21 come into contact with each other, sliding in the opposite direction is prevented. The tips of the stoppers 26 projecting from the end surfaces of the three lands 23 and the bottom of the main spool hole 1a come into contact with the stoppers 26, respectively, so that they are restricted.

【0030】前記吐出油路10の終端近傍には、中央に小
径の絞り孔を備えた絞り板3(第1の固定絞り)が、ま
た主スプール孔1aの開口端近傍には、同じく中央に小径
の絞り孔を備えた絞り板4(第2の固定絞り)が夫々嵌
着してある。
A throttle plate 3 (first fixed throttle) having a small-diameter throttle hole in the center is provided in the vicinity of the end of the discharge oil passage 10, and similarly in the center in the vicinity of the opening end of the main spool hole 1a. Diaphragm plates 4 (second fixed diaphragms) having small-diameter diaphragm holes are respectively fitted.

【0031】前記絞り板4は、主スプール孔1aの開口端
と主スプール2との間を2つの室、即ち、主スプール2
側の供給室A及び開口端側の送出室Bに分割しており、
前記吐出油路10の開口位置は、主スプール2の摺動位置
の如何に拘わらず供給室A内にあるように設定してあ
り、また還流油路11の開口位置は、図1に示す如く、主
スプール2が止め輪25に当接した位置にあるときには供
給室A内に開口せず、図2及び図3に示す如く、押しば
ね24の付勢に抗して生じる主スプール2の摺動に応じて
供給室A内への開口面積を増すように設定してある。
The diaphragm plate 4 has two chambers between the opening end of the main spool hole 1a and the main spool 2, that is, the main spool 2.
Side supply chamber A and open end side delivery chamber B are divided into
The opening position of the discharge oil passage 10 is set so as to be in the supply chamber A regardless of the sliding position of the main spool 2, and the opening position of the return oil passage 11 is as shown in FIG. When the main spool 2 is in the position in contact with the retaining ring 25, the main spool 2 does not open into the supply chamber A, and as shown in FIGS. 2 and 3, the main spool 2 slides against the bias of the push spring 24. The opening area into the supply chamber A is set to increase according to the movement.

【0032】さて前記主スプール孔1aには、これに沿う
態様にて円形断面を有する副スプール孔1bが並設してあ
り、この副スプール孔1bには、軸長方向への摺動自在に
副スプール5が内嵌されている。副スプール5は、軸長
方向に並設された第1ランド51と第2ランド52とを備え
ており、副スプール孔1bの一側底部と、同側の第2ラン
ド52との間に介装された押しばね53により、一方向(図
の左方向)に向けて付勢されている。そして、この付勢
方向への副スプール5の摺動は、第1ランド51の端面に
突設されたストッパ54と副スプール孔1bの底部との当接
により、逆方向への摺動は、第2ランド52の端面に突設
されたストッパ55と副スプール孔1bの底部との当接によ
り、夫々制限されるようになしてある。
In the main spool hole 1a, a sub spool hole 1b having a circular cross section is arranged in parallel along the main spool hole 1a. The sub spool hole 1b is slidable in the axial direction. The sub spool 5 is fitted inside. The sub spool 5 includes a first land 51 and a second land 52 that are arranged side by side in the axial direction, and is interposed between the one side bottom portion of the sub spool hole 1b and the second land 52 on the same side. It is urged in one direction (leftward in the figure) by the mounted push spring 53. The sliding of the sub spool 5 in the urging direction is caused by the contact between the stopper 54 projecting from the end surface of the first land 51 and the bottom of the sub spool hole 1b. The stopper 55 protruding from the end surface of the second land 52 and the bottom portion of the sub spool hole 1b come into contact with each other, so that the stopper 55 and the stopper 55 are limited.

【0033】主スプール孔1aと副スプール孔1bとは、連
通路13により連通させてある。この連通路13の開口位置
は、主スプール孔1a側では、常に主スプール2の第2,
第3ランド22,23間にあり、また副スプール孔1b側で
は、常に副スプール5の第1,第2ランド51,52間にあ
るように設定されている。
The main spool hole 1a and the sub spool hole 1b are connected by a communication passage 13. On the main spool hole 1a side, the opening position of the communication passage 13 is always the second position of the main spool 2.
It is set between the third lands 22 and 23, and on the side of the sub spool hole 1b, it is always set between the first and second lands 51 and 52 of the sub spool 5.

