JPH0571546B2 - - Google Patents
Info
- Publication number
- JPH0571546B2 JPH0571546B2 JP24330488A JP24330488A JPH0571546B2 JP H0571546 B2 JPH0571546 B2 JP H0571546B2 JP 24330488 A JP24330488 A JP 24330488A JP 24330488 A JP24330488 A JP 24330488A JP H0571546 B2 JPH0571546 B2 JP H0571546B2
- Authority
- JP
- Japan
- Prior art keywords
- inorganic
- layered compound
- layers
- inorganic layered
- swellable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 150000001875 compounds Chemical class 0.000 claims description 104
- 239000000463 material Substances 0.000 claims description 69
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 51
- 239000011148 porous material Substances 0.000 claims description 48
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 34
- 238000001035 drying Methods 0.000 claims description 28
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- 239000001569 carbon dioxide Substances 0.000 claims description 17
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 229910010272 inorganic material Inorganic materials 0.000 claims description 15
- 239000012530 fluid Substances 0.000 claims description 14
- -1 cationic inorganic compound Chemical class 0.000 claims description 10
- 238000009826 distribution Methods 0.000 claims description 9
- 239000011800 void material Substances 0.000 claims description 8
- 239000004338 Dichlorodifluoromethane Substances 0.000 claims description 3
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 claims description 3
- 235000019404 dichlorodifluoromethane Nutrition 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 49
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 18
- 239000000243 solution Substances 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 11
- 229910052901 montmorillonite Inorganic materials 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 238000005119 centrifugation Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000008961 swelling Effects 0.000 description 8
- 238000006460 hydrolysis reaction Methods 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 150000002484 inorganic compounds Chemical class 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000006713 insertion reaction Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000007602 hot air drying Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 229910021647 smectite Inorganic materials 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- 229920003169 water-soluble polymer Polymers 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 241000931705 Cicada Species 0.000 description 2
- 229940126062 Compound A Drugs 0.000 description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000007259 addition reaction Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 238000004332 deodorization Methods 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- RJDOZRNNYVAULJ-UHFFFAOYSA-L [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] RJDOZRNNYVAULJ-UHFFFAOYSA-L 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical group 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical group 0.000 description 1
- RLGQACBPNDBWTB-UHFFFAOYSA-N cetyltrimethylammonium ion Chemical class CCCCCCCCCCCCCCCC[N+](C)(C)C RLGQACBPNDBWTB-UHFFFAOYSA-N 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 150000001845 chromium compounds Chemical class 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical group OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- SWSFKKWJEHRFFP-UHFFFAOYSA-N dihexadecyl(dimethyl)azanium Chemical class CCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCC SWSFKKWJEHRFFP-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical class CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- CJBMLKNLJXFFGD-UHFFFAOYSA-N dimethyl-di(tetradecyl)azanium Chemical class CCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCC CJBMLKNLJXFFGD-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 150000002363 hafnium compounds Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002270 phosphoric acid ester group Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- PDSVZUAJOIQXRK-UHFFFAOYSA-N trimethyl(octadecyl)azanium Chemical class CCCCCCCCCCCCCCCCCC[N+](C)(C)C PDSVZUAJOIQXRK-UHFFFAOYSA-N 0.000 description 1
- GLFDLEXFOHUASB-UHFFFAOYSA-N trimethyl(tetradecyl)azanium Chemical class CCCCCCCCCCCCCC[N+](C)(C)C GLFDLEXFOHUASB-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Description
〔産業上の利用分野〕
この発明は、無機層状化合物からなる無機多孔
体に関する。
〔従来の技術〕
従来、膨潤無機層状化合物を(熱風)乾燥させ
てなる無機多孔体が知られている。無機層状化合
物の層間に挿入されたピラー材を支柱にして層間
に空隙が保たれるように乾燥されている。この無
機多孔体は断熱材や吸着材等の機能材料として利
用できる(特公昭62−101310号公報、特開昭60−
13781号公報参照)。
〔発明が解決しようとする課題〕
しかしながら、前記の無機多孔体は、細孔容積
が0.8c.c./g以下と低く、層間間隔も満足できる
ほどには広くなく、断熱性、吸着性が不十分で高
機能性材料とは言い難い。多孔体として古くから
知られる活性炭においても、その空隙は数Åと非
常に小さく、やはり、高機能性材料とは言えない
ものである。
この発明は、上記事情に鑑み、極めて大きい細
孔容積を有し、有効に作用する大きな空隙を有す
る無機層状化合物からなる無機多孔体を提供する
ことを課題とする。
〔課題を解決するための手段〕
前記課題を解決するために、この発明は、以下
のように構成されている。
請求項1〜5記載の発明にかかる無機多孔体
は、膨潤状態にある膨潤性無機層状化合物が超臨
界状態で乾燥されてなる多孔体である。
請求項2記載の無機多孔体は、膨潤性無機層状
化合物が、表面を陽イオン性無機化合物およびア
ルコラートのうちから選ばれた少なくともひとつ
で修飾された無機ピラー材がその層間に挿入され
た状態で乾燥されたものである。
請求項3記載の無機多孔体は、膨潤性無機層状
化合物が、その層間に有機ピラー材が挿入された
状態で乾燥されるとともに同乾燥の際に同ピラー
材の層間からの除去が同時に行なわれたものであ
る。
請求項4記載の無機多孔体では、膨潤状態にあ
る膨潤性無機層状化合物が含有していた流体が、
エタノール、メタノール、二酸化炭素、および、
ジクロロジフルオロメタンのうちから選ばれた少
なくともひとつである。
請求項5記載の無機多孔体は、その乾燥が、膨
潤状態にある膨潤性無機層状化合物が含む水をエ
タノールで置換させたのち、このエタノールを二
酸化炭素で置換しながら行われたものである。
請求項6記載の無機多孔体は、花弁状ないしセ
ミの羽の無機層状化合物が寄せ集まつたカードハ
ウス状ないしスポンジ状の集合体である。
請求項7記載の無機多孔体は、無機層状化合物
が、互いの間に少なくとも100nm〜数千nmの
範囲にピークのある空隙分布を有するように寄せ
集まつた多孔体である。
請求項8記載の無機多孔体は、無機層状化合物
が、その層間にも数nm〜数10nmの範囲にピー
クのある空隙分布を有する。
請求項9記載の無機多孔体は、加えて、無機層
状化合物が、その層間にピラーが挿入されたもの
である。
〔作用〕
膨潤状態にある無機層状化合物の乾燥を超臨界
状態で行うようにすると、層状化合物粒子の溶媒
中での集合状態をうまく保つようなかたちで乾燥
がなされ、無機層状化合物の粒子相互間に大きな
空隙のある集合体が得られる。乾燥を超臨界状態
で行うようにすると、無機層状化合物層間の溶媒
(流体)の凝縮が抑えられ、かつ、層間にピラー
材が挿入されている場合にはピラー材の凝集も阻
止されるため、層間が乾燥に伴い縮まると言うよ
うなことがなくて、無機層状化合物層間に広い空
隙が確保されるようになる。そのため、多孔性に
富み細孔容積の大きい集合体となり、吸着性、断
熱性に優れた無機多孔体となるのである。
膨潤性無機層状化合物の層間にピラー材を挿入
しない状態で乾燥を行うと、膨潤によつて一旦は
開いた層間隔がピラー材のある場合に比べると狭
くなるが、その乾燥を超臨界状態で行えば、無機
層状化合物がカードハウス状あるいはスポンジ状
のような集合体となるため、化合物内の層間の空
隙自体が十分でなくても、化合物間に大きな空隙
をもち、細孔容積が十分にある多孔体となるので
ある。
膨潤性無機層状化合物の層間に無機ピラー材が
挿入されていると、無機ピラー材が支柱となつて
広い層間空隙が確保される。この場合、無機ピラ
ー材の表面が陽イオン性無機化合物やアルコラー
トで修飾されていると、同ピラー材が層状化合物
の層間に固定されやすくなる。
有機ピラー材も層間の支柱としての働きをす
る。しかし、使用状態によつては有機ピラー材
(特に炭素)の残存が問題となることがある。無
機多孔体において層間に残る焼成を行えば有機ピ
ラー材を除くことができるが、工程数が増え、し
かも、炭素がどうしても残存する。その点、有機
ピラー材は、超臨界状態にある流体によつて抽出
されるため、乾燥に際して同流体とともに層間か
ら除くことができる。超臨界状態での乾燥によれ
ば、上記の焼成工程も要らず、炭素の残存も抑え
られるので、大変に都合がよい。
膨潤状態にある膨潤性無機層状化合物の含有す
る流体が、エタノール、メタノール、二酸化炭
素、および、ジクロロジフロオロメタであると、
水である場合に比較して、超臨界状態での乾燥が
容易に行える。これらの流体は、臨界圧力および
臨界温度が、いずれも、水と比べて格段に低いか
らである。もちろん、膨潤状態にある膨潤性無機
層状化合物が含む水と、エタノールで置換し二酸
化炭素で置換しながら2成分系の流体とし超臨界
