JPH0571457B2 - - Google Patents

Info

Publication number
JPH0571457B2
JPH0571457B2 JP60083886A JP8388685A JPH0571457B2 JP H0571457 B2 JPH0571457 B2 JP H0571457B2 JP 60083886 A JP60083886 A JP 60083886A JP 8388685 A JP8388685 A JP 8388685A JP H0571457 B2 JPH0571457 B2 JP H0571457B2
Authority
JP
Japan
Prior art keywords
pressure
container
heat
shrinkable
coffee beverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60083886A
Other languages
Japanese (ja)
Other versions
JPS61244724A (en
Inventor
Hideya Tsutsui
Tooru Myaaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kracie Foods Ltd
Original Assignee
Kanebo Foods Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Foods Ltd filed Critical Kanebo Foods Ltd
Priority to JP8388685A priority Critical patent/JPS61244724A/en
Publication of JPS61244724A publication Critical patent/JPS61244724A/en
Publication of JPH0571457B2 publication Critical patent/JPH0571457B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、熱収縮性容器入りコーヒー飲料の
製法に関するものである。 〔従来技術〕 一般に、コーヒー飲料は、缶に入れられ缶入り
コーヒー飲料として販売されている。この種の缶
入りコーヒー飲料は、コーヒー飲料を缶に入れて
密封巻締し、これを加圧加熱殺菌釜(レトルト
釜)内に入れ、加圧加熱して容器内のコーヒー飲
料を殺菌し製造されている。この場合、上記密封
缶内には必ず少量の空気が含まれており、それが
加圧加熱釜による加圧加熱によつて膨張し、缶の
内圧が著しく高くなり、場合によつては缶の破裂
を生じる。このような缶の破裂現象を防止するた
め、加圧加熱殺菌釜内の加圧圧力を容器内圧より
高く保持し、缶の破裂を防止することが行われて
いる。 最近、この分野にプラスチツク容器を採用する
ことが試みられ注目をあつめている。プラスチツ
ク容器は成形の自由度が高いことから所望の形状
への賦形が容易であり、かつコストが安い。しか
しながら、プラスチツク容器は、加圧加熱殺菌釜
内に入れて加圧加熱殺菌を行うと耐圧性が非常に
弱いため、変形や破裂が生じる。また、含気プラ
スチツク容器の加圧が熱殺菌に用いられる定差圧
レトルト方式(レトルト釜内圧力を容器内圧と同
圧もしくは常時一定圧力だけ差をもたせた状態で
殺菌する)を採用した場合でも容器が熱収縮し、
初期の形状を保てないため、プラスチツク成形品
をコーヒー飲料の容器に用いる場合には、予めコ
ーヒー飲料のみを加圧加熱殺菌しておき、これを
プラスチツク容器に注入し密封することが行われ
ている。しかしながら、このようにしてもプラス
チツク容器自体に付着している雑菌がコーヒー飲
料とともに密封され、これが保管中に増殖してコ
ーヒー飲料を腐敗に導く。したがつて、このよう
なプラスチツク容器入りコーヒー飲料は、冷蔵流
通下で短期保存用として扱われているにすぎな
い。このような欠点を解消するため、プラスチツ
ク容器自体を加熱加圧殺菌することも考えられた
が、この場合には、やはり容器自体の熱収縮が起
こるため、実用的にかなり難点がある。 〔発明が解決しようとする課題〕 一方、ポリエチレンとアルミニウム箔とをラミ
ネートした材料からなるカツプ状容器にコーヒー
等の飲料を入れて密封し、これを、レトルト殺菌
の目的で、加圧加熱する際に、上記カツプ型容器
の蓋体として、容器内外の圧力差により上下に撓
んで圧力差を吸収するシール蓋を用いるという技
術が提案されている(実開昭59−765号公報)。こ
の技術は、シール蓋が圧力の変化に応じて上下に
撓み変形して圧力差を吸収することにより、容器
本体自体の変形を防止するものであるが、殺菌温
度は、80〜100℃程度であり、100℃を超える温度
でのレトルト殺菌を行うと、たとえシール蓋を使
用したとしても容器本体自体の変形を防止するこ
とはできない。また、この技術によれば、シール
蓋が上方に膨張したり、下方に窪んだりした状態
になることから、外観的に、消費者に対する悪印
象(腐敗によつて蓋部が押し上げられたかのよう
な悪印象)を与えるおそれがある。 この発明は、このような事情に鑑みなされたも
ので、加熱加圧殺菌時の熱によつて容器自体が変
形せず、しかも高温での加熱加圧殺菌に耐えうる
熱収縮性容器入りコーヒー飲料の製法を提供する
ことを目的とする。 〔課題を解決するための手段〕 上記の目的を達成するため、この発明の熱収縮
性容器入りコーヒー飲料の製法は、コーヒー飲料
を容器に入れて密封し、これを加圧加熱釜内にお
いて加熱加圧殺菌する熱収縮性容器入りコーヒー
飲料の製法であつて、上記容器として熱収縮性合
成樹脂製のものを用い、上記加熱加圧殺菌時の圧
力を下記の(A)−(B)の圧力に設定して行うという構
成をとる。 (A):非熱収縮性容器にコーヒー飲料を充填し加熱
加圧するときの非熱収縮性容器内の圧力。 (B):下記の(a)−(A)の圧力。 (a):熱収縮性合成樹脂製容器にコーヒー飲料を
充填し加熱加圧するときの熱収縮性合成樹脂
製容器内の圧力(a) (A):上記圧力(A) 〔作 用〕 この発明においては、加圧加熱殺菌釜内におけ
る殺菌時において、その圧力を上記のようにA−
Bの圧力に設定して行うため、ポリエチレン、ポ
リプロピレン等の熱収縮性材料からなる容器を用
いても、容器自体が熱圧変形せず、初期の形状を
保持する。これは、100℃を超える温度において、
加圧加熱殺菌する場合でも同様である。したがつ
て、コーヒー飲料の長期保存性の劣化はもとよ
り、蓋が上下に撓んだり膨張したりするという外
観の劣化も生じない。これについて、図面を参照
して説明する。 図面において、Aは熱収縮性容器を用いて加圧
加熱殺菌をするときの熱収縮性容器内の圧力曲
線、Bは金属缶のような熱収縮性容器を用いた時
の非熱収縮性容器内の圧力曲線、Cは本発明によ
る圧力曲線である。なお、圧力曲線Aは、実際に
は熱収縮性容器内の圧力を直接測定すると破裂し
て測定不能となるため、熱収縮性容器内の圧力
と、加圧加熱殺菌釜内圧力とを同圧となるよう制
御して容器の破裂を防止して測定される。 したがつて、圧力曲線Aは、熱収縮性容器を用
いて加圧加熱殺菌するときの熱収縮性容器内の圧
力と同圧となるよう制御された加圧加熱殺菌釜内
の圧力曲線を意味する。 通常、金属缶等の非熱収縮性容器を用いた場合
には、曲線Bに示すように、加圧加熱殺菌釜内の
圧力が上昇するにともない、容器の内圧も上昇
し、加圧加熱殺菌釜内の内圧が下がると、容器の
内圧も下がる。ところが、熱収縮性合成樹脂製容
器を用いると、釜内の圧力が下がつても、曲線A
の右端に示すように、容器の内圧は下がらないま
まとなつてしまう。これは、容器が熱収縮し内容
積は小さくなつたが、容器内のコーヒー飲料、空
気量は変化しないためであり、そのため、容器内
の残存空気が膨張し、容器自体が胴膨れして変形
する。これを急激に冷やすと、ところどころ凹ん
で変形が一層著しくなる。 そこで、この発明者らが、容器内圧を中心に研
究を重ねた結果、加圧加熱殺菌時において、非熱
収縮性容器を用いた時の容器内の圧力(曲線B)
を基準に、この圧力から、熱収縮性合成樹脂製容
器の熱収縮にもとづく容器内圧の上昇にみあう圧
力α(曲線Aの圧力−曲線Bの圧力)を減じた値
に、加圧加熱殺菌釜内の圧力を設定(曲線C)す
ると、上記殺菌終了後に、熱収縮性合成樹脂製容
器の内圧が下がるようになり、容器の変形が阻止
されることをつきとめ、この発明に到達した。な
お、上記曲線A,Bは、あらかじめ予備実験によ
り、求めうるものである。 つぎにこの発明を詳しく説明する。 この発明の熱収縮性容器入りコーヒー飲料は、
コーヒー飲料と、これを密封収容する熱収縮性合
成樹脂製容器と、加圧加熱殺菌釜とを用いる。 上記コーヒー飲料は、特に制限するものではな
く、コーヒーを有効成分とする各種の飲料があげ
られる。その代表例としては、ブラツクコーヒ
ー、ミルクコーヒー、香辛料入りコーヒー等があ
げられる。 上記熱収縮性合成樹脂製容器は、特に制限する
ものではなく、各種のプラスチツク材料製のもの
があげられ、またその形状も自由である。通常、
カツプ状の容器と、その開口を密封する蓋材とか
ら構成されている。上記容器の代表的な構成材料
を例示するとポリエチレン、ナイロン、ポリカー
ボネート、ポリ塩化ビニリデン、ポリエチレン等
があげられる。これらは単独で用いてもよいし、
あるいはそれらの数種以上を組み合わせて複合材
料として用いてもよい。その複合材の代表例とし
ては、ナイロンとポリプロピレン、ポリカーボネ
ートとポリプロピレン、ポリオレフインとエチレ
ン−酢酸ビニル共重合体ケン化物とポリオレフイ
ン、ポリプロピレンポリ塩化ビニリデンとポリプ
ロピレン、ポリエチレンとポリ塩化ビニリデンと
ポリエチレン、ポリプロピレンとエチレン−酢酸
ビニル共重合体ケン化物とポリプロピレン、ポリ
エチレンとエチレン−酢酸ビニル共重合体ケン化
物とポリエチレン等があげられる。このなかでも
ポリプロピレンとエチレン−酢酸ビニル共重合体
ケン化物とポリプロピレンの三層構造複合体が気
密性に富んでおり、長期保存性の点において好結
果をもたらす。しかしながら、中心層に上記エチ
レン−酢酸ビニル共重合体ケン化物を用いたハイ
バリヤータイプの複合体は熱収縮性が高いため、
加圧加熱殺菌時において、その操作に注意を要す
るのである。また、上記エチレン−酢酸ビニル共
重合体ケン化物に代えてポリ塩化ビニリデンを用
いたハイバリヤータイプの複合材も上記と同様熱
収縮性が高いため、これも加圧加熱殺菌条件等の
設定において注意を要する。 この発明は、例えば上記のような熱収縮性合成
樹脂製容器のカツプ状の容器本体にコーヒー飲料
を充填し、これの開口に同材料からなる蓋材を冠
着し、両者の接合部をヒートシール等の公知の密
封方法により密封したのち、加熱加圧釜内におい
て熱圧殺菌を行う。例えば、これを圧力制御可能
な蒸気式レトルト機等の加圧加熱殺菌釜内に入
れ、115℃で15分程度加圧加熱殺菌する。この場
合、上記加圧加熱殺菌時の釜内の圧力は、予備実
験によつて求められた曲線Aと曲線Bとから、そ
の圧力差α分を求め、その圧力差αを上記曲線B
から減じた圧力に設定して行われる。この場合、
上記圧力差α等は、経時的に変化するため、釜内
の圧力もそれに応じて調節される。この場合、殺
菌の初期から殺菌の終期まで圧力差αが保たれる
ことは必要ではなく(曲線Aの右端側ではαが異
常に高くなるからそれを保ち得ない)、加熱加圧
殺菌の初期から最高圧力時を含む大部分の時間帯
に圧力差αが保たれれば、熱収縮性合成樹脂製容
器の変形は防止される。 このようにして得られた熱収縮性容器入りコー
ヒー飲料は、加圧加熱殺菌によりコーヒー飲料自
体の殺菌がなされていて極めて長期保存性を有す
るうえ、熱収縮性容器自体の熱収縮変形が防がれ
ているため、初期の美麗な形状がそのまま保たれ
ている。 〔発明の効果〕 以上のように、この発明の熱収縮性容器入りコ
ーヒー飲料の製法では、加熱加圧殺菌時における
殺菌釜内の圧力を(A)−(B)に設定して行うため、ポ
リエチレン、ポリプロピレン等の熱収縮性材料か
らなる容器を用い、これにコーヒー飲料を充填密
封して100℃を超える温度で加熱加圧殺菌をして
も、容器本体の変形が全く生じない。したがつ
て、前記提案法のように、蓋が上方に膨らんだ
り、下方に凹んだりして外観が見苦しくなつてい
るという事態を招くことなく、コーヒー飲料の殺
菌を行うことができる。 つぎに、実施例について比較例と併せて説明す
る。 〔準 備〕 まず、容器に充填するコーヒー飲料としてつぎ
のようなコーヒー飲料を準備した。すなわち、市
販のアイスコーヒー用レギユラーコーヒー(シテ