【0034】また副スプール孔1bの中途部には、前記送
出室Bに連なる導圧路14と、低圧状態に維持された油タ
ンクTに開放されたドレイン路15とが、軸長方向に所定
長離隔して開口させてある。導圧路14は、副スプール5
が図1に示す摺動位置にあるとき第1,第2ランド51,
52間に開口しており、押しばね53の付勢に抗して生じる
副スプール5の摺動に応じて開口面積を減じ、最終的に
は図3に示す如く、第1ランド51により閉止するように
なっている。ドレイン路15は逆に、副スプール5が図1
に示す摺動位置にあるとき第2ランド52より閉止された
状態にあり、副スプール5の前記摺動に応じて第1,第
2ランド51,52間に開口するようになっている。
Further, in the middle of the sub spool hole 1b, a pressure guide passage 14 communicating with the delivery chamber B and a drain passage 15 opened to the oil tank T maintained at a low pressure are provided in a predetermined axial direction. It is opened long apart. The pressure guide passage 14 is the sub spool 5
Is in the sliding position shown in FIG. 1, the first and second lands 51,
Opened between 52, the opening area is reduced in accordance with the sliding of the sub spool 5 that is generated against the bias of the push spring 53, and finally closed by the first land 51 as shown in FIG. It is like this. On the contrary, the drain path 15 is shown in FIG.
When it is in the sliding position shown in FIG. 3, it is in a state of being closed from the second land 52, and opens between the first and second lands 51 and 52 in response to the sliding of the sub spool 5.

【0035】なお前記導圧路14は、主スプール孔1aの内
奥側の前記小径部内にも連通させてあり、この導圧路14
を経て導入される油圧は、主スプール2の第3ランド23
の背面側に作用し、主スプール2は、第3ランド23の面
積に前記油圧を乗じた力により、前記押しばね24の付勢
方向と同向き(図の左向き)に押圧される。
The pressure guiding passage 14 is also communicated with the small diameter portion on the inner side of the main spool hole 1a.
The hydraulic pressure introduced via the
The main spool 2 is pressed in the same direction as the biasing direction of the pressing spring 24 (leftward in the figure) by the force obtained by multiplying the area of the third land 23 by the hydraulic pressure.

【0036】また前記ドレイン路15は、副スプール孔1b
内部の第2ランド52の他面側にも連通され、同側は常時
低圧状態に保たれており、更に副スプール孔1b内部の第
1ランド51の他面側は、前記吐出油路10の絞り板4の上
流側に導圧路16を介して連通されている。即ち副スプー
ル5は、導圧路16を経て副スプール孔1bに導入される油
圧を第1ランド51の端面に受圧し、押しばね53の付勢に
抗して図の左向きに摺動することになり、このとき副ス
プール孔1b内部における副スプール5の第1,第2ラン
ド51,52間の圧力は、前記摺動に伴う導圧路14及びドレ
イン路15の開閉状態に応じて変化するが、この圧力は、
第1,第2ランド51,52の相等しい面積を有する対向面
に夫々作用するから、副スプール5の摺動には寄与せ
ず、両ランド51,52間に開口する前記連通路13を経て、
主スプール孔1a内部における主スプール2の第2,第3
ランド22,23間に導かれる。
The drain passage 15 has a sub spool hole 1b.
The other side of the second land 52 inside is also communicated, and the same side is always kept in a low pressure state. Further, the other side of the first land 51 inside the sub spool hole 1b is connected to the discharge oil passage 10. It communicates with the upstream side of the diaphragm plate 4 via a pressure guiding path 16. That is, the sub spool 5 receives the hydraulic pressure introduced into the sub spool hole 1b through the pressure guiding path 16 on the end surface of the first land 51, and slides leftward in the figure against the bias of the push spring 53. At this time, the pressure between the first and second lands 51 and 52 of the sub spool 5 inside the sub spool hole 1b changes according to the open / closed state of the pressure guiding path 14 and the drain path 15 associated with the sliding. But this pressure is
Since the first and second lands 51 and 52 respectively act on the opposing surfaces having the same area, they do not contribute to the sliding of the sub spool 5 and go through the communication passage 13 opened between the lands 51 and 52. ,
The second and third main spool 2 inside the main spool hole 1a
Guided between lands 22 and 23.

【0037】連通路13により第2,第3ランド22,23に
導かれた油圧は、これらの対向面に作用するが、前述の
如く第3ランド23は第2ランド22よりも小径であるか
ら、主スプール2は、第2,第3ランド21,22の面積差
に前記油圧を乗じた力により、前記押しばね24の付勢方
向と同向き(図の左向き)に押圧される。
The hydraulic pressure introduced to the second and third lands 22 and 23 by the communication passage 13 acts on these opposing surfaces, but the third land 23 has a smaller diameter than the second land 22 as described above. The main spool 2 is pressed in the same direction as the biasing direction of the pressing spring 24 (leftward in the figure) by the force obtained by multiplying the area difference between the second and third lands 21 and 22 by the hydraulic pressure.

【0038】以上の如く構成された本発明装置の動作に
つき次に説明する。油圧ポンプの吐出油は吐出油路10を
経て供給室Aに流入し、一部は送出室Bを経て所定の送
油先に送出され、残部は還流油路11に導入されて前記油
圧ポンプの吸込側に還流せしめられる。このとき、供給
室Aへの供給油の全量に対する送出油量及び還流油量の
割合は、主スプール2の摺動に伴って前述の如く開口す
る還流油路11の開口面積に応じて決定される。
The operation of the apparatus of the present invention constructed as above will be described below. The oil discharged from the hydraulic pump flows into the supply chamber A through the discharge oil passage 10, a part of the oil is discharged to a predetermined oil destination via the discharge chamber B, and the remaining portion is introduced into the return oil passage 11 to be supplied to the hydraulic pump. It is returned to the suction side. At this time, the ratio of the amount of delivered oil and the amount of recirculated oil to the total amount of oil supplied to the supply chamber A is determined according to the opening area of the recirculated oil passage 11 that opens as described above as the main spool 2 slides. It