状態での乾燥を行う場合でも、水に比べて臨界温
度・圧力条件が緩やかであるから、やはり、乾燥
が容易である。
無機多孔体が、花弁状ないしセミの羽状の無機
層状化合物が寄せ集まつてカードハウス状ないし
スポンジ状の集合体を形成している場合、化合物
同士の間に大きな空隙できており、このため、細
孔容積の大きい多孔性に富む多孔体となつてい
る。このような構造の無機多孔体は、膨潤状態に
ある膨潤性無機層状化合物を超臨界状態で乾燥さ
せることにより作ることができるが、これ以外の
方法で作られていてもよい。
無機層状化合物が互いの間に少なくとも100n
m〜数千nmの範囲にピークのある空隙分布を有
するものであると、大きな空隙が沢山あることに
なるから、細孔容積の極めて大きい多孔体とな
る。しかも、この範囲の空隙が多くあると、有効
に吸着できる粒子の種類が多くなり、汎用性があ
る。
さらに、無機層状化合物が、その層間にも数n
m〜数10nmの範囲にピークのある空隙分布を有
すると、層間に空隙のある分、細孔容積が増え、
しかも、化合物間の空隙で捕捉できない小さな粒
子をも吸着することができるようになる。
無機層状化合物の層間にピラーが挿入されてい
る場合、ピラーの支柱作用により無機層状化合物
の層間の空隙が広い。
〔実施例〕
以下に、この発明を、その一実施例を表す図面
を参照しつつ詳しく説明する。
第1図は、請求項1記載の発明にかかる無機多
孔体の表面を拡大して無機層状化合物の粒子構造
をあらわした走査型電子顕微鏡写真(倍率2万
倍)である。
この無機多孔体は、膨潤状態にある膨潤性無機
層状化合物が超臨界状態で乾燥されてなる多孔体
である。無機多孔体は、第1図にみるように、花
弁状ないしセミの羽状の無機層状化合物が寄せ集
まつたカードハウス状ないしスポンジ状の集合体
である。そして、この無機多孔体は、無機層状化
合物が、互いの間に少なくとも100nm〜数千n
m、より具体的には、例えば100nm〜1000nmの
範囲にピークのある空隙分布を有するとともに、
無機層状化合物が、その層間にも数nm〜数10n
m、より具体的には、例えば6nm〜20nmの範囲
にピークのある空隙分布を有する。
個々の無機層状化合物Aは、第2図にみるよう
に、その層1,1間には無機ピラー4が挿入され
ており、層1,1間の空隙2を十分に大きなもの
としている。従来の熱風乾燥による無機多孔体
は、第8図にみるように、無機層状化合物同士が
隙間なく重なつており、粒子間には全くといつて
もよいほど隙間がない。そのため、細孔容積が格
段に少ないのである。
続いて、この無機多孔体の製造の様子を説明す
る。
まず膨潤性層状化合物を膨潤させる。膨潤性層
状化合物としては、Na−モンモリロナイト、Ca
−モンモリロナイト、3−八面体合成スメクタイ
ト(例えば、合成サポナイト、Na−ヘクトライ
ト、Li−ヘクトライト、Na−テニオライト、Li
−テニオライト等)、酸性白土、合成雲母などが
挙げられるが、上記例示のものに限らないことは
いうまでもない。なお、Ca−モンモリロナイト
および酸性白土などのような難膨潤性層状化合物
を用いる場合には、膨潤時に混練等により、強い
剪断力を加える必要がある。
膨潤性粘土鉱物のような物質は、第3図左側に
示す膨潤性無機層状化合物A1が多数結合したも
のである。主材たるこの化合物A1を水などの溶
媒と混合、さらには、必要に応じて混練して、第
3図右側に示すように、層1,1間に溶媒3を含
ませて、あらかじめ膨潤させておく。溶媒3とし
ては、一般に水が用いられるが、これ以外の極性
溶媒、例えば、メタノール、エタノール、DMF、
DMSO、アセトン等を単独で、あるいは、複数
種併せて用いるようにしても構わない。
続いて、膨潤させた膨潤性無機層状化合物にピ
ラー材を挿入する。
膨潤性層状化合物の層間に挿入される無機ピラ
ーとしては、コロイド状無機化合物およびアルコ
ラート(以下、ピラー用のアルコラートを「アル
コラートI」という)の加水分解物等が用いられ
る。
コロイド状無機化合物としては、特に限定され
ないが、熱的に安定な酸化物や、加熱することに
より膨張するものを使用することが好ましい。こ
のような化合物としては、たとえば、SiO2、
Sb2O3、Fe2O3、Al2O3、TiO2、およびZrO2など
が挙げられ、これらが単独で、あるいは、複数混
合して用いられる。このようなコロイド状無機化
合物の粒径についても、この発明では、特に限定
はされないが、50〜150Å程度の粒径であること
が好ましい。
アルコラートIとしては、例えば、Si
(OC2H5)4、Si(OCH2)4、Ge(OC3H7)4、Ge
(OC2H5)4、Ti(OC3H7)4等を用いることができ
るが、これら以外のものを使用することもでき
る。
無機ピラー材は、通常、層間には金属酸化物の
かたちで残る。
以上のような無機ピラーは、そのままで膨潤性
層状化合物の層間に挿入されてもよいが、その表
面が陽イオン性無機化合物および、前記アルコラ
ートIとは別のアルコラート(以下、「アルコラ
ート」という)、および、エステルのうちの少
なくとも一つで修飾されてから、前記層間に挿入
されるようにしてもよい。
無機ピラー材の表面を修飾するために用いられ
る陽イオン性無機化合物としては、チタン系化合
物、ジルコニウム系化合物、ハフニウム系化合
物、鉄系化合物、銅系化合物、クロム系化合物、
ニツケル系化合物、亜鉛系化合物、アルミニウム
系化合物、マンガン系化合物、リン系化合物、ホ
ウ素系化合物などが挙げられ、例えば、TiCl4の
金属塩化物、あるいは、ZrOCl2等の金属オキシ
塩化物、あるいは、硝酸塩化合物等があるが、こ
れら以外のものを使用することもできる。
また、アルコラートとしては、Ti(OR)4、
Zr(OR)4、PO(OR)3、B(OR)3等を用いること
ができ、具体的には、例えば、Ti(OC3H7)4、Zr
(OC3H7)4、PO(OCH2)4、PO(OC2H5)4、B
(OCH3)4、B(OC2H5)4等があるが、これら以外
のものを使用することもできる。なお、これら
は、単独で、あるいは、複数種併せて用いること
もできる。
また、この発明では、水溶性高分子化合物、第
4級アンモニウム塩、高級脂肪酸、両性界面活性
剤およびコリン化合物の中から選ばれた少なくと
も一つからなる有機ピラー材を、単独で、あるい
は、無機ピラー材とともに、前記膨潤性無機層状
化合物の層1,1間に挿入することもできる。
水溶性高分子化合物としては、種々のものが考
えられるが、例えば、ポリビニルアルコール、ポ
リエチレングリコール、ポリエチレンオキサイ
ド、メチルセルロース、カルボキシメチルセルロ
ース、ポリアクリル酸、ポリアクリル酸ソーダ、
ポリアクリルアミド、ポリビニルピロリドン等が
挙げられる。
また、第4級アンモニウム塩および高級脂肪酸
としては、種々のものが考えられるが、その中で
も、オクタデシル基、ヘキサデシル基、テトラデ
シル基およびドデシル基等の基を有するものが好
ましい。このような第4級アンモニウム塩として
は、オクタデシルトリメチルウアンモニウム塩、
ジオクタデシルジメチルアンモニウム塩、ヘキサ
デシルトリメチルアンモニウム塩、ジヘキサデシ
ルジメチルアンモニウム塩、テトラデシルトリメ
チルアンモニウム塩、ジテトラデシルジメチルア
ンモニウム塩等が、また、高級脂肪酸としては、
パルミチン酸、ステアリン酸、オレイン酸、リノ
ール酸等がある。
コリン化合物も、種々のものが考えられるが、
例えば、〔HOCH2CH2N(CH3)3〕+OH-、
C5H14ClNO、C5H14NOC4H5O6、
C5H14NOC6H7O7、C5H14NOC6H12O7が好ましい
ものとして挙げられる。
また、両性界面活性剤としても、種々のものが
考えられるが、その中でも、陽イオン部が脂肪族
アミン型で、かつ、陰イオン部がカルボキシル
基、硫酸エステル基、スルホン基、および、リン
酸エステル基の中から選ばれた少なくとも一つの
基を有するものが好ましい。
有機ピラー材としては、この発明では、膨潤性
無機層状化合物の層間に挿入可能なものであれ
ば、上記以外のものを使用することもできる。
続いて、層間への挿入について具体的に説明す
る。
無機ピラー材としては、例えば、アルコラート
Iの重合物を使用する場合には、アルコラートI
にエタノール、イソプロパノール等の溶媒を加え
て溶解し、これに水と塩酸等の反応触媒(加水分
解触媒)を加えて混合し、加水分解反応させる。
この加水分解反応は、特に限定されないが、70℃
前後の温度で行うことが好ましい。また、このよ
うな無機ピラー材の加水分解反応がある程度進行
し、核41が成長した段階(第4図c参照)で、
この反応液中にアルコラートまたは陽イオン性
無機化合物を加え、これらの化合物を前記核の表
面に付加反応させれば、第4図bにみるように、
その表面がプラスにチヤージした反応物42が得
られる。このようにしてできた無機ピラー材42
に、必要に応じて、水溶性高分子化合物、第4級
アンモニウム塩等からなる有機ピラー材51が併
用される。
無機ピラー材としては、コロイド状無機化合物
を使用する場合には、第4図cのように、そのま
まで使用してもよいし、あるいは、このコロイド
状無機化合物の分散液中に、前記アルコラート
または陽イオン性無機化合物を加え、これらの化
合物を先の場合と同様に、前記無機ピラー材から
なる核41の表面に付加反応させて、同様に反応
物を得てもよい。
また、修飾しない核41に有機ピラー材51を
併用した場合は、第4図aのようになる。
以上のような各成分が配合された混合液をあら
かじめ膨潤させておいた前記膨潤性無機層状化合
物と混合して、層状化合物の層1,1間に挿入
(インターカレーシヨン)する。混合時の温度は、
この発明では、特に限定されないが、60〜70℃前
後であることが好ましい。
なお、水溶性高分子化合物や第4級アンモニウ
ム塩が有機ピラー材として配合された場合には、
第5図a,bにみるように、この有機ピラー材5
1が、層1,1間を押し拡げて保持し、それとと
もに、無機ピラー材41,42の動きを鋭くし
て、この層1,1間にとどめる働きをする。有機
ピラー材を加えない場合は、第5図cのようにな
る。とどめられた無機ピラー材41,42は、そ
れによつて層1,1間を押し拡げたまま保持す
る。また、この無機ピラー材が、その表面を修飾
された反応物42である場合には、第5図bにみ
るように、その表面の正電荷が層1の表面のマイ
ナス部分と電気的に結合し、それによつて層1,
1間をより拡げたままで保持できるようになるも
のと考えられる。
以上のような反応溶液を遠心分離して試料をゲ
ル状態化したのち、ヘラ等で板状に配向させる。
この板状体を、超臨界状態で乾燥する。もちろ
ん、反応液に入つている状態から乾燥を始めるよ
うにしてもよい。
ここに、超臨界状態とは、臨界点を超えた場合
のみではなく、丁度臨界点にあるものも含む。超
臨界状態を作るための方法としては、例えば、層
間に含有されている水等、膨潤性無機層状化合物
が保持含有する溶媒を直接加熱・加圧して、その
臨界点以上の状態に到達させるようにする方法も
あるが、このような方法では、水の臨界点が臨界
温度374.2℃、臨界圧217.6atmという、きわめて
高い値であるため、乾燥容器が大きくなり、危険
性の高いものとなる。これを避けるためには、膨
潤性層状化合物中の水を、例えば、エタノールで
置換したのち、さらに、二酸化炭素を加えてゆ
き、徐々にエタノールを二酸化炭素に置換しなが
ら、二酸化炭素とエタノールの2成分系の臨界点
以上の温度、圧力に加熱加圧して超臨界状態を出
現させるようにすればよい。この場合、臨界点以
上の二酸化炭素を系に送り込んで置換させるよう
にすることもある。
超臨界状態にある流体を系から脱出させること
によつて乾燥が終わる。
このような方法により、乾燥時の前記凝集・凝
縮を防止することができ、乾燥前の構造がそのま
ま保持され、きわめて多孔性に富み細孔容積の大
きい無機多孔体が得られるのである。熱風乾燥、
あるいは、凍結乾燥で乾燥されてなる無機多孔体
では、この発明の無機多孔体に比べて、細孔容積
は著しく少ない。それは、乾燥前の構造をうまく
保持できないからである。
上記実施例は請求項6,7記載の発明の実施例
でもあるが、これら請求項6,7記載の如き構成
の無機多孔体は上記の方法以外の方法(超臨界状
態での乾燥以外の方法)で製造されていてもよい
ことはいうまでもない。
なお、溶媒として利用できる流体は上記のもの
に限らない。実用の範囲で臨界流体化することが
可能なものは、種々あるが、例えば、エタノー
ル、メタノール、二酸化炭素、ジクロロジフルオ
ロメタン、エチレンなどが挙げられる。
上記超臨界状態を作る際に、超臨界条件を選定
して乾燥を行えば、層間に含有されている有機物
を超臨界流体中に抽出することができる。したが
つて、層間に層間隔を押し拡げて保持するための
有機ピラー材が挿入されている場合には、適宜選
定した超臨界条件で乾燥を行うようにすれば、有
機ピラー材のみを抽出、除去することが可能とな
る。このようにすれば、乾燥後の試料を、焼成し
なくても、有機ピラー材を除去することができ
る。焼成工程を省略することができるとともに、
焼成後の層間にカーボンが残存し、触媒作用等の
利用を制限するといつた問題も解消させられる。
なお、参考のために、主要な流体についての臨
界条件を第1表に示した。
[Industrial Field of Application] This invention relates to an inorganic porous body made of an inorganic layered compound. [Prior Art] Conventionally, inorganic porous bodies made by drying (hot air) a swollen inorganic layered compound have been known. Drying is performed using pillar materials inserted between the layers of the inorganic layered compound as supports to maintain voids between the layers. This inorganic porous material can be used as a functional material such as a heat insulating material or an adsorbent (Japanese Patent Publication No. 101310/1983,