イロースト)を公知のコーヒーミルで粉砕し、こ
の粉砕コーヒー100gを公知の方法によりドリツ
プ抽出してコーヒー抽出液100gをつくり、この
コーヒー抽出液を用い、これにグラニユー糖およ
び水を添加し、抽出液50%、グラニユー糖8%お
よび水42%の組成のコーヒー飲料をつくつた。ま
た、このコーヒー飲料を充填する容器としてポリ
プロピレンとエチレン−酢酸ビニル共重合体ケン
化物(エバール)とポリプロピレンの三層複合体
からなる内容積500mlのブロー成形ボトル容器
(プラスチツク容器)と、内容積500mlの金属缶を
準備した。 上記のようなコーヒー飲料および容器を用い、
つぎのようにして容器入りコーヒー飲料を作製し
た。 実施例 1 上記内容積500mlのブロー成形カツプ形ボトル
内に上記のようにして得られたコーヒー飲料480
mlを常温で充填し、上記ボトルの開口に蓋をし、
その接合部をヒートシールにより密封した。この
場合の蓋は、ポリエステルとアルミニウムとポリ
プロピレンのラミネートシール蓋を用いた。つぎ
に、この密封体を圧力制御可能な蒸気式レトルト
機に入れ、115℃、27分の条件のレトルト殺菌を
施し製品とした。この場合の加圧加熱殺菌は、予
めテストにより、図面に示す曲線A,Bを求め、
その圧力差αを測定し、それに基づき曲線Cをつ
くり、この曲線Cに準じて釜内の圧力を調節して
行つた。 比較例 1 加圧加熱殺菌を定差圧レトルト方式(レトルト
釜内の圧力を容器の内圧より常時一定圧力だけ高
くした状態で殺菌する方式)により行い、それ以
外は実施例1と同様にして製品を製造した。 尚、容器内の圧力変化測定用としては、熱収縮
変形による内圧測定不能を防止するため、金属缶
を用い、容器変形の官能評価については、実施例
と同じくプラスチツク容器を用いた。
[Industrial Field of Application] The present invention relates to a method for producing a coffee beverage packed in a heat-shrinkable container. [Prior Art] Generally, coffee drinks are packaged in cans and sold as canned coffee drinks. This type of canned coffee beverage is manufactured by putting the coffee beverage into a can, sealing it, and placing it in a pressure and heat sterilization pot (retort pot), which then heats and pressurizes the coffee beverage inside the container to sterilize it. has been done. In this case, the sealed can always contains a small amount of air, which expands due to pressure heating by the pressure heating pot, causing the internal pressure of the can to increase significantly, and in some cases, the can resulting in rupture. In order to prevent such a can bursting phenomenon, the pressure inside the pressurized heating sterilization pot is maintained higher than the internal pressure of the container to prevent the can from bursting. Recently, attempts to use plastic containers in this field have been attracting attention. Plastic containers have a high degree of freedom in molding, so they can be easily formed into desired shapes and are inexpensive. However, when plastic containers are placed in a pressurized and heated sterilizer and subjected to pressurized and heated sterilization, their pressure resistance is very weak, so they may deform or burst. Furthermore, even if a constant differential pressure retort method (sterilization is carried out with the internal pressure of the retort pot being the same as the container internal pressure or with a constant pressure difference at all times) is adopted, in which pressurization of the air-containing plastic container is used for heat sterilization, The container shrinks due to heat,
Because the initial shape cannot be maintained, when plastic molded products are used as containers for coffee beverages, the coffee beverage alone is sterilized by pressure and heat, and then poured into the plastic container and sealed. There is. However, even with this method, bacteria adhering to the plastic container itself are sealed together with the coffee beverage, and these bacteria multiply during storage, leading to spoilage of the coffee beverage. Therefore, such coffee beverages packaged in plastic containers are only used for short-term storage under refrigerated distribution. In order to overcome these drawbacks, it has been considered to sterilize the plastic container itself under heat and pressure, but in this case, heat shrinkage of the container itself still occurs, which poses a considerable practical difficulty. [Problems to be Solved by the Invention] On the other hand, when a beverage such as coffee is placed in a cup-shaped container made of a laminated material of polyethylene and aluminum foil, and the container is sealed, the container is heated under pressure for the purpose of retort sterilization. In addition, a technique has been proposed in which a sealing lid is used as the lid of the cup-shaped container, which bends vertically due to the pressure difference between the inside and outside of the container to absorb the pressure difference (Japanese Utility Model Publication No. 59-765). This technology prevents the container itself from deforming by allowing the seal lid to flex and deform up and down in response to changes in pressure to absorb pressure differences, but the sterilization temperature is approximately 80 to 100 degrees Celsius. However, if retort sterilization is performed at temperatures exceeding 100°C, deformation of the container body itself cannot be prevented even if a sealing lid is used. In addition, according to this technology, the sealing lid expands upward or is recessed downward, which creates a negative impression on consumers (as if the lid has been pushed up due to decomposition). may give a bad impression). This invention was made in view of these circumstances, and provides a coffee beverage packaged in a heat-shrinkable container that does not deform due to heat during heat-pressure sterilization and can withstand heat-pressure sterilization at high temperatures. The purpose is to provide a manufacturing method for. [Means for Solving the Problems] In order to achieve the above object, the method for producing a coffee beverage in a heat-shrinkable container of the present invention includes placing a coffee beverage in a container, sealing the container, and heating the container in a pressurized heating pot. A method for producing a coffee beverage in a heat-shrinkable container that is sterilized by pressure, in which the container is made of heat-shrinkable synthetic resin, and the pressure during the sterilization by heat and pressure is set to the following (A)-(B). It is configured to be set to a certain pressure. (A): Pressure inside a non-heat-shrinkable container when coffee beverage is filled into the non-heat-shrinkable container and heated and pressurized. (B): Pressure of (a)-(A) below. (a): Pressure inside a heat-shrinkable synthetic resin container when coffee beverage is filled into the heat-shrinkable synthetic resin container and heated and pressurized (a) (A): Above pressure (A) [Function] This invention During sterilization in the pressure heating sterilization oven, the pressure is set to A- as described above.