【0039】吐出油路10の内圧がP0 である場合、供給
室Aの内圧は、吐出油路10の終端近傍の絞り板3(第1
の固定絞り)の通流に伴う圧力降下により、前記P0
り低いP1 となり、また送出室Bの内圧は、該送油室B
と供給室Aとを分離する絞り板4(第2の固定絞り)の
通流に伴う圧力降下により、前記P1 よりも低いP2
なる。即ち、絞り板3の前後には(P0 −P1 )なる圧
力差が、絞り板4の前後には(P1 −P2 )なる圧力差
が夫々発生する。
When the internal pressure of the discharge oil passage 10 is P 0 , the internal pressure of the supply chamber A is the diaphragm plate 3 (first
P 1 lower than P 0 due to the pressure drop caused by the flow of the fixed throttle), and the internal pressure of the delivery chamber B is the same as that of the oil delivery chamber B.
Due to the pressure drop caused by the flow of the throttle plate 4 (second fixed throttle) that separates the supply chamber A from the supply chamber A, the pressure P 2 becomes lower than the pressure P 1 . That is, a pressure difference of (P 0 -P 1 ) is generated before and after the diaphragm plate 3, and a pressure difference of (P 1 -P 2 ) is generated before and after the diaphragm plate 4.

【0040】導圧路16を経て副スプール孔1bに導入され
る油圧は、絞り板3の上流側での吐出油路10の内圧、即
ち前記P0 であり、このP0 を受圧する副スプール5
は、押しばね53による付勢力に抗して図の右向きに摺動
しようとするが、油圧ポンプの回転速度が低い領域にお
いては、これの吐出圧、即ち前記内圧P0 もまた低く、
押しばね53の付勢力が優位となることから、副スプール
5は、第1ランド51に突設したストッパ54を副スプール
孔1bの端面に押し付けた位置、即ち、図1に示す摺動位
置にある。
The hydraulic pressure introduced into the sub spool hole 1b through the pressure guide passage 16 is the internal pressure of the discharge oil passage 10 on the upstream side of the throttle plate 3, that is, the above-mentioned P 0 , and the sub spool for receiving this P 0. 5
Tends to slide to the right in the figure against the biasing force of the push spring 53, but in the region where the rotational speed of the hydraulic pump is low, its discharge pressure, that is, the internal pressure P 0 is also low,
Since the urging force of the push spring 53 is dominant, the auxiliary spool 5 moves to the position where the stopper 54 protruding from the first land 51 is pressed against the end surface of the auxiliary spool hole 1b, that is, the sliding position shown in FIG. is there.

【0041】そしてこのとき、副スプール5の第1,第
2ランド51,52間には、前記導圧路14が開口し、該導圧
路14を介して送出室Bの内圧P2 が導入されており、こ
の導入油圧P2 は更に、前記連通路13を経て主スプール
2の第2,第3ランド22,23間に導入される一方、第3
ランド23の背面側にもまた、導圧路14を経て送出室Bの
内圧P2 が導入される。従って主スプール2は、前記内
圧P2 を第2ランド22の全面に受圧することになり、こ
れと押しばね24の付勢力とにより図の左向きに押圧され
ると共に、第1ランド21の全面に供給室Aの内圧P1
受圧し、図の右向きに押圧される。
At this time, the pressure guiding path 14 is opened between the first and second lands 51, 52 of the sub spool 5, and the internal pressure P 2 of the delivery chamber B is introduced through the pressure guiding path 14. This introduced hydraulic pressure P 2 is further introduced between the second and third lands 22 and 23 of the main spool 2 via the communication passage 13, while the third hydraulic pressure P 2 is introduced.
The internal pressure P 2 of the delivery chamber B is also introduced to the back side of the land 23 via the pressure guiding path 14. Therefore, the main spool 2 receives the internal pressure P 2 on the entire surface of the second land 22, and is pressed leftward in the figure by this and the urging force of the push spring 24, and also on the entire surface of the first land 21. The internal pressure P 1 of the supply chamber A is received and pressed rightward in the drawing.

【0042】即ち主スプール2は、前記絞り板4の前後
に生じる圧力差(P1 −P2 )と、押しばね24による常
時加えられる付勢力との力バランスにより図の右向きに
摺動することになる。主スプール2の摺動は、前記圧力
差(P1 −P2 )が押しばね24の付勢力を上回るととも
に開始されるが、この開始前においては、図1に示す如
く供給室A内に還流油路11が開口しておらず、供給室A
への供給油の全量が送出室Bを経て送出されることにな
り、送出油量はポンプ回転数の増加に応じて比例的に増
加する。
That is, the main spool 2 slides to the right in the figure due to the force balance between the pressure difference (P 1 -P 2 ) generated before and after the throttle plate 4 and the urging force constantly applied by the pressing spring 24. become. The sliding of the main spool 2 is started when the pressure difference (P 1 -P 2 ) exceeds the urging force of the push spring 24. Before this, the flow returns into the supply chamber A as shown in FIG. The oil passage 11 is not open, and the supply chamber A
The total amount of oil supplied to the pump is sent through the sending chamber B, and the sent oil amount increases proportionally as the pump rotation speed increases.