(See Publication No. 13781). [Problem to be Solved by the Invention] However, the above-mentioned inorganic porous material has a low pore volume of 0.8 cc/g or less, an insufficiently wide interlayer spacing, and insufficient heat insulation and adsorption properties. It is hard to call it a highly functional material. Activated carbon, which has long been known as a porous material, has very small pores of several angstroms, so it cannot be called a highly functional material. In view of the above circumstances, it is an object of the present invention to provide an inorganic porous body made of an inorganic layered compound having an extremely large pore volume and large voids that act effectively. [Means for Solving the Problems] In order to solve the above problems, the present invention is configured as follows. The inorganic porous body according to the invention according to claims 1 to 5 is a porous body obtained by drying a swellable inorganic layered compound in a swollen state in a supercritical state. In the inorganic porous body according to claim 2, the inorganic pillar material whose surface is modified with at least one selected from a cationic inorganic compound and an alcoholate is inserted between the layers of the swellable inorganic layered compound. It is dried. In the inorganic porous body according to claim 3, the swellable inorganic layered compound is dried with an organic pillar material inserted between the layers, and at the same time, the pillar material is removed from between the layers during the drying. It is something that In the inorganic porous body according to claim 4, the fluid contained in the swellable inorganic layered compound in a swollen state is
Ethanol, methanol, carbon dioxide, and
At least one selected from dichlorodifluoromethane. The inorganic porous material according to claim 5 is dried by replacing the water contained in the swellable inorganic layered compound in a swollen state with ethanol, and then replacing the ethanol with carbon dioxide. The inorganic porous material according to claim 6 is a card house-like or sponge-like aggregate of inorganic layered compounds in the shape of flower petals or cicada wings. The inorganic porous body according to claim 7 is a porous body in which inorganic layered compounds are gathered together so as to have a void distribution with a peak in the range of at least 100 nm to several thousand nm. In the inorganic porous body according to claim 8, the inorganic layered compound has a void distribution with a peak in the range of several nanometers to several tens of nanometers even between the layers. The inorganic porous body according to claim 9 further includes an inorganic layered compound with pillars inserted between the layers. [Operation] When the inorganic layered compound in a swollen state is dried in a supercritical state, the layered compound particles are dried in a manner that maintains the aggregation state in the solvent, and the particles of the inorganic layered compound are dried. An aggregate with large voids is obtained. By performing drying in a supercritical state, condensation of the solvent (fluid) between the layers of the inorganic layered compound is suppressed, and if pillar materials are inserted between the layers, aggregation of the pillar materials is also prevented. The space between the layers does not shrink as it dries, and wide voids are ensured between the layers of the inorganic layered compound. Therefore, it becomes an aggregate with high porosity and large pore volume, resulting in an inorganic porous body with excellent adsorption and heat insulation properties. When drying is performed without inserting a pillar material between the layers of the swellable inorganic layered compound, the gap between the layers that once opened due to swelling becomes narrower than when the pillar material is present, but drying is carried out in a supercritical state. If this is done, the inorganic layered compound will form an aggregate like a house of cards or a sponge, so even if the voids between the layers within the compound are not sufficient, there will be large voids between the compounds and the pore volume will be sufficient. It becomes a porous body. When the inorganic pillar material is inserted between the layers of the swellable inorganic layered compound, the inorganic pillar material serves as a support and a wide interlayer gap is secured. In this case, if the surface of the inorganic pillar material is modified with a cationic inorganic compound or alcoholate, the pillar material is likely to be fixed between the layers of the layered compound. Organic pillar materials also act as supports between layers. However, depending on the usage conditions, residual organic pillar material (especially carbon) may become a problem. The organic pillar material can be removed by firing the inorganic porous material so that it remains between the layers, but the number of steps increases and, moreover, carbon inevitably remains. In this respect, since the organic pillar material is extracted by the fluid in a supercritical state, it can be removed from between the layers together with the fluid during drying. Drying in a supercritical state is very convenient because the above-mentioned firing step is not required and residual carbon can be suppressed. When the fluid containing the swellable inorganic layered compound in a swollen state is ethanol, methanol, carbon dioxide, and dichlorodifluorometa,
Compared to water, drying in a supercritical state can be easily performed. This is because these fluids have significantly lower critical pressures and critical temperatures than water. Of course, even if the water contained in the swellable inorganic layered compound in a swollen state is replaced with ethanol and carbon dioxide as a two-component fluid and dried in a supercritical state, the critical temperature is lower than that of water. Since the pressure conditions are gentle, drying is also easy. When an inorganic porous material has petal-like or cicada-like inorganic layered compounds gathered together to form a card house-like or sponge-like aggregate, there are large voids between the compounds. , it is a highly porous body with a large pore volume. An inorganic porous body having such a structure can be made by drying a swellable inorganic layered compound in a swollen state in a supercritical state, but it may be made by other methods. Inorganic layered compounds with at least 100n between each other
If the porous material has a void distribution with a peak in the range of m to several thousand nanometers, there will be many large voids, resulting in a porous body with an extremely large pore volume. Moreover, when there are many voids in this range, a large number of types of particles can be effectively adsorbed, thereby providing versatility. Furthermore, there are several n layers of inorganic layered compounds between the layers.