Since the pressure is set to B, even if a container made of a heat-shrinkable material such as polyethylene or polypropylene is used, the container itself will not be deformed under heat and pressure and will maintain its initial shape. This means that at temperatures above 100℃,
The same applies to the case of pressure and heat sterilization. Therefore, not only is there no deterioration in the long-term shelf life of the coffee beverage, but there is also no deterioration in the appearance of the lid, such as vertical bending or expansion. This will be explained with reference to the drawings. In the drawings, A is a pressure curve inside a heat-shrinkable container when pressurized and heat sterilized using a heat-shrinkable container, and B is a non-heat-shrinkable container when a heat-shrinkable container such as a metal can is used. The pressure curve C is the pressure curve according to the present invention. In addition, pressure curve A is based on the pressure inside the heat-shrinkable container and the pressure inside the pressurized heat sterilization pot, which is the same pressure, because if the pressure inside the heat-shrinkable container is actually measured directly, it will burst and become impossible to measure. Measurements are made to prevent the container from bursting. Therefore, the pressure curve A means the pressure curve inside the pressure heat sterilization pot that is controlled to be the same pressure as the pressure inside the heat shrink container when performing pressure heat sterilization using a heat shrink container. do. Normally, when a non-heat-shrinkable container such as a metal can is used, as shown in curve B, as the pressure inside the pressure and heat sterilization pot increases, the internal pressure of the container also rises, and the pressure and heat sterilization occurs. When the internal pressure in the pot decreases, the internal pressure in the container also decreases. However, when using a container made of heat-shrinkable synthetic resin, even if the pressure inside the pot decreases, the curve A
As shown on the right side of the figure, the internal pressure of the container remains unchanged. This is because although the container heat-shrinks and its internal volume becomes smaller, the amount of coffee beverage and air inside the container remains unchanged.As a result, the remaining air inside the container expands, causing the container itself to bulge and become deformed. do. If it is cooled rapidly, it will dent in places and become even more deformed. Therefore, as a result of repeated research focusing on the internal pressure of the container, the inventors found that the pressure inside the container (curve B) when using a non-heat shrinkable container during pressurized heat sterilization
Based on this pressure, the pressure α (pressure of curve A - pressure of curve B) corresponding to the increase in container internal pressure due to heat contraction of the heat-shrinkable synthetic resin container is subtracted from this pressure. The present invention was achieved by finding that when the pressure inside the pot is set (curve C), the internal pressure of the heat-shrinkable synthetic resin container decreases after the sterilization is completed, thereby preventing the container from deforming. Note that the above curves A and B can be determined in advance through preliminary experiments. Next, this invention will be explained in detail. The coffee beverage in a heat-shrinkable container of this invention is
A coffee beverage, a heat-shrinkable synthetic resin container for sealing the coffee beverage, and a pressurized heat sterilization pot are used. The coffee beverages mentioned above are not particularly limited, and include various beverages containing coffee as an active ingredient. Typical examples include black coffee, milk coffee, and spiced coffee. The heat-shrinkable synthetic resin container is not particularly limited, and may be made of various plastic materials, and its shape may be arbitrary. usually,
It consists of a cup-shaped container and a lid that seals the opening. Typical constituent materials for the container include polyethylene, nylon, polycarbonate, polyvinylidene chloride, polyethylene, and the like. These may be used alone or
Alternatively, a combination of several or more of them may be used as a composite material. Typical examples of such composite materials include nylon and polypropylene, polycarbonate and polypropylene, polyolefin and saponified ethylene-vinyl acetate copolymer and polyolefin, polypropylene polyvinylidene chloride and polypropylene, polyethylene and polyvinylidene chloride and polyethylene, polypropylene and ethylene- Examples include saponified vinyl acetate copolymer and polypropylene, polyethylene and saponified ethylene-vinyl acetate copolymer and polyethylene. Among these, a three-layer structure composite of polypropylene, a saponified ethylene-vinyl acetate copolymer, and polypropylene is highly airtight and provides good results in terms of long-term storage. However, high-barrier type composites using the above saponified ethylene-vinyl acetate copolymer in the center layer have high heat shrinkability;
Care must be taken when performing pressure and heat sterilization. In addition, a high barrier type composite material using polyvinylidene chloride instead of the saponified ethylene-vinyl acetate copolymer has high heat shrinkage as well, so please be careful when setting the pressure and heat sterilization conditions. It takes. In this invention, for example, the cup-shaped container body of a heat-shrinkable synthetic resin container as described above is filled with a coffee beverage, a lid made of the same material is attached to the opening of the container, and the joint between the two is heated. After sealing using a known sealing method such as a seal, heat and pressure sterilization is performed in a heating and pressurizing pot. For example, this is placed in a pressure-heating sterilization pot such as a steam-type retort machine that can control pressure, and sterilized by pressure and heat at 115°C for about 15 minutes. In this case, the pressure inside the pot at the time of pressure and heat sterilization is determined by calculating the pressure difference α from curve A and curve B obtained in a preliminary experiment, and converting the pressure difference α into the pressure difference α from curve B.
This is done by setting the pressure at a reduced pressure. in this case,
Since the pressure difference α etc. change over time, the pressure within the pot is adjusted accordingly. In this case, it is not necessary to maintain the pressure difference α from the initial stage of sterilization to the final stage of sterilization (at the right end of curve A, α becomes abnormally high, so it cannot be maintained), and If the pressure difference α is maintained for most of the time including the maximum pressure, the heat-shrinkable synthetic resin container will be prevented from deforming. The thus obtained coffee beverage packaged in a heat-shrinkable container has been sterilized by pressure heating and has an extremely long shelf life, and the heat-shrinkable container itself is not deformed due to heat shrinkage. Because of this, the original beautiful shape has been preserved. [Effects of the Invention] As described above, in the method for producing a coffee beverage in a heat-shrinkable container of the present invention, the pressure in the sterilization pot is set to (A)-(B) during heat-pressure sterilization. Even if a container made of a heat-shrinkable material such as polyethylene or polypropylene is used, the container is filled with coffee beverage, sealed, and sterilized by heating and pressure at a temperature exceeding 100°C, the container body does not deform at all. Therefore, unlike the proposed method, the coffee beverage can be sterilized without causing the lid to bulge upward or dent downward, resulting in an unsightly appearance. Next, examples will be described together with comparative examples. [Preparation] First, the following coffee beverage was prepared as a coffee beverage to be filled into a container. That is, commercially available regular coffee (city roast) for iced coffee is ground with a known coffee mill, 100 g of this ground coffee is drip-extracted by a known method to make 100 g of coffee extract, and this coffee extract is used. Granulated sugar and water were added to this to create a coffee beverage with a composition of 50% extract, 8% granulated sugar, and 42% water. In addition, as a container for filling this coffee beverage, a blow molded bottle container (plastic container) with an internal volume of 500 ml made of a three-layer composite of polypropylene, saponified ethylene-vinyl acetate copolymer (EVAL), and polypropylene, and a 500 ml internal volume blow-molded bottle container (plastic container). A metal can was prepared. Using a coffee beverage and container as described above,
A packaged coffee beverage was produced in the following manner. Example 1 480 g of the coffee beverage obtained as described above was placed in a blow-molded cup-shaped bottle with an internal volume of 500 ml.
ml at room temperature, put a lid on the opening of the bottle,
The joint was sealed by heat sealing. The lid in this case was a laminate seal lid made of polyester, aluminum, and polypropylene. Next, this sealed body was placed in a pressure-controllable steam retort machine, and retort sterilized at 115°C for 27 minutes to produce a product. In this case, pressurized heat sterilization is performed by determining curves A and B shown in the drawing in advance by testing,
The pressure difference α was measured, a curve C was created based on it, and the pressure inside the pot was adjusted according to this curve C. Comparative Example 1 Pressurized heat sterilization was performed using a constant differential pressure retort method (a method in which sterilization is performed with the pressure inside the retort pot always being higher than the internal pressure of the container by a constant pressure), and the product was produced in the same manner as in Example 1 except for the following. was manufactured. A metal can was used to measure the pressure change inside the container in order to prevent internal pressure from being impossible to measure due to heat shrinkage deformation, and a plastic container was used for the sensory evaluation of container deformation as in the example.

【表】 比較例 2 蒸気式レトルト釜による加圧加熱殺菌を取り止
め、コーヒー飲料480mlを湯煎で85℃まで昇温さ
せ、直ちに前記プラスチツク製容器に充填し、ヒ
ートシールにより密封して製品とした。これは従
来のホツトパツク方式といわれている方式にもと
づくものである。 以上の実施例および比較例で得られた熱収縮性
容器入りコーヒー飲料を各30個ずつ用い、それぞ
れ10個ずつをサンプルとして容器の変形、保存性
試験に供した。その結果はつぎのとおりである。 (容器変形の官能評価) 一般パネル10名を使用して、上記のようにして
得られた実施例および比較例1,2をそれぞれサ
ンプルA,B,Cとし、そのサンプルA,B,C
についてシエツフエの一対比較法にて外観変形の
状態を官能評価させた。その結果は第2表のとお
りであり、実施例品であるサンプルAの外観変形
が比較例1とは5%有意で、比較例2のものに比
べて1%有意で優れていることがわかる。
[Table] Comparative Example 2 Pressure heat sterilization using a steam retort pot was canceled, and 480 ml of coffee beverage was heated to 85°C in a water bath, immediately filled into the plastic container, and sealed with a heat seal to produce a product. This is based on the conventional hot pack method. Thirty coffee beverages in heat-shrinkable containers obtained in each of the above Examples and Comparative Examples were used, and 10 of each were used as samples for container deformation and storage stability tests. The results are as follows. (Sensory evaluation of container deformation) Using 10 general panels, Examples and Comparative Examples 1 and 2 obtained as described above were designated as Samples A, B, and C, respectively.
The state of appearance deformation was sensory evaluated using Sietshue's paired comparison method. The results are shown in Table 2, and it can be seen that the appearance deformation of Sample A, which is an example product, is 5% significantly different from Comparative Example 1 and 1% significantly superior to Comparative Example 2. .

【表】 (保存性試験) サンプルA(実施例品)、B(比較例1品)、C
(比較例2品)をそれぞれ40℃の雰囲気中に入れ、
7日後、14日後、35日後に取り出しそれぞれ下記
の項目の試験を行つた。 (1) 官能評価 7名のコーヒー専門パネルにより、5段階の
評点を付与することにより、内容物の味を、冷
凍保存品を標準として評価した。その結果を第
3表に示す。
[Table] (Storability test) Sample A (Example product), B (Comparative example 1 product), C
(Comparative Example 2 products) were placed in an atmosphere of 40℃,
After 7 days, 14 days, and 35 days, the samples were taken out and tested for the following items. (1) Sensory evaluation A panel of 7 coffee experts evaluated the taste of the contents using a frozen product as a standard by assigning a 5-level rating. The results are shown in Table 3.

【表】 第3表において、+は標準品より味が優れて
いることを示し、−は味が劣つていることを示
す。 (2) 微生物試験 サンプルA,B,Cを37℃の雰囲気中に保存
し、7日、14日、35日後に取り出し各5検体標
準寒天培養法(37℃、48hr)にてサンプル1ml
当たりの一般生菌数を測定するとともに、さら
に各々5検体について、100℃、10分間のヒー
トシヨツクを与えたのち、サンプル1mlを変法
TGC培地で嫌気培養(55℃、48hr)し、耐熱
性芽胞菌の成育の有無を判定した。その結果を
第4表および第5表に示す。
[Table] In Table 3, + indicates that the taste is superior to the standard product, and - indicates that the taste is inferior. (2) Microbial test Samples A, B, and C were stored in an atmosphere at 37°C, and taken out after 7, 14, and 35 days, 1 ml of each sample was cultured using the standard agar culture method (37°C, 48 hours).
In addition to measuring the number of viable bacteria per sample, each 5 samples were subjected to a heat shock at 100℃ for 10 minutes, and 1 ml of the sample was heated using a modified method.
Anaerobic culture (55°C, 48 hours) was performed in TGC medium, and the presence or absence of growth of heat-resistant spore bacteria was determined. The results are shown in Tables 4 and 5.

【表】【table】

【表】 第4表、第5表から明らかなように、サンプ
ルA(実施例品)は、いずれも一般生菌数およ
び耐熱性芽胞菌が見られず、優れた長期保存性
を有することがうかがえる。 (3) 褐色度の測定 サンプルA,B,Cを製造直後および40℃雰
囲気下において、7日、14日、35日間保管しち
のちの褐色度を、日本電色工業社製の比色計を
用い、透過色L値を測定することにより求め
た。透過色L値が小さい程褐変の程度が大きい
ことを示している。なお、測定にあたつてはコ
ーヒー固形分が1%になるように希釈して行つ
た。その結果を第6表に示す。
[Table] As is clear from Tables 4 and 5, sample A (example product) showed no general viable bacteria count or heat-resistant spore bacteria, indicating that it has excellent long-term storage stability. I can see it. (3) Measurement of brownness Samples A, B, and C were stored immediately after production and in an atmosphere of 40°C for 7, 14, and 35 days, and then the brownness was measured using a colorimeter manufactured by Nippon Denshoku Kogyo Co., Ltd. It was determined by measuring the transmitted color L value. The smaller the transmitted color L value is, the greater the degree of browning is. In addition, in the measurement, the coffee was diluted to have a solid content of 1%. The results are shown in Table 6.

【表】 第6表より、サンプルA(実施例品)は、従
来レトルト法によるサンプルBとほぼ同程度の
褐色度合を有しており、加熱殺菌時においてメ
イラード反応が良好に進行して色および香りが
好適な状態になつていることがうかがえ、この
状態は経日によつて褐色変化があまり進まず保
存性がよい(0日目と35日後とのL値の差が小
さいことからわかる)ことがわかる。 以上のように、サンプルA(実施例品)は、容
器の変形が殆どなく、しかも保存性試験において
も良好な成績を示し、従来のレトルト法およびホ
ツトパツク方式による製品に比べて優れているこ
とがわかる。
[Table] From Table 6, sample A (example product) has almost the same degree of browning as sample B produced by the conventional retort method, and the Maillard reaction progresses well during heat sterilization, resulting in a change in color and It can be seen that the fragrance is in a suitable state, and in this state, the browning does not progress much over time, and storage is good (as can be seen from the small difference in L value between day 0 and after 35 days). I understand that. As mentioned above, Sample A (example product) has almost no deformation of the container and also showed good results in the storage test, indicating that it is superior to products produced by the conventional retort method and hot pack method. Recognize.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の加圧加熱殺菌時の圧力を説
明するための圧力曲線図である。 A…熱収縮性容器を用いた時の容器内の圧力曲
線。B…熱収縮性容器を用いた時の容器内の圧力
曲線。C…本発明における圧力曲線。
The drawing is a pressure curve diagram for explaining the pressure during pressurized heat sterilization of the present invention. A...Pressure curve inside the container when a heat-shrinkable container is used. B...Pressure curve inside the container when a heat-shrinkable container is used. C...Pressure curve in the present invention.

Claims (1)

【特許請求の範囲】 1 コーヒー飲料を容器に入れて密封し、これを
加圧加熱釜内において加熱加圧殺菌する熱収縮性
容器入りコーヒー飲料の製法であつて、上記容器
として熱収縮性合成樹脂製のものを用い、上記加
熱加圧殺菌時の圧力を下記の(A)−(B)の圧力に設定
して行うことを特徴とする熱収縮性容器入りコー
ヒー飲料の製法。 (A):非熱収縮性容器にコーヒー飲料を充填し加熱
加圧するときの非熱収縮性容器内の圧力。 (B):下記の(a)−(A)の圧力。 (a):熱収縮性合成樹脂製容器にコーヒー飲料を
充填し加熱加圧するときの熱収縮性合成樹脂
製容器内の圧力(a) (A):上記圧力(A)
[Scope of Claims] 1. A method for producing a coffee beverage in a heat-shrinkable container, in which a coffee beverage is placed in a container, sealed, and sterilized by heating and pressure in a pressure-heating pot, the container being made of heat-shrinkable synthetic material. 1. A method for producing a coffee beverage in a heat-shrinkable container, which is made of resin and is carried out by setting the pressure during the heat-pressure sterilization to the following pressures (A) to (B). (A): Pressure inside a non-heat-shrinkable container when coffee beverage is filled into the non-heat-shrinkable container and heated and pressurized. (B): Pressure of (a)-(A) below. (a): Pressure inside a heat-shrinkable synthetic resin container when coffee beverage is filled into the heat-shrinkable synthetic resin container and heated and pressurized (a) (A): Above pressure (A)
JP8388685A 1985-04-18 1985-04-18 Coffee dring containing heat-shrinkable vessel Granted JPS61244724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8388685A JPS61244724A (en) 1985-04-18 1985-04-18 Coffee dring containing heat-shrinkable vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8388685A JPS61244724A (en) 1985-04-18 1985-04-18 Coffee dring containing heat-shrinkable vessel

Publications (2)

Publication Number Publication Date
JPS61244724A JPS61244724A (en) 1986-10-31
JPH0571457B2 true JPH0571457B2 (en) 1993-10-07

Family

ID=13815137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8388685A Granted JPS61244724A (en) 1985-04-18 1985-04-18 Coffee dring containing heat-shrinkable vessel

Country Status (1)

Country Link
JP (1) JPS61244724A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59785B2 (en) * 1976-01-13 1984-01-09 松下電器産業株式会社 Contact inspection method for electrical parts and other parts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59785U (en) * 1982-06-28 1984-01-06 石井 和則 clothes box
JPS59106344U (en) * 1982-12-28 1984-07-17 藤森工業株式会社 Beverage packaging bags

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59785B2 (en) * 1976-01-13 1984-01-09 松下電器産業株式会社 Contact inspection method for electrical parts and other parts

Also Published As

Publication number Publication date
JPS61244724A (en) 1986-10-31

Similar Documents

Publication Publication Date Title
CN101616609B (en) System and method for packaging
EP0240571B1 (en) Microwave-heated cooked foods
US4393088A (en) Sterilizing process for foods by applying microwaves thereto
SE515816C2 (en) Ways of heating and pressure heat preserving a sealed and goods-filled parallelepipedic package
EP3154872B1 (en) Dual ovenable packages for perishable food products
JPH0571457B2 (en)
WO1987000506A1 (en) Long life food product
US3185579A (en) Packaging of freshly baked bread
JP2549842B2 (en) Manufacturing method of heat-sterilized solid food containers
MXPA02002521A (en) Method for producing a sealed container for oven cooked products or similar.
JPH0764367B2 (en) Microwave cooked food
US10583958B2 (en) Container for preserved food with a flexible bottom, and corresponding production method
JPS60188030A (en) Preparation of frozen "sushi"
JP3130793B2 (en) Sealed container
DE2654463A1 (en) Extending stability of prepared foods packed in foil - has sealed pack heat treated to temp. above 130 degrees centigrade
Brody The role of food packaging in product development
JPS5840021Y2 (en) Anti-deformation container
JPS63317446A (en) Plastic container and its preparation
KR200285143Y1 (en) Lunch box with partition of lid
JPS5978672A (en) Retort sterilization of food and drug packed in plastic container
JPH04182113A (en) Manufacture of packaged container
Panjagari et al. Packaging of Dairy Products
Gould et al. Heat processing of vegetables in flexible films
JPH11104023A (en) Manufacture of tableware for sterilizedly reserving cooking by means of lap-film
JPS61249372A (en) Production of retort food and drink