【0043】送出油量の増加に応じて絞り板4前後の圧
力差(P1 −P2 )もまた増加し、これにより主スプー
ル2が摺動を開始した後においては、この摺動に伴って
供給室A内への還流油路11の開口面積が増す結果、供給
室Aへの供給油量の増加分が還流油路11を経て吸込側に
還流される還流油量の増加により相殺され、送出室Bか
らの送出油量は、ポンプ回転数の如何に拘わらず略一定
に維持される。
The pressure difference (P 1 -P 2 ) before and after the throttle plate 4 also increases in accordance with the increase in the amount of delivered oil, so that after the main spool 2 starts sliding, it is accompanied by this sliding. As a result of the increase in the opening area of the return oil passage 11 into the supply chamber A, the increase in the supply oil amount to the supply chamber A is offset by the increase in the return oil amount that is returned to the suction side via the return oil passage 11. The amount of oil delivered from the delivery chamber B is maintained substantially constant regardless of the pump rotation speed.

【0044】さてこの間、ポンプ回転数の増加に伴って
絞り板3の上流側での吐出油路10の内圧P0 もまた増加
し、この内圧P0 を受圧する副スプール5は、押しばね
53の付勢力に抗して図の右向きに摺動を開始しており、
所定長の摺動が生じた後においては、図2に示す如く、
第1,第2ランド51,52間に導圧路14と共にドレイン路
15が開口する状態となり、副スプール5の摺動量の増
加、即ち、絞り板3上流側の内圧P0 の増加に伴って油
タンクTに開放されたドレイン路15の開口量が除々に大
きくなる。
Meanwhile, during this period, the internal pressure P 0 of the discharge oil passage 10 on the upstream side of the throttle plate 3 also increases with an increase in the pump rotation speed, and the auxiliary spool 5 that receives this internal pressure P 0 is a push spring.
It has started sliding to the right in the figure against the biasing force of 53,
After sliding for a predetermined length, as shown in Figure 2,
The drain path together with the pressure guiding path 14 between the first and second lands 51, 52
15, the opening amount of the drain passage 15 opened to the oil tank T gradually increases as the sliding amount of the sub spool 5 increases, that is, as the internal pressure P 0 on the upstream side of the throttle plate 3 increases. ..

【0045】即ち、両路14,15が開口した後において
は、ポンプ回転数の増加に伴う前記内圧P0 の増加に従
って、第1,第2ランド51,52間の油圧が低下し、この
油圧が連通路13を経て主スプール2の第2,第3ランド
22,23間に導入される結果、前記圧力差(P1 −P2
の受圧面積が逐次減少する。即ち、副スプール5が前記
所定長の摺動を行った後は、主スプール2の摺動に関わ
る前述した力バランスが変化し、絞り板4を通流する油
量の増加率と主スプール2の摺動量の増加率とが対応し
なくなり、後者が前者を上回る結果、送油先への送出油
量は、ポンプ回転数の増加に伴う供給油量の増加に応じ
て逆に減少することになる。
That is, after the passages 14 and 15 are opened, the hydraulic pressure between the first and second lands 51 and 52 decreases as the internal pressure P 0 increases with the increase in the pump rotation speed. Goes through the communication passage 13 to the second and third lands of the main spool 2.
As a result of being introduced between 22 and 23, the pressure difference (P 1 -P 2 )
The pressure receiving area of is gradually reduced. That is, after the sub spool 5 slides for the predetermined length, the force balance described above relating to the sliding of the main spool 2 changes, and the increase rate of the amount of oil flowing through the throttle plate 4 and the main spool 2 change. As the result of the latter exceeding the former, the amount of oil delivered to the oil destination will decrease conversely with the increase in the amount of oil supplied as the pump speed increases. Become.

【0046】更にポンプ回転数が増し、副スプール5の
第1ランド51により導圧路14が閉止された後において
は、副スプール5の第1,第2ランド51,52間、及び主
スプール2の第2ランド22,23間は、図3に示す如く、
ドレイン路15により油タンクTに連通されて、該油タン
クTの内圧と等圧に保たれる。
After the pump rotational speed further increases and the pressure guiding path 14 is closed by the first land 51 of the sub spool 5, the sub spool 5 is connected between the first and second lands 51 and 52 and the main spool 2. As shown in FIG. 3, between the second lands 22 and 23 of
The drain passage 15 communicates with the oil tank T and maintains the same pressure as the internal pressure of the oil tank T.