If the pore distribution has a peak in the range of m to several tens of nanometers, the pore volume will increase due to the presence of voids between the layers.
Moreover, it becomes possible to adsorb even small particles that cannot be captured in the spaces between compounds. When pillars are inserted between the layers of the inorganic layered compound, the gaps between the layers of the inorganic layered compound are wide due to the supporting action of the pillars. [Example] The present invention will be described in detail below with reference to the drawings showing one example thereof. FIG. 1 is a scanning electron micrograph (magnification: 20,000 times) showing the particle structure of the inorganic layered compound by enlarging the surface of the inorganic porous material according to the invention as claimed in claim 1. This inorganic porous material is a porous material obtained by drying a swellable inorganic layered compound in a swollen state in a supercritical state. As shown in FIG. 1, the inorganic porous material is a card house-like or sponge-like aggregate of petal-like or cicada-like inorganic layered compounds. In this inorganic porous body, the inorganic layered compound has a distance of at least 100 nm to several thousand nanometers between each other.
m, more specifically, for example, has a void distribution with a peak in the range of 100 nm to 1000 nm,
The inorganic layered compound has a thickness of several nanometers to several tens of nanometers between the layers.
m, more specifically, has a void distribution with a peak in the range of, for example, 6 nm to 20 nm. As shown in FIG. 2, in each inorganic layered compound A, an inorganic pillar 4 is inserted between the layers 1, 1, so that the gap 2 between the layers 1, 1 is made sufficiently large. In the conventional inorganic porous material produced by hot air drying, as shown in FIG. 8, the inorganic layered compounds overlap each other without any gaps, and there are almost no gaps between the particles. Therefore, the pore volume is much smaller. Next, the process of manufacturing this inorganic porous body will be explained. First, the swellable layered compound is swollen. Swellable layered compounds include Na-montmorillonite, Ca
- montmorillonite, 3-octahedral synthetic smectite (e.g. synthetic saponite, Na-hectolite, Li-hectolite, Na-teniolite, Li
- teniolite, etc.), acid clay, synthetic mica, etc., but needless to say, they are not limited to the above-mentioned examples. In addition, when using a hardly swelling layered compound such as Ca-montmorillonite or acid clay, it is necessary to apply strong shearing force by kneading or the like during swelling. A substance such as a swellable clay mineral is a combination of a large number of swellable inorganic layered compounds A 1 shown on the left side of FIG. This compound A 1 , which is the main material, is mixed with a solvent such as water, and further kneaded if necessary, and as shown on the right side of Figure 3, solvent 3 is impregnated between layers 1 and 1 to swell it in advance. I'll let it happen. Water is generally used as the solvent 3, but other polar solvents such as methanol, ethanol, DMF,
DMSO, acetone, etc. may be used alone or in combination. Subsequently, a pillar material is inserted into the swollen swellable inorganic layered compound. As the inorganic pillar inserted between the layers of the swellable layered compound, a colloidal inorganic compound and a hydrolyzate of alcoholate (hereinafter, the alcoholate for pillars will be referred to as "alcolate I") are used. The colloidal inorganic compound is not particularly limited, but it is preferable to use a thermally stable oxide or one that expands when heated. Examples of such compounds include SiO 2 ,
Examples include Sb 2 O 3 , Fe 2 O 3 , Al 2 O 3 , TiO 2 , and ZrO 2 , and these may be used alone or in combination. Although the particle size of such a colloidal inorganic compound is not particularly limited in the present invention, it is preferably about 50 to 150 Å. As alcoholate I, for example, Si
(OC 2 H 5 ) 4 , Si (OCH 2 ) 4 , Ge (OC 3 H 7 ) 4 , Ge
(OC 2 H 5 ) 4 , Ti(OC 3 H 7 ) 4 , etc. can be used, but materials other than these can also be used. The inorganic pillar material usually remains in the form of metal oxide between the layers. The above-mentioned inorganic pillars may be inserted between the layers of the swellable layered compound as they are, but if the surface thereof is a cationic inorganic compound and an alcoholate other than the alcoholate I (hereinafter referred to as "alcolate"). , and ester, and then inserted between the layers. Cationic inorganic compounds used to modify the surface of inorganic pillar materials include titanium compounds, zirconium compounds, hafnium compounds, iron compounds, copper compounds, chromium compounds,
Examples include nickel-based compounds, zinc-based compounds, aluminum-based compounds, manganese-based compounds, phosphorus-based compounds, boron-based compounds, etc., such as metal chlorides of TiCl 4 or metal oxychlorides such as ZrOCl 2 , or There are nitrate compounds, etc., but compounds other than these can also be used. In addition, alcoholates include Ti(OR) 4 ,
Zr(OR) 4 , PO(OR) 3 , B(OR) 3 , etc. can be used, and specifically, for example, Ti(OC 3 H 7 ) 4 , Zr
(OC 3 H 7 ) 4 , PO (OCH 2 ) 4 , PO (OC 2 H 5 ) 4 , B
(OCH 3 ) 4 , B(OC 2 H 5 ) 4, etc., but other materials may also be used. Note that these can be used alone or in combination. In addition, in this invention, an organic pillar material consisting of at least one selected from a water-soluble polymer compound, a quaternary ammonium salt, a higher fatty acid, an amphoteric surfactant, and a choline compound can be used alone or in an inorganic manner. It can also be inserted between the layers 1 and 1 of the swellable inorganic layered compound together with the pillar material. Various water-soluble polymer compounds can be considered, such as polyvinyl alcohol, polyethylene glycol, polyethylene oxide, methylcellulose, carboxymethylcellulose, polyacrylic acid, sodium polyacrylate,
Examples include polyacrylamide, polyvinylpyrrolidone, and the like. Furthermore, various types of quaternary ammonium salts and higher fatty acids can be considered, but among them, those having groups such as octadecyl group, hexadecyl group, tetradecyl group, and dodecyl group are preferable. Such quaternary ammonium salts include octadecyltrimethylammonium salt,
Dioctadecyldimethylammonium salt, hexadecyltrimethylammonium salt, dihexadecyldimethylammonium salt, tetradecyltrimethylammonium salt, ditetradecyldimethylammonium salt, etc., and higher fatty acids include:
These include palmitic acid, stearic acid, oleic acid, and linoleic acid. Various choline compounds are possible, but
For example, [HOCH 2 CH 2 N(CH 3 ) 3 ] + OH - ,
C5H14ClNO , C5H14NOC4H5O6 , _ _ _
Preferred examples include C 5 H 14 NOC 6 H 7 O 7 and C 5 H 14 NOC 6 H 12 O 7 . In addition, various types of amphoteric surfactants can be considered, but among them, the cation part is an aliphatic amine type, and the anion part is a carboxyl group, a sulfate ester group, a sulfone group, or a phosphoric acid ester group. Those having at least one group selected from ester groups are preferred. As the organic pillar material, materials other than those mentioned above may be used in the present invention as long as they can be inserted between the layers of the swellable inorganic layered compound. Next, insertion between layers will be specifically explained. For example, when using a polymer of Alcoholate I as the inorganic pillar material, Alcoholate I
A solvent such as ethanol or isopropanol is added and dissolved, and a reaction catalyst (hydrolysis catalyst) such as water and hydrochloric acid is added and mixed to cause a hydrolysis reaction.