【0047】即ちこの状態においては、主スプール2
は、第1ランド21の全面に作用する供給室Aの内圧P1
と、第3ランド23の全面に作用する送出室Bの内圧P2
との差により押しばね24の付勢力に抗して摺動する。従
って、送出油の全量が通流する絞り板4前後に生じる圧
力差(P1 −P2 )の増加率と、主スプール2の摺動量
の増加率とが再度対応するようになり、送油先への送出
油量は、ポンプ回転数が小さい範囲での一定域よりも少
ない量にて一定に維持される。
That is, in this state, the main spool 2
Is the internal pressure P 1 of the supply chamber A acting on the entire surface of the first land 21.
And the internal pressure P 2 of the delivery chamber B acting on the entire surface of the third land 23.
Due to the difference between and, it slides against the biasing force of the push spring 24. Therefore, the rate of increase of the pressure difference (P 1 -P 2 ) generated before and after the throttle plate 4 through which the entire amount of the delivered oil flows and the rate of increase of the sliding amount of the main spool 2 again correspond, and The amount of oil delivered to the destination is maintained constant at a smaller amount than a constant region in the range where the pump rotation speed is small.

【0048】以上の如き本発明装置の動作により送出室
Bを経て送油先に送出される油量は、油圧ポンプ回転数
が小さい範囲においては、回転速度の増大に対し比例的
に増加し、中程度の回転数範囲においては、回転速度の
増大に拘わらず略一定に維持され、更に大なる回転速度
範囲においては、該回転速度の増大に対して比例的に減
少することになり、前記図8に示す如き送出油量の特性
が得られる。このような特性が動力舵取装置への作動油
送出系において望ましいものであることは前述した如く
である。
The amount of oil delivered to the oil destination through the delivery chamber B by the operation of the apparatus of the present invention as described above increases in proportion to the increase of the rotational speed in the range where the rotational speed of the hydraulic pump is small, In the medium speed range, it is kept substantially constant regardless of the increase of the rotation speed, and in the larger rotation speed range, it decreases in proportion to the increase of the rotation speed. The characteristic of the delivered oil amount as shown in 8 is obtained. As described above, such characteristics are desirable in the hydraulic oil delivery system to the power steering apparatus.

【0049】そして本発明装置においては、前述した送
出油量の特性が、第1,第2の固定絞り(絞り板3及び
絞り板4)と、送出油の油路内に配されない副スプール
5とにより実現されるから、不安定動作の要因となる可
変絞りを排除でき、前記図8における送出油量の減少部
が安定して得られ、また、高い寸法精度が要求される部
品点数の削減により、加工及び組立て工数の大幅な低減
が図れる。
In the device of the present invention, the above-mentioned characteristics of the amount of delivered oil are the first and second fixed throttles (throttle plate 3 and throttle plate 4) and the sub spool 5 which is not arranged in the oil passage of the delivered oil. Since it is realized by, it is possible to eliminate the variable throttle that causes the unstable operation, stably obtain the reduced portion of the delivered oil amount in FIG. 8, and reduce the number of parts requiring high dimensional accuracy. As a result, the number of processing and assembling steps can be significantly reduced.

【0050】更には、本発明装置への供給油は、吐出油
路10から略直角に転回せしめられて供給室Aに流入し、
更に直線的に送出室Bに流れ込んで送出されるのみであ
り、このような流路の単純化により、例えば、寒冷地で
の油圧ポンプの始動に際して高粘度を有する圧油が供給
された場合であっても、該油の通流が阻害されることが
なく、この阻害に起因するサージ圧の発生が抑制され
て、上流側の油圧ポンプ、及び送油先に至る油圧配管の
破損、並びに耳障りな異音(ガー音)の発生が未然に防
止されることは明らかである。
Further, the oil supplied to the device of the present invention is turned from the discharge oil passage 10 at a substantially right angle and flows into the supply chamber A,
Further, it is only linearly flown into the delivery chamber B to be delivered, and due to such simplification of the flow path, for example, when pressure oil having a high viscosity is supplied at the time of starting the hydraulic pump in a cold region. Even if there is, the flow of the oil is not obstructed, and the generation of surge pressure due to this obstruction is suppressed, causing damage to the upstream hydraulic pump and the hydraulic piping leading to the oil destination, as well as annoyance. It is obvious that the generation of such abnormal noise (garbage noise) is prevented.

【0051】図4、図5及び図6は、本発明の第2実施
例を示す模式図である。これの構成においては、2つの
ランド21,22を備えた主スプール2を用い、主スプール
孔1a内部の前記主スプール2よりも内奥側に、2つのラ
ンド61,62を備えたばね支えスプール6を摺動自在に内
嵌し、このばね支えスプール6と主スプール2との対向
面間に押しばね24を介装して、両者を離反する向きに付
勢する一方、第1実施例と同様に、主スプール孔1aに並
設された副スプール孔1bに、軸長方向への摺動自在に副
スプール5を内嵌してなる。
FIGS. 4, 5 and 6 are schematic views showing a second embodiment of the present invention. In this structure, the main spool 2 having the two lands 21 and 22 is used, and the spring support spool 6 having the two lands 61 and 62 inside the main spool hole 1a is located on the inner side of the main spool 2. Is slidably fitted inside, and a pressing spring 24 is interposed between the facing surfaces of the spring support spool 6 and the main spool 2 to urge them in directions away from each other, while the same as in the first embodiment. Further, the sub spool 5 is fitted in the sub spool hole 1b arranged in parallel with the main spool hole 1a so as to be slidable in the axial direction.