This hydrolysis reaction is carried out at, but not limited to, 70°C.
It is preferable to carry out the process at a temperature of about 100%. In addition, at the stage where the hydrolysis reaction of such an inorganic pillar material has progressed to a certain extent and the nucleus 41 has grown (see Fig. 4c),
If an alcoholate or a cationic inorganic compound is added to this reaction solution and these compounds are subjected to an addition reaction on the surface of the nucleus, as shown in Figure 4b,
A reactant 42 whose surface is positively charged is obtained. Inorganic pillar material 42 made in this way
In addition, an organic pillar material 51 made of a water-soluble polymer compound, a quaternary ammonium salt, etc. is used in combination, if necessary. When a colloidal inorganic compound is used as the inorganic pillar material, it may be used as it is as shown in Figure 4c, or the alcoholate or A reactant may be similarly obtained by adding a cationic inorganic compound and causing an addition reaction with these compounds on the surface of the core 41 made of the inorganic pillar material as in the previous case. Further, when the organic pillar material 51 is used in combination with the unmodified core 41, the result is as shown in FIG. 4a. A liquid mixture containing the above components is mixed with the swellable inorganic layered compound which has been swollen in advance, and inserted between the layers 1 and 1 of the layered compound (intercalation). The temperature during mixing is
In this invention, although not particularly limited, the temperature is preferably around 60 to 70°C. In addition, when a water-soluble polymer compound or quaternary ammonium salt is blended as an organic pillar material,
As shown in Fig. 5 a and b, this organic pillar material 5
1 serves to spread and hold the space between the layers 1 and 1, and at the same time sharpen the movement of the inorganic pillar materials 41 and 42 to hold the space between the layers 1 and 1. If no organic pillar material is added, the result will be as shown in Figure 5c. The retained inorganic pillar materials 41 and 42 thereby hold the space between the layers 1 and 1 while being expanded. In addition, when this inorganic pillar material is a reactant 42 whose surface is modified, the positive charge on its surface is electrically coupled to the negative portion on the surface of layer 1, as shown in FIG. 5b. and thereby layer 1,
It is thought that it will be possible to maintain the distance between 1 and 2 even wider. After the reaction solution as described above is centrifuged to turn the sample into a gel state, it is oriented into a plate shape using a spatula or the like. This plate-shaped body is dried in a supercritical state. Of course, drying may be started from the state in which the material is in the reaction solution. Here, the supercritical state includes not only a state exceeding the critical point but also a state just at the critical point. A method for creating a supercritical state is, for example, to directly heat and pressurize the solvent, such as water contained between the layers, held by the swellable inorganic layered compound to reach a state above its critical point. There is also a method of drying, but in such a method, the critical point of water is extremely high, with a critical temperature of 374.2°C and critical pressure of 217.6 atm, making the drying container large and highly dangerous. To avoid this, for example, after replacing the water in the swellable layered compound with ethanol, carbon dioxide is further added, and while gradually replacing ethanol with carbon dioxide, the mixture of carbon dioxide and ethanol is added. The supercritical state may be brought about by heating and pressurizing the component system to a temperature and pressure above the critical point. In this case, carbon dioxide above the critical point may be fed into the system to replace it. Drying is completed by allowing the fluid in a supercritical state to escape from the system. By such a method, the agglomeration and condensation during drying can be prevented, the structure before drying can be maintained as it is, and an inorganic porous material with extremely high porosity and a large pore volume can be obtained. hot air drying,
Alternatively, an inorganic porous material dried by freeze-drying has a significantly smaller pore volume than the inorganic porous material of the present invention. This is because the structure before drying cannot be well maintained. Although the above examples are also examples of the invention described in claims 6 and 7, the inorganic porous bodies having the configurations as described in claims 6 and 7 were prepared by a method other than the method described above (a method other than drying in a supercritical state). ) may be manufactured. Note that the fluids that can be used as solvents are not limited to those mentioned above. There are various substances that can be converted into critical fluids within a practical range, and examples thereof include ethanol, methanol, carbon dioxide, dichlorodifluoromethane, and ethylene. When the supercritical state is created, if supercritical conditions are selected and drying is performed, organic substances contained between the layers can be extracted into the supercritical fluid. Therefore, if an organic pillar material is inserted between the layers to expand and maintain the interlayer spacing, drying under appropriately selected supercritical conditions will extract only the organic pillar material. It becomes possible to remove it. In this way, the organic pillar material can be removed from the dried sample without baking it. The firing process can be omitted, and
This also solves the problem of carbon remaining between the layers after firing, which limits the use of catalytic activities. For reference, critical conditions for major fluids are shown in Table 1.
【表】
続いて、この発明により具体的な実施例および
比較例の説明を行う。
実施例 1
アルコラートIであるSi(OC2H5)4(半井化学薬
品(株)製)にエタノール(半井化学薬品(株)製特級試
薬)を加え、充分に混合して溶液とする。この溶
液に、2N塩酸を加え、70℃に加熱して加水分解
反応を行い、無機ピラー材用の核を作成した。
つぎに、この溶液に、陽イオン性無機化合物で
あるTiCl4(半井化学薬品(株)製)の4M水溶液を添
加して充分に混合し、反応を行なわせて、反応物
が分散された反応液を得た。この反応液をあらか
じめ水で膨潤させておいた膨潤性無機層状化合物
であるNa−モンモリロナイト(クニミネ工業(株)
製クニピアF)の0.8重量%水溶液と混合し、60
℃で1.5時間、挿入反応を行つた。
反応後、エタノールにより、数回、洗浄、遠心
分離を繰り返し、ヘラで板状に配向させ、比較
的、臨界点の低い二酸化炭素(CO2)を添加しな
がら、40℃、80気圧で8時間、乾燥した。
なお、各成分の配合比は、モル比で、Si
(OC2H5)4:エタノール:2N塩酸:TiCl4=17:
18:65:1.7であり、Na−モンモリロナイト、
SiO2の配合比は、重量比で1:0.6である。
実施例 2
アルコラートIであるTi(OC3H7)4(半井化学
薬品(株)製)に2N塩酸を加え、70℃に加熱して加
水分解反応させて無機ピラー材溶液を得た。但
し、Ti(OC3H7)4:2N塩酸=1:12.5(但し重量
比)である。
つぎに、この溶液を、あらかじめ水で膨潤させ
ておいた膨潤性層状化合物であるNa−モンモリ
ロナイト(クニミネ工業(株)製クニピアF)の0.8
重量%水溶液と混合し、60℃で1.5時間、挿入反
応を行つた。
反応後、エタノールにより、数回、洗浄、遠心
分離を繰り返し、ヘラで板状に配向させ、比較
的、臨界点の低い二酸化炭素を添加しながら、40
℃、80気圧で、8時間、乾燥した。
なお、Na−モンモリロナイト、TiO2の配合比
は、重量比で1:0.6である。
実施例 3
無機ピラー材として、コロイド状化合物である
チタニアゾル(日産化学工業(株)製 スノーテツク
TZK)を用いた他は、実施例2と同様にして
無機多孔体を得た。
実施例 4
アルコラートIであるTi(OC3H7)4(半井化学
薬品(株)製)に2N塩酸を加え、70℃に加熱して加
水分解反応させた。但し、Ti(OC3H7)4:2N塩酸
=1:12.5(但し重量比)である。
つぎに、この溶液に、第4級アンモニウム塩で
あるオクタデシルトリメチルアンモニウムクロラ
イド(日本油脂(株)製カチオンAB)を十分混合さ
せて無機ピラー材用混合液を得た。
この溶液と、あらかじめ水で膨潤させておいた
膨潤性層状化合物であるNa−モンモリロナイト
(クニミネ工業(株)製クニピアF)の0.8重量%水溶
液と混合し、60℃で1.5時間、挿入反応を行つた。
反応後、エタノールにより、数回、洗浄、遠心
分離を繰り返し、ヘラで板状に配向させ、比較
的、臨界点の低い二酸化炭素を添加しながら、40
℃、80気圧で、8時間、乾燥した。
実施例 5
無機ピラー材として、陽イオン性無機化合物で
あるTiCl4(半井化学薬品(株)製)の4モル水溶液
を、あらかじめ水で膨潤させておいた膨潤製層状
化合物である合成スメクタイト(クニミネ工業(株)
製 スメクトンSA)の0.8重量%水溶液に混合
し、60℃で1.5時間、挿入反応を行つた。これ以
外は実施例2と同様にして、無機多孔体を得た。
実施例 6
膨潤性層状化合物であるNa−モンモリロナイ
ト(クニミネ工業(株)製クニピアF)の0.8重量%
水溶液と、ポリビニルアルコール(PVA 半井
化学薬品(株)製試薬 重合度500)の10%水溶液を、
重量比で1:1となるようにして混合し、挿入反
応を行つた。
反応後、エタノールにより、数回、洗浄、遠心
分離を繰り返し、ヘラで板状に配向させ、比較
的、臨界点の低い二酸化炭素を添加しながら、40
℃、80気圧で、8時間、乾燥した。
実施例 7
膨潤性層状化合物であるNa−モンモリロナイ
ト(クニミネ工業(株)製クニピアF)の0.8重量%
水溶液を調整し、この液に2Nの塩酸を5ml程度
加え、遠心分離を数回行つた後、エタノールによ
り数回、洗浄、遠心分離を繰り返し、ヘラで板状
に配向させ、エタノールの臨界点以上の条件であ
る、270℃、120気圧で、72時間乾燥させた。
実施例 8
膨潤性層状化合物である合成スメクタイト(ク
ニミネ工場(株)製スメクトンSA)の0.8重量%水溶
液と、ポリビニルアルコール(PVA 半井化学
薬品(株)製試薬 重合度500)の10%水溶液を、重
量比で1:1となるようにして混合し、挿入反応
を行つた。
反応後、メタノールにより、数回、洗浄、遠心
分離を繰り返し、ヘラで板状に配向させ、比較
的、臨界点の低い二酸化炭素を添加しながら、40
℃、80気圧で、8時間、乾燥した。
実施例 9
膨潤性層状化合物である合成スメクタイト(ク
ニミネ工業(株)製スメクトンSA)の0.8重量%水溶
液を調整し、この液に2Nの塩酸を加え、遠心分
離を数回行つた後、エタノールにより数回、洗
浄、遠心分離を繰り返し、ヘラで板状に配向さ
せ、比較的、臨界点の低い二酸化炭素を添加しな
がら、40℃、80気圧で、8時間、乾燥した。
比較例 1
乾燥を60℃での熱風乾燥とした他は実施例1と
同様にして無機多孔体を得た。
比較例 2
乾燥を60℃での熱風乾燥とした他は実施例6と
同様にして無機多孔体を得た。
比較例 3
乾燥を60℃での熱風乾燥とした他は実施例7と
同様にして無機多孔体を得た。
比較例 4
市販のやしがら活性炭からなる多孔体を準備し
た。
実施例1〜9および比較例1〜4の多孔体につ
いて、比表面積、細孔容積、みかけ密度、無機化
合物における層間空隙、無機化合物の相互間の空
隙(化合物間空隙)、熱伝導率、消臭特性(吸着
性)を調べた。結果を、第2、3表に示す。
比表面積、細孔容積は窒素吸着法における
BETの方法を、層間空隙はX線回折の測定グラ
フを得て(第6図参照)、d001測定により求め
た。そして、無機層状化合物間空隙についは、多
孔体表面の走査型電子顕微鏡写真上にあらわれた
空隙のうち最も多い空隙値を化合物間空隙として
記した。また、熱伝導率はASTM−C−518に準
拠した熱流計法により測定した。
消臭特性測定のため、臭気成分としてトリメチ
ルアミン、または、メチルメルカプタンをそれぞ
れ用いた下記の2つの消臭実験を行つた。
実験 第7図にみるように、300mlの三角フラ
スコ20に、多孔体21を0.3g入れ、栓22
でフラスコ20の口を密封する。ついで、トリ
メチルアミン(9.48体積%)を1ml注入し、そ
の後、1分後に0.5mlサンプリングし、ガスク
ロマトグラフで調べた。分析の結果、完全に消
臭(ガスクロマトグラフの測定値0ppm)した
場合は、上記操作を繰り返し、完全に消臭しな
い場合はサンプリングするまでの時間を延ばし
てゆき、始めて消臭するまでの時間を調べた。
実験 第7図にみるように、300mlの三角フラ
スコ20に、多孔体21を0.3g入れ、栓22
でフラスコ20の口を密封する。ついで、メチ
ルメルカプタン(9.16体積%)を100倍希釈し
たものを5ml注入し、1分間放置後、UVを照
射してから1mlサンプリングしてガスクロマク
グラフで測定した。実施例1〜9および比較例
4の多孔体については、消臭(ガスクロマトグ
ラフの測定値0ppm)までに要したりUV照射
時間を記した。比較例1〜3の無機多孔体につ
いては、測定値が略一定の低い値に落ち着くま
でのUV照射時間およびガスクロマトグラフに
よる測定結果を示した。
なお、測定等に用いた機器の主なものは以下
の通りである。
窒素吸着法;カンタクローム社製 商品名オー
トソープ6
X線回折;理学電機(株)製
超臨界乾燥装置;住友重機工業(株)製 超臨界流
出装置[Table] Next, specific examples and comparative examples according to the present invention will be explained. Example 1 Ethanol (special grade reagent, manufactured by Hanui Chemicals, Inc.) is added to alcoholate I, Si(OC 2 H 5 ) 4 (manufactured by Hansui Chemicals, Inc.), and thoroughly mixed to form a solution. 2N hydrochloric acid was added to this solution and heated to 70°C to perform a hydrolysis reaction to create a core for an inorganic pillar material. Next, a 4M aqueous solution of TiCl 4 (manufactured by Hanui Chemical Co., Ltd.), a cationic inorganic compound, is added to this solution and thoroughly mixed to cause a reaction, resulting in a reaction in which the reactants are dispersed. I got the liquid. This reaction solution was pre-swollen with water to form a swellable inorganic layered compound, Na-montmorillonite (Kunimine Kogyo Co., Ltd.).
Mixed with a 0.8% aqueous solution of Kunipia F), 60
The insertion reaction was carried out for 1.5 hours at °C. After the reaction, washing with ethanol and centrifugation were repeated several times, oriented into a plate shape with a spatula, and heated at 40°C and 80 atm for 8 hours while adding carbon dioxide (CO 2 ), which has a relatively low critical point. , dried. The blending ratio of each component is a molar ratio, and Si
(OC 2 H 5 ) 4 : Ethanol: 2N Hydrochloric acid: TiCl 4 = 17:
18:65:1.7, Na-montmorillonite,
The blending ratio of SiO 2 is 1:0.6 by weight. Example 2 2N hydrochloric acid was added to Ti(OC 3 H 7 ) 4 (manufactured by Hanui Chemical Co., Ltd.), which is alcoholate I, and the mixture was heated to 70° C. to cause a hydrolysis reaction, thereby obtaining an inorganic pillar material solution. However, Ti(OC 3 H 7 ) 4 :2N hydrochloric acid=1:12.5 (weight ratio). Next, this solution was mixed with 0.8% of Na-montmorillonite (Kunipia F manufactured by Kunimine Industries Co., Ltd.), which is a swellable layered compound that had been swollen with water in advance.
It was mixed with a wt% aqueous solution and an insertion reaction was carried out at 60°C for 1.5 hours. After the reaction, washing with ethanol and centrifugation were repeated several times, oriented into a plate shape with a spatula, and heated for 40 minutes while adding carbon dioxide, which has a relatively low critical point.
It was dried for 8 hours at 80 atm. The blending ratio of Na-montmorillonite and TiO 2 was 1:0.6 by weight. Example 3 As an inorganic pillar material, a colloidal compound titania sol (Snowtech manufactured by Nissan Chemical Industries, Ltd.) was used.
An inorganic porous body was obtained in the same manner as in Example 2, except that TZK) was used. Example 4 2N hydrochloric acid was added to Ti(OC 3 H 7 ) 4 (manufactured by Hanui Chemical Co., Ltd.), which is alcoholate I, and the mixture was heated to 70° C. to cause a hydrolysis reaction. However, Ti(OC 3 H 7 ) 4 :2N hydrochloric acid=1:12.5 (weight ratio). Next, octadecyltrimethylammonium chloride (Cation AB, manufactured by NOF Corporation), which is a quaternary ammonium salt, was sufficiently mixed with this solution to obtain a mixed solution for an inorganic pillar material. This solution was mixed with a 0.8% aqueous solution of Na-montmorillonite (Kunipia F, manufactured by Kunimine Industries Co., Ltd.), a swelling layered compound, which had been swollen with water in advance, and an insertion reaction was carried out at 60°C for 1.5 hours. Ivy. After the reaction, repeated washing and centrifugation several times with ethanol, orientated into a plate shape with a spatula, and while adding carbon dioxide, which has a relatively low critical point,
It was dried for 8 hours at 80 atm. Example 5 As an inorganic pillar material, a 4 molar aqueous solution of TiCl 4 (manufactured by Hanui Chemical Co., Ltd.), a cationic inorganic compound, was used as synthetic smectite (Kunimine), a swelling layered compound, which had been swollen with water in advance. Kogyo Co., Ltd.
The mixture was mixed with a 0.8% aqueous solution of Smecton SA (manufactured by Smecton SA), and an intercalation reaction was performed at 60°C for 1.5 hours. Except for this, an inorganic porous body was obtained in the same manner as in Example 2. Example 6 0.8% by weight of Na-montmorillonite (Kunipia F manufactured by Kunimine Industries Co., Ltd.) which is a swelling layered compound
An aqueous solution and a 10% aqueous solution of polyvinyl alcohol (PVA reagent manufactured by Hanui Chemical Co., Ltd., polymerization degree 500).