【0052】そして、絞り板3の上流側に開口する導圧
路16は、第1実施例と同様に、副スプール孔1bの第1ラ
ンド51側の端面に連通させてあると共に、第1,第2ラ
ンド51,52間の第1ランド51側(第1実施例における導
圧孔14の開口位置)にも連通させてあり、送出室B内に
一端を開口させてある前記導圧路14の他端は、副スプー
ル孔1bの内部を経ることなく、主スプール孔1a内部の主
スプール2の背面側、即ちばね支えスプール6との間に
直接的に連通せしめてある。
The pressure guiding path 16 which is open to the upstream side of the diaphragm plate 3 is communicated with the end surface of the sub spool hole 1b on the side of the first land 51, as in the first embodiment. The pressure guiding path 14 is also communicated with the first land 51 side between the second lands 51, 52 (the opening position of the pressure guiding hole 14 in the first embodiment) and has one end opened in the delivery chamber B. The other end is directly communicated with the rear side of the main spool 2 inside the main spool hole 1a, that is, with the spring support spool 6 without passing through the inside of the sub spool hole 1b.

【0053】更に前記連通路13は、副スプール孔1bの内
部における第1,第2ランド51,52間と、ばね支えスプ
ール6の背面側、即ち主スプール孔1aの底部近傍とを連
通する態様にて形成してあり、また前記ドレイン路15
は、第1実施例と同様に、副スプール孔1b内側の第1,
第2ランド51,52間の第2ランド52側と、第2ランド52
の背面側とに連通させてあると共に、ばね支えスプール
6における第1,第2ランド61,62間にもまた連通させ
てある。
Further, the communication passage 13 connects between the first and second lands 51 and 52 inside the sub spool hole 1b and the back side of the spring support spool 6, that is, near the bottom of the main spool hole 1a. And the drain path 15
Is similar to the first embodiment, the first and the first inside the sub spool hole 1b.
The second land 52 side between the second lands 51 and 52 and the second land 52
Of the spring support spool 6, and also between the first and second lands 61, 62 of the spring support spool 6.

【0054】この構成においては、主スプール2が絞り
板4前後の圧力差(P1 −P2 )に応動し、副スプール
5が絞り板3の上流側の圧力P0 に応動すると共に、ば
ね支えスプール6が、主スプール2との間に導入される
送出室Bの内圧P2 と、副スプール5の第1,第2ラン
ド51,52間から連通路13を経て導入される油圧との圧力
差に応動することになり、この動作に応じて主スプール
2に対する離隔距離が変わり、両スプール2,6間に介
装された押しばね24による付勢力が変化して、主スプー
ル2の摺動に関与する力バランスに変化が生じる。
In this structure, the main spool 2 responds to the pressure difference (P 1 -P 2 ) before and after the diaphragm plate 4, the sub spool 5 responds to the pressure P 0 on the upstream side of the diaphragm plate 3, and the spring. The internal pressure P 2 of the delivery chamber B introduced between the support spool 6 and the main spool 2 and the hydraulic pressure introduced between the first and second lands 51 and 52 of the auxiliary spool 5 through the communication passage 13. In response to the pressure difference, the separation distance from the main spool 2 changes according to this operation, and the urging force of the push spring 24 interposed between the spools 2 and 6 changes, and the main spool 2 slides. Changes occur in the balance of forces involved in movement.

【0055】図4は、第1実施例における図1と同様、
ポンプ回転数が小さい範囲での状態を示しており、この
場合、副スプール5が図示の摺動位置にあり、ばね支え
スプール6の背面側には吐出油路10の内圧P0 が導入さ
れており、このP0 での押圧によりばね支えスプール6
は、主スプール2に接近した位置にあり、押しばね24の
付勢力は大きい。
FIG. 4 is similar to FIG. 1 in the first embodiment.
This shows a state in which the pump rotational speed is in a small range. In this case, the sub spool 5 is at the sliding position shown in the drawing, and the internal pressure P 0 of the discharge oil passage 10 is introduced to the back side of the spring support spool 6. And the spring support spool 6 is pressed by the pressure at P 0.
Is close to the main spool 2, and the biasing force of the push spring 24 is large.