They were mixed at a weight ratio of 1:1 to perform an insertion reaction. After the reaction, repeated washing and centrifugation several times with ethanol, orientated into a plate shape with a spatula, and while adding carbon dioxide, which has a relatively low critical point,
It was dried for 8 hours at 80 atm. Example 7 0.8% by weight of Na-montmorillonite (Kunipia F manufactured by Kunimine Industries Co., Ltd.) which is a swelling layered compound
Prepare an aqueous solution, add about 5 ml of 2N hydrochloric acid to this solution, perform centrifugation several times, wash with ethanol several times, repeat centrifugation, orient it into a plate shape with a spatula, and cross the critical point of ethanol. It was dried for 72 hours at 270°C and 120 atm. Example 8 A 0.8% by weight aqueous solution of synthetic smectite (Smecton SA manufactured by Kunimine Factory Co., Ltd.), which is a swelling layered compound, and a 10% aqueous solution of polyvinyl alcohol (PVA, reagent manufactured by Hanui Chemical Co., Ltd., degree of polymerization 500), They were mixed at a weight ratio of 1:1 to perform an insertion reaction. After the reaction, washing with methanol and centrifugation were repeated several times, oriented into a plate shape with a spatula, and heated for 40 minutes while adding carbon dioxide, which has a relatively low critical point.
It was dried for 8 hours at 80 atm. Example 9 A 0.8% by weight aqueous solution of synthetic smectite (Smectone SA manufactured by Kunimine Industries Co., Ltd.), which is a swellable layered compound, was prepared, 2N hydrochloric acid was added to this solution, centrifuged several times, and then diluted with ethanol. Washing and centrifugation were repeated several times, oriented into a plate shape with a spatula, and dried at 40° C. and 80 atm for 8 hours while adding carbon dioxide, which has a relatively low critical point. Comparative Example 1 An inorganic porous body was obtained in the same manner as in Example 1, except that hot air drying at 60°C was used. Comparative Example 2 An inorganic porous body was obtained in the same manner as in Example 6, except that hot air drying at 60°C was used. Comparative Example 3 An inorganic porous body was obtained in the same manner as in Example 7, except that the drying was performed with hot air at 60°C. Comparative Example 4 A porous body made of commercially available coconut shell activated carbon was prepared. Regarding the porous bodies of Examples 1 to 9 and Comparative Examples 1 to 4, specific surface area, pore volume, apparent density, interlayer voids in inorganic compounds, voids between inorganic compounds (intercompound voids), thermal conductivity, and The odor characteristics (adsorption properties) were investigated. The results are shown in Tables 2 and 3. The specific surface area and pore volume are determined by the nitrogen adsorption method.
In the BET method, the interlayer void was determined by obtaining an X-ray diffraction measurement graph (see Figure 6) and performing d001 measurement. Regarding the voids between the inorganic layered compounds, the largest number of voids among the voids that appeared on the scanning electron micrograph of the surface of the porous body was recorded as the intercompound voids. Moreover, the thermal conductivity was measured by the heat flow meter method based on ASTM-C-518. In order to measure the deodorizing properties, the following two deodorizing experiments were conducted using trimethylamine or methyl mercaptan as the odor component. Experiment As shown in Figure 7, 0.3g of porous material 21 was put into a 300ml Erlenmeyer flask 20, and the stopper 22
Seal the mouth of flask 20 with. Next, 1 ml of trimethylamine (9.48% by volume) was injected, and after 1 minute, 0.5 ml was sampled and examined using a gas chromatograph. As a result of the analysis, if the odor has been completely eliminated (gas chromatograph measurement value 0 ppm), repeat the above operation, and if the odor is not completely eliminated, increase the time until sampling, and increase the time until the initial deodorization. Examined. Experiment As shown in Figure 7, 0.3g of porous material 21 was put into a 300ml Erlenmeyer flask 20, and the stopper 22
Seal the mouth of flask 20 with. Next, 5 ml of a 100-fold dilution of methyl mercaptan (9.16% by volume) was injected, left for 1 minute, UV irradiated, 1 ml sampled, and measured using a gas chromagraph. For the porous bodies of Examples 1 to 9 and Comparative Example 4, the UV irradiation time required to deodorize (gas chromatograph measurement value 0 ppm) was recorded. Regarding the inorganic porous bodies of Comparative Examples 1 to 3, the UV irradiation time and gas chromatograph measurement results until the measured values settled to a substantially constant low value are shown. The main equipment used for measurements etc. is as follows. Nitrogen adsorption method: Manufactured by Quantachrome, trade name: Autosoap 6
【表】【table】
【表】【table】
請求項1〜5記載の無機多孔体では、乾燥前の
多孔性がうまく保たれ、大きな細孔容積と十分な
大きさの空隙をもち、そのため、優れた吸着性や
断熱性を発揮する。
請求項2記載の無機多孔体では、使用された無
機ピラー材が支柱となつて層間を十分に拡げてお
り、そのため、無機層状化合物は層間に十分な空
隙をもつようになり、一層、細孔容積が増え、多
孔性に富むようになる。
請求項3記載の無機多孔体では、使用された有
機ピラー材が支柱となつて層間が十分に拡がつて
いて、そのため、無機層状化合物は層間に十分な
空隙をもつようになり、一層、細孔容積が増え、
多孔性がます。しかも、有機ピラー材自体は、焼
成工程が要らず、炭素分が無機多孔体に残ること
もないため、大変に好ましい。
請求項4,5記載の発明では、膨潤状態にある
膨潤性無機層状化合物が含む流体が、臨界点の高
い水でない。そのため、超臨界状態を作り出すこ
とが容易であり、製造上、大変に都合がよい。
請求項6記載の無機多孔体は、花弁状ないしセ
ミの羽状の無機層状化合物が寄せ集まつたカード
ハウス状ないしスポンジ状の集合体であり、無機
層状化合物の相互間に十分な空隙を有し、これに
より、十分な細孔容積と多孔性を備え、優れた吸
着性および断熱性を発揮する。
請求項7記載の無機多孔体は、無機層状化合物
が、互いの間の少なくとも100nm〜数平nmの
範囲にピークのある空隙分布を有しており、十分
な細孔容積をもち、しかも、この範囲の空隙が多
くあると、有効に吸着できる粒子の種類が多くな
り、汎用性がある(利用範囲が広い)。
請求項8,9記載の無機多孔体は、無機層状化
合物が、その層間にも十分な空隙をもち、さらに
細孔容積が増え、化合物間空隙では捕捉できない
小さな粒子も有効に吸着することができる。
The inorganic porous bodies according to claims 1 to 5 maintain their porosity well before drying, have large pore volumes and sufficiently large voids, and therefore exhibit excellent adsorption and heat insulation properties. In the inorganic porous body according to claim 2, the inorganic pillar material used serves as a support and sufficiently expands the interlayer space, so that the inorganic layered compound has sufficient voids between the layers, and the pores are further expanded. It increases in volume and becomes more porous. In the inorganic porous body according to claim 3, the organic pillar material used serves as a support and the interlayers are sufficiently expanded, so that the inorganic layered compound has sufficient voids between the layers, and the inorganic layered compound becomes even more porous. The pore volume increases,
Porous. Furthermore, the organic pillar material itself is very preferable because it does not require a firing process and no carbon content remains in the inorganic porous body. In the invention according to claims 4 and 5, the fluid contained in the swellable inorganic layered compound in a swollen state is not water with a high critical point. Therefore, it is easy to create a supercritical state, which is very convenient for manufacturing. The inorganic porous body according to claim 6 is a card house-like or sponge-like aggregate of inorganic layered compounds in the shape of flower petals or cicada feathers, and has sufficient voids between the inorganic layered compounds. As a result, it has sufficient pore volume and porosity, and exhibits excellent adsorption and heat insulation properties. In the inorganic porous body according to claim 7, the inorganic layered compound has a pore distribution with a peak in the range of at least 100 nm to several nanometers between each other, and has a sufficient pore volume, and When there are many voids within a range, there are many types of particles that can be effectively adsorbed, making it versatile (wide range of uses). In the inorganic porous body according to claims 8 and 9, the inorganic layered compound has sufficient voids between the layers, and the pore volume is increased, and small particles that cannot be captured in the voids between the compounds can be effectively adsorbed. .