【0056】これに対し、第1実施例における図2と同
様、中程度のポンプ回転数での状態を示す図5において
は、副スプール5の第1,第2ランド51,52間が、吐出
油路10と共に油タンクTにも連通した状態にあり、吐出
量の増大に伴う副スプール5の摺動に応じて油タンクT
側との連通面積が増し、ばね支えスプール6の背面側へ
の導入油圧が除々に低下して、該スプール6と主スプー
ル2との離隔距離が増す結果となり、押しばね24による
主スプール2への付勢力の低下により、主スプール2の
摺動に関わる前述した力バランスが変化する。従って、
絞り板4を通流する油量の増加率と主スプール2の摺動
量の増加率とが対応しなくなり、後者が前者を上回る結
果、送油先への送出油量は、ポンプ回転数の増加に伴う
供給油量の増加に応じて逆に減少することになる。
On the other hand, similarly to FIG. 2 in the first embodiment, in FIG. 5 showing the state at a medium pump speed, the discharge between the first and second lands 51, 52 of the auxiliary spool 5 is made. The oil tank T is in communication with the oil passage 10 as well as the oil passage T, and the oil tank T is moved in accordance with the sliding of the sub spool 5 as the discharge amount increases.
The communication area with the side increases, and the hydraulic pressure introduced to the back side of the spring support spool 6 gradually decreases, resulting in an increase in the separation distance between the spool 6 and the main spool 2. The decrease in the urging force of changes the above-mentioned force balance relating to the sliding of the main spool 2. Therefore,
The rate of increase in the amount of oil flowing through the diaphragm plate 4 and the rate of increase in the amount of sliding of the main spool 2 no longer correspond to each other, and the latter exceeds the former. As a result, the amount of oil delivered to the oil destination is increased by the number of pump revolutions. It will decrease conversely with the increase in the amount of oil supplied.

【0057】更にポンプ回転数が増し、これに伴う吐出
油圧P0 の増加により副スプール5の摺動が進み、第
1,第2ランド51,52間にドレイン路15のみが開口した
状態となった場合、図6に示す如くばね支えスプール6
は、主スプール孔1aの底面に当接する位置まで達し、以
後の押しばね24による付勢力の変化は生じないから、絞
り板4前後の圧力差の増加率と、主スプール2の摺動量
の増加率とが再度対応するようになり、送油先への送出
油量は、ポンプ回転数が小さい範囲での一定域よりも少
ない量にて一定に維持される。
Further, as the pump speed further increases and the discharge hydraulic pressure P 0 increases accordingly, sliding of the sub spool 5 advances, and only the drain path 15 is opened between the first and second lands 51 and 52. If the spring support spool 6 as shown in FIG.
Reaches the position where it comes into contact with the bottom surface of the main spool hole 1a, and the biasing force due to the push spring 24 does not change thereafter. Therefore, the increase rate of the pressure difference before and after the diaphragm plate 4 and the increase of the sliding amount of the main spool 2 are increased. When the pump rotation speed is small, the amount of oil delivered to the oil destination is maintained constant at a smaller amount than the constant region in which the pump rotation speed is small.

【0058】なお以上の実施例においては、副スプール
5の摺動により、主スプール2の受圧面積(第1実施
例)又は主スプール2に作用する付勢力(第2実施例)
を夫々変化させる構成としたが、他の手段により主スプ
ール2における力バランスを変化させる構成としてもよ
いことは言うまでもない。
In the above embodiment, the sliding area of the sub spool 5 causes the pressure receiving area of the main spool 2 (first embodiment) or the urging force acting on the main spool 2 (second embodiment).
However, it goes without saying that the force balance in the main spool 2 may be changed by other means.

【0059】また以上の実施例においては、動力舵取装
置の作動油圧の発生源となる油圧ポンプへの本発明装置
の適用例について説明したが、本発明装置の適用範囲は
これに限るものではなく、あらゆる種類の流体送出回路
に適用可能であることは言うまでもない。
Further, in the above embodiments, the application example of the device of the present invention to the hydraulic pump which is the source of the operating hydraulic pressure of the power steering device has been described, but the applicable range of the device of the present invention is not limited to this. Needless to say, it can be applied to all kinds of fluid delivery circuits.

【0060】[0060]

【発明の効果】以上詳述した如く本発明装置において
は、送出流量を加減する主スプールの動作に関与する力
バランスが、第1の固定絞りの上流側の圧力に応動する
副スプールの動作により変更されて、供給流量が多い範
囲で送出流量が逆に少なくなる特性が可変絞りを有しな
い簡素な構成により得られ、可変絞りの挙動に起因して
従来において得られていた特性の不安定部分が解消され
ると共に、構成の簡素化に伴って加工工数及び組立工数
の低減が図れ、また、流路の簡素化によりサージ圧に起
因するガー音の発生、並びにポンプ及び配管系の破損の
虞を未然に解消し得る等、本発明は優れた効果を奏す
る。
As described in detail above, in the device of the present invention, the force balance involved in the operation of the main spool that adjusts the delivery flow rate depends on the operation of the sub spool that responds to the pressure on the upstream side of the first fixed throttle. The characteristic that is changed and the delivery flow rate decreases conversely in the range where the supply flow rate is high is obtained by the simple configuration without the variable throttle, and the unstable part of the characteristic obtained in the past due to the behavior of the variable throttle. Is eliminated, and the number of processing steps and assembly steps can be reduced with the simplification of the configuration. Also, the simplification of the flow path causes a gutter noise due to the surge pressure, and the risk of damage to the pump and the piping system. The present invention has excellent effects, such as eliminating the above problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の第1実施例における小流量時の動
作状態を示す模式図である。
FIG. 1 is a schematic view showing an operating state at a small flow rate in the first embodiment of the device of the present invention.

【図2】本発明装置の第1実施例における中流量時の動
作状態を示す模式図である。
FIG. 2 is a schematic diagram showing an operating state at a medium flow rate in the first embodiment of the device of the present invention.

【図3】本発明装置の第1実施例における大流量時の動
作状態を示す模式図である。
FIG. 3 is a schematic diagram showing an operating state at a large flow rate in the first embodiment of the device of the present invention.

【図4】本発明装置の第2実施例における小流量時の動
作状態を示す模式図である。
FIG. 4 is a schematic diagram showing an operating state at a small flow rate in the second embodiment of the device of the present invention.

【図5】本発明装置の第2実施例における中流量時の動
作状態を示す模式図である。
FIG. 5 is a schematic view showing an operating state at a medium flow rate in the second embodiment of the device of the present invention.

【図6】本発明装置の第2実施例における大流量時の動
作状態を示す模式図である。
FIG. 6 is a schematic diagram showing an operating state at a large flow rate in the second embodiment of the device of the present invention.

【図7】従来の流量制御装置の構成を示す模式図であ
る。
FIG. 7 is a schematic diagram showing a configuration of a conventional flow rate control device.

【図8】本発明装置及び従来の流量制御装置の動作によ
り得られる送出油量の特性を示すグラフである。
FIG. 8 is a graph showing the characteristic of the amount of delivered oil obtained by the operation of the device of the present invention and the conventional flow control device.

【符号の説明】[Explanation of symbols]

1a 主スプール孔 1b 副スプール孔 2 主スプール 3 絞り板 4 絞り板 5 副スプール 6 ばね支えスプール 10 吐出油路 11 還流油路 13 連通路 14 導圧路 15 ドレイン路 16 導圧路 A 供給室 B 送出室 T 油タンク 1a Main spool hole 1b Sub spool hole 2 Main spool 3 Throttle plate 4 Throttle plate 5 Sub spool 6 Spring support spool 10 Discharge oil passage 11 Return oil passage 13 Communication passage 14 Pressure passage 15 Drain passage 16 Pressure passage A Supply chamber B Delivery room T oil tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポンプからの供給流体が通流する第1の
固定絞りと、該固定絞りの下流側に位置し、送出先への
送出流体が通流する第2の固定絞りと、第2の固定絞り
前後に生じる圧力差の受圧により、これと常時作用する
付勢力との力バランスに応動し、この動作に応じた量の
供給流体を前記ポンプの吸込側に還流せしめて前記送出
先への送出流量を加減する主スプールと、第1の固定絞
りの上流側の圧力に応動し、前記力バランスを変更する
副スプールとを具備することを特徴とする流量制御装
置。
1. A first fixed throttle through which a supply fluid from a pump flows, a second fixed throttle located downstream of the fixed throttle and through which a delivery fluid to a delivery destination flows, and a second fixed throttle. The pressure difference generated before and after the fixed throttle responds to the force balance between this and the constantly acting biasing force, and the amount of the supplied fluid is circulated to the suction side of the pump to the destination. And a sub-spool that responds to the pressure on the upstream side of the first fixed throttle to change the force balance.
【請求項2】 前記副スプールの動作により、前記主ス
プールにおける圧力差の受圧面積を加減する請求項1記
載の流量制御装置。
2. The flow control device according to claim 1, wherein the pressure receiving area of the pressure difference in the main spool is adjusted by the operation of the sub spool.
【請求項3】 前記副スプールの動作により、前記主ス
プールに作用する付勢力を加減する請求項1記載の流量
制御装置。
3. The flow control device according to claim 1, wherein the urging force acting on the main spool is adjusted by the operation of the sub spool.
JP26314191A 1991-09-12 1991-09-12 Flow controller Pending JPH0571652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26314191A JPH0571652A (en) 1991-09-12 1991-09-12 Flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26314191A JPH0571652A (en) 1991-09-12 1991-09-12 Flow controller

Publications (1)

Publication Number Publication Date
JPH0571652A true JPH0571652A (en) 1993-03-23

Family

ID=17385382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26314191A Pending JPH0571652A (en) 1991-09-12 1991-09-12 Flow controller

Country Status (1)

Country Link
JP (1) JPH0571652A (en)

Similar Documents

Publication Publication Date Title
JPH05246335A (en) Flow control valve device
US5474145A (en) Hydraulic power steering apparatus
JPH0571652A (en) Flow controller
JP3094172B2 (en) Flow control device
JP2600568Y2 (en) Flow control device for power steering device
JPH03602Y2 (en)
JPS6365544B2 (en)
JPH0321332Y2 (en)
JP2600569Y2 (en) Flow control device for power steering device
JP2591373Y2 (en) Flow control valve device
JP2525715Y2 (en) Flow control valve for power steering device
JP3659702B2 (en) Power steering device
JP2909606B2 (en) Flow control device
JPH0584567U (en) Flow control valve device
JPH0335540B2 (en)
JPS6345342B2 (en)
JPH0339642Y2 (en)
JPH0814428A (en) Flow rate control valve
JPH0121109Y2 (en)
JPH05246334A (en) Flow control valve device
JP2000025628A (en) Flow rate control device for working fluid for power steering
JPH0114542Y2 (en)
JPS5910452Y2 (en) flow control valve
JPH0335539B2 (en)
JP3376613B2 (en) Flow control device for power steering device