第1図は、この発明の無機多孔体表面における
無機層状化合物の粒子構造をあらわす走査型電子
顕微鏡写真(倍率2万倍)、第2図は、この発明
の無機多孔体における無機層状化合物の構成を模
式的にあらわす説明図、第3図は、無機層状化合
物を膨潤させるときの様子をあらわす模式的説明
図、第4図aは、無機ピラー材と有機ピラー材を
含む溶液をあらわす模式的説明図、第4図bは、
表面が修飾された無機ピラー材と有機ピラー材を
含む溶液をあらわす模式的説明図、第4図cは、
無機ピラー材のみ含む溶液をあらわす模式的説明
図、第5図aは、第4図aの無機ピラー材を挿入
した膨潤状態にある無機層状化合物をあらわす模
式的説明図、第5図bは、第4図bの無機ピラー
材と有機ピラー材を挿入した膨潤状態にある無機
層状化合物をあらわす模式的説明図、第5図c
は、第4図cの無機ピラー材と有機ピラー材を挿
入した膨潤状態にある無機層状化合物のあらわす
模式的説明図、第6図は、無機層状化合物の層空
隙に対応するピークがあらわれたX線回折測定グ
ラフ、第7図は、消臭実験のときの様子をあらわ
す説明図、第8図は、従来の無機多孔体表面にお
ける無機層状化合物の粒子構造をあらわす走査型
電子顕微鏡写真(倍率2万倍)である。
A……無機層状化合物、1……無機層状化合物
の層、2……空隙、3……溶媒、4……無機ピラ
ー、41,42……無機ピラー材、51……有機
ピラー材。
Figure 1 is a scanning electron micrograph (20,000x magnification) showing the particle structure of the inorganic layered compound on the surface of the inorganic porous body of the present invention, and Figure 2 is the structure of the inorganic layered compound in the inorganic porous body of the present invention. FIG. 3 is a schematic illustration showing how an inorganic layered compound is swollen. FIG. 4a is a schematic illustration showing a solution containing an inorganic pillar material and an organic pillar material. Figure 4b is
FIG. 4c is a schematic explanatory diagram showing a solution containing a surface-modified inorganic pillar material and an organic pillar material.
A schematic illustration showing a solution containing only an inorganic pillar material, FIG. 5a is a schematic illustration showing an inorganic layered compound in a swollen state into which the inorganic pillar material of FIG. A schematic explanatory diagram showing an inorganic layered compound in a swollen state with an inorganic pillar material and an organic pillar material inserted in FIG. 4b, and FIG. 5c
is a schematic illustration of the inorganic layered compound in a swollen state with the inorganic pillar material and organic pillar material inserted in FIG. Line diffraction measurement graph, Figure 7 is an explanatory diagram showing the state during deodorization experiment, and Figure 8 is a scanning electron micrograph (magnification: 2) showing the particle structure of an inorganic layered compound on the surface of a conventional inorganic porous material. 10,000 times). A: inorganic layered compound, 1: layer of inorganic layered compound, 2: void, 3: solvent, 4: inorganic pillar, 41, 42: inorganic pillar material, 51: organic pillar material.
Claims (1)
界状態で乾燥されてなる無機多孔体。 2 膨潤性無機層状化合物が、表面を陽イオン性
無機化合物およびアルコラートのうちから選ばれ
た少なくともひとつで修飾された無機ピラー材が
その層間に挿入された状態で乾燥されたものであ
る請求項1記載の無機多孔体。 3 膨潤性無機層状化合物が、その層間に有機ピ
ラー材が挿入された状態で乾燥されるとともに同
乾燥の際に同ピラー材の層間からの除去が同時に
行なわれたものである請求項1記載の無機多孔
体。 4 膨潤状態にある膨潤性無機層状化合物が含有
する流体が、エタノール、メタノール、二酸化炭
素、および、ジクロロジフルオロメタンのうちか
ら選ばれた少なくともひとつである請求項1から
請求項3までのいずれかに記載の無機多孔体。 5 乾燥が、膨潤状態にある膨潤性無機層状化合
物が含む水をエタノールで置換させたのち、この
エタノールを二酸化炭素で置換しながら行われた
ものである請求項1から請求項3までのいずれか
に記載の無機多孔体。 6 花弁状ないしセミの羽状の無機層状化合物が
寄せ集まつてカードハウス状ないしスポンジ状の
集合体を形成してなる無機多孔体。 7 無機層状化合物が、互いの間に少なくとも
100nm〜数千nmの範囲にピークのある空隙分
布を有するように寄せ集まつてなる無機多孔体。 8 無機層状化合物が、その層間にも数nm〜数
10nmの範囲にピークのある空隙分布を有する請
求項7記載の無機多孔体。 9 無機層状化合物が、その層間にピラーが挿入
されたものである請求項6から請求項8までのい
ずれかに記載の無機多孔体。[Scope of Claims] 1. An inorganic porous material obtained by drying a swellable inorganic layered compound in a swollen state in a supercritical state. 2. Claim 1, wherein the swellable inorganic layered compound is dried with an inorganic pillar material whose surface is modified with at least one selected from a cationic inorganic compound and an alcoholate inserted between its layers. The inorganic porous material described. 3. The method according to claim 1, wherein the swellable inorganic layered compound is dried with an organic pillar material inserted between the layers, and at the same time, the pillar material is removed from between the layers during the drying. Inorganic porous material. 4. Any one of claims 1 to 3, wherein the fluid contained in the swellable inorganic layered compound in a swollen state is at least one selected from ethanol, methanol, carbon dioxide, and dichlorodifluoromethane. The inorganic porous material described. 5. Any one of claims 1 to 3, wherein the drying is performed by replacing water contained in the swellable inorganic layered compound in a swollen state with ethanol, and then replacing this ethanol with carbon dioxide. The inorganic porous body described in . 6. An inorganic porous material formed by petal-like or cicada-like feather-like inorganic layered compounds brought together to form a card house-like or sponge-like aggregate. 7 The inorganic layered compounds have at least
An inorganic porous material that has a pore distribution with a peak in the range of 100 nm to several thousand nm. 8 The inorganic layered compound has a thickness of several nanometers to several nanometers between the layers.
The inorganic porous material according to claim 7, having a void distribution with a peak in the 10 nm range. 9. The inorganic porous body according to any one of claims 6 to 8, wherein the inorganic layered compound has pillars inserted between its layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24330488A JPH0292877A (en) | 1988-09-27 | 1988-09-27 | Inorganic porous body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24330488A JPH0292877A (en) | 1988-09-27 | 1988-09-27 | Inorganic porous body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0292877A JPH0292877A (en) | 1990-04-03 |
JPH0571546B2 true JPH0571546B2 (en) | 1993-10-07 |
Family
ID=17101842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24330488A Granted JPH0292877A (en) | 1988-09-27 | 1988-09-27 | Inorganic porous body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0292877A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2592509B2 (en) * | 1988-11-25 | 1997-03-19 | 松下電工株式会社 | Inorganic porous body |
KR100428635B1 (en) * | 2000-05-09 | 2004-04-30 | 주식회사 엘지화학 | Method for preparing organoclay nanocomposites using super critical fluid |
-
1988
- 1988-09-27 JP JP24330488A patent/JPH0292877A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0292877A (en) | 1990-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69515347T2 (en) | GEL COMPOSITION CONTAINING A CARBON COMPOUND | |
El Kadib et al. | Decoration of chitosan microspheres with inorganic oxide clusters: Rational design of hierarchically porous, stable and cooperative acid–base nanoreactors | |
DE69508398T2 (en) | METHOD FOR PRODUCING SPHERICAL ADSORBENT PARTICLES | |
JPH042307B2 (en) | ||
US8003567B2 (en) | Nanocomposite support materials | |
JPH0571546B2 (en) | ||
Ji et al. | Manipulation of shell morphology of silicate spheres from structural evolution in a purely inorganic system | |
JPH0577606B2 (en) | ||
WO2021228828A1 (en) | Method for producing aerogels and aerogels obtained using said method | |
Karout et al. | Porous texture of silica aerogels made with ionic liquids as gelation catalysts | |
JP2592509B2 (en) | Inorganic porous body | |
JPH02221170A (en) | Production of inorganic porous body | |
Ranjit et al. | Amphiphilic templating of magnesium hydroxide | |
Jeřábek et al. | Synthesis of Nanocomposites from Pd0 and a Hyper‐Cross‐Linked Functional Resin Obtained from a Conventional Gel‐Type Precursor | |
JPH0352641A (en) | Production of inorganic porous body carrying catalyst | |
JPH03109918A (en) | Deodorant composition and deodorizing board | |
Gill et al. | Synthesis of cobalt oxide aerogels and nanocomposite systems containing single‐walled carbon nanotubes | |
WO1988002356A1 (en) | Process for producing layered porous inorganic material | |
JP5137753B2 (en) | Large pore silica gel having double pore structure and method for producing the same | |
CN104556068B (en) | Porous silica and preparation method thereof | |
Lee et al. | Hybrid Assembly of Layered Double Hydroxide Nanocrystals with Inorganic, Polymeric and Biomaterials from Micro‐to Nanometer Scales | |
JPH05246772A (en) | Production of inorganic porous body | |
JPH0455149B2 (en) | ||
Turkevich et al. | Electron microscopy and small angle X-ray scattering | |
JPH0455377A (en) | Production of inorganic porous body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |