JPH0571438A - Fuel injector - Google Patents

Fuel injector

Info

Publication number
JPH0571438A
JPH0571438A JP25980091A JP25980091A JPH0571438A JP H0571438 A JPH0571438 A JP H0571438A JP 25980091 A JP25980091 A JP 25980091A JP 25980091 A JP25980091 A JP 25980091A JP H0571438 A JPH0571438 A JP H0571438A
Authority
JP
Japan
Prior art keywords
injection
fuel
valve
control valve
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25980091A
Other languages
Japanese (ja)
Inventor
Satoru Sasaki
覚 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP25980091A priority Critical patent/JPH0571438A/en
Publication of JPH0571438A publication Critical patent/JPH0571438A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the optimum injection rate for combustion such that even in the case of using high pressure fuel, in the initial stage of injection, the injection rate is low, and in the later stae, the injection rate is high by providing a control valve on the low pressure side of a directional control valve of a fuel injection valve to control the pressure of a back pressure chamber related to a nozzle needle. CONSTITUTION:An injector 3 disposed in every cylinder of an engine includes an injection hole opened and closed by the vertical motion of a nozzle needle 9, and a throttle member 8 having an orifice acting on the pressure reducing side and a back pressure chamber 7 are disposed above the nozzle needle 9. Fuel injection is controlled by turning on and off an injection control three-way solenoid valve 6 which is a directional control valve in the injector 3. In this case, in order to attain a designated injection rate, a back pressure control valve 4 which is a control valve is connected to the low pressure side of the three-way solenoid valve 6. In the no-injection state, the valve 4 closes the low pressure side of the three-way solenoid valve 6, and in the injection state, a spool valve 11 is operated by applying designated voltage to a piezo electric element 12 to control fuel flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジンに
高圧燃料を噴射供給する燃料噴射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection device for injecting high pressure fuel into a diesel engine.

【0002】[0002]

【従来技術】従来、特開昭59−165858号公報
「ディーゼル・エンジンのための電磁制御インジェクシ
ョン・システム」にて開示されたように、コモンレール
と呼ばれる一種のサージタンクに高圧燃料を蓄圧し、こ
れを噴射弁の開閉によりディーゼルエンジンに燃料を噴
射供給する蓄圧式燃料噴射装置が知られている。
2. Description of the Related Art Conventionally, as disclosed in Japanese Unexamined Patent Publication No. 59-165858, "Electromagnetically controlled injection system for diesel engine", high pressure fuel is accumulated in a kind of surge tank called a common rail, There is known a pressure accumulating fuel injection device which injects fuel into a diesel engine by opening and closing an injection valve.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記蓄圧式
燃料噴射装置において、排ガス中のNOX(窒素酸化物)
を低減する方法としては、噴射タイミングの遅延制御や
噴射率制御などが考えられる。つまり、燃料噴射弁の噴
射孔を開閉するノズルニードルに作用する背圧を絞りに
より制御して噴射初期から徐々に噴射率を高めていき噴
射終了時には直ちに噴射をカットするデルタ(Δ)形噴
射率を得るような方法である。又、燃料噴射弁の噴射圧
は高圧である程、エンジンに供給される燃料が微粒化さ
れ、結果的に、排ガス中のスモークやHCが低減するこ
とが知られており、噴射圧高圧化の要求が高まってきて
いる。しかし、要求される噴射圧が従来より更に高圧と
なると、背圧を制御する上記絞りの効果が薄れてしまい
燃焼に最適な噴射率を得ることが難しいという問題があ
った。
By the way, in the above pressure accumulating fuel injection device, NO X (nitrogen oxide) in exhaust gas
As a method of reducing the fuel consumption, injection timing delay control, injection rate control, or the like can be considered. In other words, the back pressure acting on the nozzle needle that opens and closes the injection hole of the fuel injection valve is controlled by the throttle to gradually increase the injection rate from the initial injection and immediately cut the injection at the end of injection. Is the way to get. Further, it is known that the higher the injection pressure of the fuel injection valve is, the finer the fuel supplied to the engine is, resulting in the reduction of smoke and HC in the exhaust gas. The demand is increasing. However, when the required injection pressure becomes higher than the conventional one, there is a problem that it is difficult to obtain an optimum injection rate for combustion because the effect of the throttle for controlling the back pressure is weakened.

【0004】本発明は、上記の課題を解決するために成
されたものであり、その目的とするところは、高圧燃料
を用いても噴射初期に低噴射率であり噴射後期に高噴射
率となるような燃焼に最適な所謂ブーツ形の噴射率を得
ることができる燃料噴射装置を提供することである。
The present invention has been made to solve the above problems, and its object is to achieve a low injection rate in the initial stage of injection and a high injection rate in the latter stage of injection even if high-pressure fuel is used. It is an object of the present invention to provide a fuel injection device capable of obtaining a so-called boot-type injection rate that is optimum for such combustion.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の発明の構成は、燃料噴射弁の噴射孔を開閉するノズル
ニードルに作用する背圧を保持する背圧室の圧力を切換
弁によって燃料の供給経路側である高圧側と前記燃料の
戻し経路側である低圧側とに切換制御して前記噴射孔よ
り前記燃料を噴射するようにした燃料噴射装置におい
て、前記切換弁の前記低圧側と直列に配設され、該低圧
側の燃料の流れを遮断する第1の状態と前記低圧側の燃
料の一部を逃がす第2の状態と前記低圧側の燃料を完全
に逃がす第3の状態との少なくとも3つの状態を取る制
御弁と、無噴射時には前記切換弁を高圧側とすると共に
前記制御弁を第1の状態とし、噴射初期では前記切換弁
を低圧側に切り換えると同時に前記制御弁を第2の状態
とし、噴射後期では前記切換弁を低圧側に切り換えたま
まで前記制御弁を第3の状態とする制御装置とを備えた
ことを特徴とする。
SUMMARY OF THE INVENTION According to the structure of the invention for solving the above problems, the pressure of a back pressure chamber for holding a back pressure acting on a nozzle needle for opening and closing an injection hole of a fuel injection valve is controlled by a switching valve. In the fuel injection device configured to inject the fuel from the injection hole by switching control between the high pressure side that is the supply path side and the low pressure side that is the fuel return path side, and the low pressure side of the switching valve. A first state in which the low-pressure side fuel flow is cut off, a second state in which a part of the low-pressure side fuel is released, and a third state in which the low-pressure side fuel is completely released are arranged in series. Of at least three states, the control valve is set to the high pressure side and the control valve is set to the first state at the time of no injection, and the control valve is switched to the low pressure side at the initial stage of injection and at the same time. In the second state, in the latter stage of injection Characterized by comprising a control device for a serial switching valve to remain switched to the low-pressure side of the control valve the third state.

【0006】[0006]

【作用及び効果】無噴射時には制御装置により燃料噴射
弁の切換弁を高圧側とすると共に制御弁を第1の状態と
して上記切換弁の低圧側の燃料の流れを遮断している。
次に、噴射初期では制御装置により燃料噴射弁の切換弁
が低圧側に切り換えられると同時に制御弁を第2の状態
として上記切換弁の低圧側の燃料の一部が逃がされる。
すると、上記背圧室の燃料が制御弁側に流れ込んだ分だ
け背圧室の圧力が少し抜け、燃料噴射弁のノズルニード
ルが少し上昇することにより低噴射率が達成される。そ
して、噴射後期では制御装置により燃料噴射弁の切換弁
が低圧側に切り換えられたままで制御弁が第3の状態と
され上記切換弁の低圧側の燃料が完全に逃がされる。す
ると、上記背圧室の燃料が制御弁側に完全に逃げてその
背圧室の圧力が完全に抜け、燃料噴射弁のノズルニード
ルが完全に上昇することにより高噴射率が達成される。
このように、本発明の燃料噴射装置においては、燃料噴
射弁の切換弁の低圧側に制御弁を設けて背圧室の圧力を
制御することにより、高圧燃料を用いても噴射初期に低
噴射率であり噴射後期に高噴射率となるような燃焼に最
適な噴射率を得ることができる。
When there is no injection, the control device sets the switching valve of the fuel injection valve to the high pressure side and sets the control valve to the first state to shut off the fuel flow on the low pressure side of the switching valve.
Next, in the initial stage of injection, the switching device of the fuel injection valve is switched to the low pressure side by the control device, and at the same time, the control valve is set to the second state so that part of the fuel on the low pressure side of the switching valve is released.
Then, the pressure in the back pressure chamber is slightly released by the amount of the fuel in the back pressure chamber flowing into the control valve side, and the nozzle needle of the fuel injection valve is slightly raised to achieve a low injection rate. Then, in the latter stage of the injection, the control valve keeps the switching valve of the fuel injection valve switched to the low pressure side to bring the control valve into the third state, and the fuel on the low pressure side of the switching valve is completely released. Then, the fuel in the back pressure chamber is completely escaped to the control valve side, the pressure in the back pressure chamber is completely released, and the nozzle needle of the fuel injection valve is completely raised to achieve a high injection rate.
As described above, in the fuel injection device of the present invention, the control valve is provided on the low pressure side of the switching valve of the fuel injection valve to control the pressure in the back pressure chamber, so that low injection is performed at the initial stage of injection even when high pressure fuel is used. Rate, and it is possible to obtain an optimum injection rate for combustion that has a high injection rate in the latter stage of injection.

【0007】[0007]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は本発明に係る燃料噴射装置を示した全体
構成図である。エンジンの各気筒の燃焼室に対して燃料
噴射弁(以下、インジェクタという)3が配設されてい
る。このインジェクタ3の噴射孔はノズルニードル9の
上下により開閉される。このノズルニードル9の上方に
は減圧側に作用するオリフィスを有する絞り部材8及び
背圧室7が配設されている。又、インジェクタ3は各気
筒共通の高圧蓄圧配管、所謂コモンレール2に接続され
ている。このコモンレール2には供給燃料が連続的に高
い所定圧にて蓄圧される。このため、高圧ポンプ1は燃
料タンク18から吸入した燃料をシステムが必要とする
上記所定圧に昇圧し、その圧力をポンプ制御用電磁弁1
7のオンオフにより維持する。インジェクタ3からエン
ジンへの燃料噴射は、インジェクタ3内に配設された切
換弁である噴射制御用三方電磁弁6のオンオフにより制
御される。又、所定の噴射率を達成するために三方電磁
弁6の低圧側に制御弁である背圧制御弁4が接続され配
設されている。上記背圧制御弁4にはスプール弁11が
スプリングにより付勢され、無噴射状態ではインジェク
タ3の三方電磁弁6の低圧側を閉としている(第1の状
態)。噴射状態では、ピエゾ素子12への所定の電圧の
印加によりそのスプール弁11が作動されて燃料の流れ
が制御される(第1及び第2の状態)。又、背圧制御弁
4には三方電磁弁6の低圧側の燃料の一部を逃がすため
の所定の容量を有する減圧室10及び三方電磁弁6の低
圧側の燃料を完全に逃がし燃料タンク18に戻すための
通路である減圧路13が形成されている。制御装置を構
成する電子制御ユニットであるECU(Electronic C
ontrolUnit)5には、エンジンの回転数に基づく信号を
出力する回転センサ14、負荷の情報であるアクセル開
度に基づく信号を出力するアクセルセンサ15及び高圧
ポンプ1から供給される燃料圧力に基づく信号を出力す
る圧力センサ16からの各信号線が接続されている。
EXAMPLES The present invention will be described below based on specific examples. FIG. 1 is an overall configuration diagram showing a fuel injection device according to the present invention. A fuel injection valve (hereinafter referred to as an injector) 3 is arranged in the combustion chamber of each cylinder of the engine. The injection hole of this injector 3 is opened and closed by the vertical movement of the nozzle needle 9. Above the nozzle needle 9, a throttle member 8 having an orifice acting on the pressure reducing side and a back pressure chamber 7 are arranged. The injector 3 is connected to a high pressure accumulating pipe common to all cylinders, a so-called common rail 2. Supply fuel is accumulated in the common rail 2 continuously at a high predetermined pressure. Therefore, the high-pressure pump 1 boosts the fuel sucked from the fuel tank 18 to the predetermined pressure required by the system, and the pressure is increased to the pump control solenoid valve 1.
Maintained by turning on and off 7. Fuel injection from the injector 3 to the engine is controlled by turning on / off a three-way solenoid valve 6 for injection control, which is a switching valve provided in the injector 3. A back pressure control valve 4, which is a control valve, is connected and arranged on the low pressure side of the three-way solenoid valve 6 in order to achieve a predetermined injection rate. The spool valve 11 is biased by the spring to the back pressure control valve 4, and the low pressure side of the three-way solenoid valve 6 of the injector 3 is closed in the non-injection state (first state). In the injection state, application of a predetermined voltage to the piezo element 12 operates the spool valve 11 to control the flow of fuel (first and second states). Further, the back pressure control valve 4 has a decompression chamber 10 having a predetermined capacity for releasing a part of the fuel on the low pressure side of the three-way solenoid valve 6 and the fuel on the low pressure side of the three-way solenoid valve 6 to completely escape the fuel tank 18. A decompression passage 13, which is a passage for returning to, is formed. An ECU (Electronic C) that is an electronic control unit that constitutes a control device
The ontrol unit 5 has a rotation sensor 14 that outputs a signal based on the number of revolutions of the engine, an accelerator sensor 15 that outputs a signal based on the accelerator opening that is information on the load, and a signal based on the fuel pressure supplied from the high-pressure pump 1. Each signal line from the pressure sensor 16 that outputs is connected.

【0008】次に、本実施例装置で使用されているEC
U5の処理手順を示した図2及び図3のフローチャート
に基づき、図4の各種マップ及び図5のタイムチャート
を参照して説明する。尚、図2及び図3のプログラムは
所定の時間毎に繰り返して実行される。先ず、図2のメ
インプログラムのステップ100で、アクセルセンサ1
5からの信号を読み込んでアクセル開度ACCP を演算
し、ECU5内の図示しないRAMに記憶する。次にス
テップ102に移行して、回転センサ14からの信号を
読み込んでエンジン回転数NE を演算しRAMに記憶す
る。次にステップ104に移行して、上述のステップ1
00で求められたアクセル開度ACCP 及びステップ10
2で求められたエンジン回転数NE により指令噴射量Q
FIN を演算しRAMに記憶する。又、ステップ106で
は、同じくアクセル開度ACCP 及びエンジン回転数NE
により指令噴射タイミングTFIN を演算しRAMに記憶
する。又、ステップ108では、同じくアクセル開度A
CCP 及びエンジン回転数NE により指令噴射圧力PFIN
を演算しRAMに記憶する。
Next, the EC used in the apparatus of this embodiment
Based on the flowcharts of FIGS. 2 and 3 showing the processing procedure of U5, description will be made with reference to various maps of FIG. 4 and a time chart of FIG. The programs of FIGS. 2 and 3 are repeatedly executed at predetermined time intervals. First, in step 100 of the main program of FIG. 2, the accelerator sensor 1
The signal from 5 is read to calculate the accelerator opening A CCP and stored in a RAM (not shown) in the ECU 5. Next, the routine proceeds to step 102, where the signal from the rotation sensor 14 is read, the engine speed N E is calculated and stored in the RAM. Next, the process proceeds to step 104 and the above-mentioned step 1
Accelerator opening A CCP obtained at 00 and step 10
The command injection amount Q based on the engine speed N E obtained in 2
FIN is calculated and stored in RAM. In step 106, the accelerator opening A CCP and the engine speed N E are also the same.
Then, the command injection timing T FIN is calculated and stored in the RAM. In step 108, the accelerator opening A is also set.
Command injection pressure P FIN based on CCP and engine speed N E
Is calculated and stored in the RAM.

【0009】上述の各指令値等を演算記憶した後、図3
の基準パルス同期処理である割り込みプログラムを実行
する。ステップ200では、上述のステップ104で求
められた指令噴射量QFIN をRAMから読み込む。次に
ステップ202に移行して、圧力センサ16からの信号
である燃料供給圧力PCを読み込む。そして、ステップ
204に移行し、上述のステップ102で求められたエ
ンジン回転数NE をRAMから読み込む。次にステップ
206に移行して、初期噴射量割合係数αをECU5内
の図示しないROMに予め記憶された指令噴射量QFIN
に基づくマップ(図4(a) 参照)より求める。このマッ
プは、エンジン回転数NE と初期噴射量割合係数αとの
関係を指令噴射量QFIN に基づいて表しており、指令噴
射量QFIN に対応した曲線とエンジン回転数NE とから
初期噴射量割合係数αが求められる。次にステップ20
8に移行して、初期噴射量QFINIを次式により演算す
る。 QFINI=QFIN・α 次にステップ210に移行して、初期噴射時間TQIをR
OMに予め記憶された燃料供給圧力PC に基づくマップ
(図4(b) 参照)より求める。このマップは、初期噴射
時間TQIと初期噴射量QFINIとの関係を燃料供給圧力P
C に基づいて表しており、燃料供給圧力PC に対応した
曲線とステップ208で算出された初期噴射量QFINI
から初期噴射時間TQIが求められる。次にステップ21
2に移行して、後期噴射時間TQFをROMに予め記憶さ
れた燃料供給圧力PC に基づくマップ(図4(c) 参照)
より求める。このマップは、後期噴射時間TQFと指令噴
射量QFIN から初期噴射量QFINIを引いた噴射量(Q
FIN−QFINI)との関係を燃料供給圧力PC に基づいて表
しており、燃料供給圧力PC に対応した曲線と上記噴射
量(QFIN−QFINI)とから後期噴射時間TQFが求められ
る。次にステップ214に移行して、全噴射時間TQ
次式により演算する。 TQ=TQI+TQF 即ち、初期噴射時間TQIと後期噴射時間TQFとの合計時
間が全噴射時間TQ である。次にステップ216に移行
して、上述のステップ106で求められた指令噴射タイ
ミングTFIN をRAMから読み込む。そして、ステップ
218に移行し、噴射タイミングTTを次式により演算
する。 TT=f(TFIN,E) 即ち、噴射タイミングTT は指令噴射タイミングTFIN
及びエンジン回転数NE をパラメータとする関数であ
る。
After the above-mentioned command values and the like are calculated and stored, FIG.
The interrupt program, which is the reference pulse synchronization process of, is executed. In step 200, the command injection amount Q FIN obtained in step 104 is read from the RAM. Next, in step 202, the fuel supply pressure P C which is a signal from the pressure sensor 16 is read. Then, the process proceeds to step 204, and the engine speed N E obtained in step 102 is read from the RAM. Next, the routine proceeds to step 206, where the initial injection amount ratio coefficient α is set to the command injection amount Q FIN stored in advance in the ROM (not shown) in the ECU 5.
It is obtained from the map based on (see Fig. 4 (a)). Initial This map represents the basis the relationship between α engine speed N E and the initial injection quantity ratio coefficient to the command injection quantity Q FIN, curve and the engine rotational speed N E corresponding to the command injection quantity Q FIN The injection amount ratio coefficient α is obtained. Then step 20
8, the initial injection amount Q FINI is calculated by the following equation. Q FINI = Q FIN · α Next, move to step 210, where the initial injection time T QI is R
It is obtained from a map (see FIG. 4 (b)) based on the fuel supply pressure P C stored in the OM in advance. This map shows the relationship between the initial injection time T QI and the initial injection amount Q FINI as the fuel supply pressure P
The initial injection time T QI is obtained from the curve corresponding to the fuel supply pressure P C and the initial injection amount Q FINI calculated in step 208. Next step 21
A map based on the fuel supply pressure P C stored in advance in the ROM for the second injection time T QF (see FIG. 4 (c)).
Ask more. This map is obtained by subtracting the initial injection amount Q FINI from the late injection time T QF and the command injection amount Q FIN
FIN -Q FINI) represents on the basis of the fuel supply pressure P C of the relationship between the curve and the injection amount corresponding to the fuel supply pressure P C (Q FIN -Q FINI) from the later injection time T QF is calculated Be done. Next, in step 214, the total injection time T Q is calculated by the following equation. T Q = T QI + T QF That is, the total time of the initial injection time T QI and the late injection time T QF is the total injection time T Q. Next, in step 216, the command injection timing T FIN obtained in step 106 is read from the RAM. Then, the process proceeds to step 218, and the injection timing T T is calculated by the following equation. T T = f (T FIN, N E ) That is, the injection timing T T is the command injection timing T FIN
And the engine speed N E as a parameter.

【0010】上述の処理の後、図2のプログラムに戻
り、ステップ110ではインジェクタ制御、ステップ1
12では背圧制御弁制御及びステップ114では高圧ポ
ンプ制御処理がそれぞれ実行される。ここで、インジェ
クタ制御以前においては、図6(a) に無噴射時…(I) の
状態を示すように、インジェクタ3の三方電磁弁6のポ
ートX−Yが連通され、ノズルニードル9は背圧により
下方に抑えられている。インジェクタ制御処理として
は、図6(a) に示す無噴射時の状態から気筒判別パルス
により気筒#1(1気筒目)が判別される。すると、図
6(b) の噴射初期…(II)の状態及び図6(c) の噴射後期
…(III)の状態を達成するために、上述のステップ21
8で算出された噴射タイミングTT の後、インジェクタ
3の三方電磁弁6を高圧側から低圧側に切り換える(TWV
パルス#1出力)。尚、図6(a),(b),(c) における黒塗
り部分及び矢印が燃料及びその流れを示している。つま
り、図6(b) の噴射初期(II)の状態及び図6(c) の噴射
後期(III)の状態では、三方電磁弁6が励磁されポート
Y−Zが連通され、背圧室7の高圧燃料が背圧制御弁4
側に抜け出す。
After the above-mentioned processing, the process returns to the program of FIG. 2 and, in step 110, injector control, step 1
In step 12, back pressure control valve control is executed, and in step 114, high pressure pump control processing is executed. Here, before the injector control, as shown in FIG. 6 (a) when there is no injection ... (I), the ports XY of the three-way solenoid valve 6 of the injector 3 are communicated with each other, and the nozzle needle 9 is It is held down by pressure. In the injector control process, the cylinder # 1 (first cylinder) is discriminated by the cylinder discriminating pulse from the non-injection state shown in FIG. 6 (a). Then, in order to achieve the injection initial stage (II) state of FIG. 6 (b) and the injection late stage (III) state of FIG. 6 (c), the above step 21 is performed.
After the injection timing T T calculated in 8, the three-way solenoid valve 6 of the injector 3 is switched from the high pressure side to the low pressure side (TWV
Pulse # 1 output). The black-painted portions and arrows in FIGS. 6 (a), (b), and (c) show the fuel and its flow. That is, in the initial injection (II) state of FIG. 6 (b) and the late injection period (III) of FIG. 6 (c), the three-way solenoid valve 6 is excited, the ports YZ are communicated, and the back pressure chamber 7 is communicated. High pressure fuel is back pressure control valve 4
Get out to the side.

【0011】又、背圧制御弁制御処理としては、インジ
ェクタ制御以前においては、背圧制御弁4は低圧側の燃
料の流れを遮断する第1の状態であり、インジェクタ3
の三方電磁弁6の制御状態と共に無噴射状態を保持す
る。そして、上述のステップ110でインジェクタ3の
三方電磁弁6が高圧側から低圧側に切り換えられると同
時に、背圧制御弁4のピエゾ素子12に所定の電圧を印
加してスプール弁11を少し上昇させる(背圧制御弁パ
ルス#1出力)。この時、背圧制御弁4は低圧側の燃料
の一部を逃がす第2の状態となり、インジェクタ3の背
圧室7と背圧制御弁4の減圧室10とが連通(ポートY
−Z→A−B)される。すると、背圧室7内の高圧燃料
が減圧室10の容量分だけ流れ込むことで、背圧室7の
圧力が少し抜けてインジェクタ3のノズルニードル9が
少し上昇する。そして、背圧制御弁4の上述の状態がス
テップ208で算出された初期噴射時間TQIだけ保持さ
れることにより噴射初期の低噴射率が達成される。次
に、初期噴射時間TQIの後、背圧制御弁4のピエゾ素子
12に所定の電圧を印加してスプール弁11を更に上昇
させる(背圧制御弁パルス#1出力)。この時、背圧制
御弁4は低圧側の燃料を完全に逃がす第3の状態とな
り、インジェクタ3の背圧室7と背圧制御弁4の減圧路
13とが連通(ポートY−Z→A−C)される。する
と、背圧室7内の高圧燃料が減圧路13を通過し燃料タ
ンク18に戻されることにより、インジェクタ3のノズ
ルニードル9が最大上昇する。そして、背圧制御弁4の
上述の状態がステップ208で算出された後期噴射時間
QFだけ保持されることにより噴射後期の高噴射率が達
成される。
As for the back pressure control valve control process, before the injector control, the back pressure control valve 4 is in the first state in which the flow of fuel on the low pressure side is shut off.
The non-injection state is maintained together with the control state of the three-way solenoid valve 6. Then, in step 110 described above, the three-way solenoid valve 6 of the injector 3 is switched from the high pressure side to the low pressure side, and at the same time, a predetermined voltage is applied to the piezo element 12 of the back pressure control valve 4 to slightly raise the spool valve 11. (Back pressure control valve pulse # 1 output). At this time, the back pressure control valve 4 is in a second state where a part of the fuel on the low pressure side is released, and the back pressure chamber 7 of the injector 3 and the decompression chamber 10 of the back pressure control valve 4 are in communication (port Y).
-Z-> A-B). Then, the high-pressure fuel in the back pressure chamber 7 flows in by the volume of the decompression chamber 10, so that the pressure in the back pressure chamber 7 is slightly released and the nozzle needle 9 of the injector 3 is slightly raised. Then, the above-mentioned state of the back pressure control valve 4 is held for the initial injection time T QI calculated in step 208, whereby the low injection rate at the initial stage of injection is achieved. Next, after the initial injection time T QI , a predetermined voltage is applied to the piezo element 12 of the back pressure control valve 4 to further raise the spool valve 11 (back pressure control valve pulse # 1 output). At this time, the back pressure control valve 4 is in a third state in which the low pressure side fuel is completely released, and the back pressure chamber 7 of the injector 3 and the depressurization path 13 of the back pressure control valve 4 are in communication (ports YZ → A). -C). Then, the high-pressure fuel in the back pressure chamber 7 passes through the pressure reducing passage 13 and is returned to the fuel tank 18, so that the nozzle needle 9 of the injector 3 is moved up to the maximum. Then, the above-mentioned state of the back pressure control valve 4 is held for the latter-stage injection time T QF calculated in step 208, whereby the high injection rate in the latter-stage injection is achieved.

【0012】又、高圧ポンプ制御処理としては、インジ
ェクタ3に供給する燃料の変動する圧力をコモンレール
2に配設した圧力センサ16により監視して、必要な所
定の圧力となるようにポンプ制御用電磁弁17をオンオ
フ制御する。 このようにして、高圧燃料を用いて噴射
初期には低噴射率、噴射後期には高噴射率に確実に制御
され、燃焼に最適な噴射率が実現される。以上のような
作動により、本発明の燃料噴射装置においては、デルタ
形噴射に近似した所謂ブーツ形噴射が可能となる。更
に、上記ブーツ形噴射の他、低噴射率と高噴射率とのタ
イミングをずらした所謂パイロット形噴射などの噴射率
制御も可能である。又、上記背圧制御弁4に替えて比例
制御弁を配設することにより、高圧燃料を用いたデルタ
形噴射が可能となる。
In the high-pressure pump control process, the pressure sensor 16 provided on the common rail 2 monitors the fluctuating pressure of the fuel supplied to the injector 3, and the pump control electromagnetic pressure is adjusted to the required predetermined pressure. The valve 17 is on / off controlled. In this manner, the high injection rate is reliably controlled using the high-pressure fuel at a low injection rate in the initial stage of injection and a high injection rate in the latter stage of injection, and an injection rate optimal for combustion is realized. With the above-described operation, the fuel injection device of the present invention enables so-called boot-type injection similar to delta-type injection. Further, in addition to the boot-type injection described above, injection rate control such as so-called pilot-type injection in which the timings of the low injection rate and the high injection rate are shifted is also possible. Further, by providing a proportional control valve instead of the back pressure control valve 4, delta type injection using high pressure fuel becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体的な一実施例に係る燃料噴射装置
を示した全体構成図である。
FIG. 1 is an overall configuration diagram showing a fuel injection device according to a specific embodiment of the present invention.

【図2】同実施例装置で使用されているECUの処理手
順を示したフローチャートである。
FIG. 2 is a flowchart showing a processing procedure of an ECU used in the apparatus of the embodiment.

【図3】同実施例装置で使用されているECUの処理手
順を示したフローチャートである。
FIG. 3 is a flowchart showing a processing procedure of an ECU used in the apparatus of the embodiment.

【図4】図2及び図3の処理で使用される各種マップを
示した説明図である。
FIG. 4 is an explanatory diagram showing various maps used in the processes of FIGS. 2 and 3;

【図5】同実施例装置に係るタイムチャートを示した説
明図である。
FIG. 5 is an explanatory view showing a time chart according to the apparatus of the embodiment.

【図6】同実施例装置に係る無噴射、噴射初期及び噴射
後期における燃料の流れを示した説明図である。
FIG. 6 is an explanatory diagram showing a flow of fuel in a non-injection state, an initial stage of injection, and a latter stage of injection according to the apparatus of the embodiment.

【符号の説明】[Explanation of symbols]

1−高圧ポンプ 2−コモンレール 3−インジェ
クタ(燃料噴射弁) 4−背圧制御弁(制御弁) 5−ECU(制御装置) 6−(噴射制御用)三方電磁弁(切換弁) 7−背圧
室 8−絞り部材 9−ノズルニードル 10−減圧室 11−スプー
ル弁 12−ピエゾ素子 13−減圧路 14−回転セン
サ 15−アクセルセンサ 16−圧力センサ 17−
ポンプ制御用電磁弁
1-High-pressure pump 2-Common rail 3-Injector (fuel injection valve) 4-Back pressure control valve (control valve) 5-ECU (control device) 6- (Injection control) 3-way solenoid valve (switching valve) 7-Back pressure Chamber 8-Throttle member 9-Nozzle needle 10-Decompression chamber 11-Spool valve 12-Piezo element 13-Decompression path 14-Rotation sensor 15-Accelerator sensor 16-Pressure sensor 17-
Solenoid valve for pump control

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料噴射弁の噴射孔を開閉するノズルニ
ードルに作用する背圧を保持する背圧室の圧力を切換弁
によって燃料の供給経路側である高圧側と前記燃料の戻
し経路側である低圧側とに切換制御して前記噴射孔より
前記燃料を噴射するようにした燃料噴射装置において、 前記切換弁の前記低圧側と直列に配設され、該低圧側の
燃料の流れを遮断する第1の状態と前記低圧側の燃料の
一部を逃がす第2の状態と前記低圧側の燃料を完全に逃
がす第3の状態との少なくとも3つの状態を取る制御弁
と、 無噴射時には前記切換弁を高圧側とすると共に前記制御
弁を第1の状態とし、噴射初期では前記切換弁を低圧側
に切り換えると同時に前記制御弁を第2の状態とし、噴
射後期では前記切換弁を低圧側に切り換えたままで前記
制御弁を第3の状態とする制御装置とを備えたことを特
徴とする燃料噴射装置。
1. A pressure in a back pressure chamber for holding a back pressure acting on a nozzle needle for opening and closing an injection hole of a fuel injection valve is controlled by a switching valve between a high pressure side which is a fuel supply path side and a fuel return path side. In a fuel injection device which is controlled to switch to a certain low pressure side and injects the fuel from the injection hole, it is arranged in series with the low pressure side of the switching valve and shuts off the fuel flow on the low pressure side. A control valve having at least three states of a first state, a second state in which a portion of the low-pressure side fuel is released, and a third state in which the low-pressure side fuel is completely released, and the switching when no injection is performed. The valve is on the high pressure side and the control valve is in the first state, the switching valve is switched to the low pressure side at the initial stage of injection, and at the same time the control valve is in the second state, and the switching valve is set to the low pressure side in the latter stage of injection. The control valve is set to the third position while being switched. A fuel injection apparatus characterized by comprising a control device for the state.
JP25980091A 1991-09-11 1991-09-11 Fuel injector Pending JPH0571438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25980091A JPH0571438A (en) 1991-09-11 1991-09-11 Fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25980091A JPH0571438A (en) 1991-09-11 1991-09-11 Fuel injector

Publications (1)

Publication Number Publication Date
JPH0571438A true JPH0571438A (en) 1993-03-23

Family

ID=17339177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25980091A Pending JPH0571438A (en) 1991-09-11 1991-09-11 Fuel injector

Country Status (1)

Country Link
JP (1) JPH0571438A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1164283A2 (en) 2000-06-15 2001-12-19 Toyota Jidosha Kabushiki Kaisha A fuel injection valve
WO2003004864A1 (en) * 2001-06-29 2003-01-16 Robert Bosch Gmbh Fuel injector switch valve for the compression/decompression of a control chamber
US8210753B2 (en) 2007-05-24 2012-07-03 Jtekt Corporation Cylindrical roller bearing device
JP2012216869A (en) * 2012-07-10 2012-11-08 Kyocera Corp Laminated piezoelectric element, injector using the same, and fuel injection system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1164283A2 (en) 2000-06-15 2001-12-19 Toyota Jidosha Kabushiki Kaisha A fuel injection valve
EP1164283A3 (en) * 2000-06-15 2003-11-05 Toyota Jidosha Kabushiki Kaisha A fuel injection valve
WO2003004864A1 (en) * 2001-06-29 2003-01-16 Robert Bosch Gmbh Fuel injector switch valve for the compression/decompression of a control chamber
US8210753B2 (en) 2007-05-24 2012-07-03 Jtekt Corporation Cylindrical roller bearing device
JP2012216869A (en) * 2012-07-10 2012-11-08 Kyocera Corp Laminated piezoelectric element, injector using the same, and fuel injection system

Similar Documents

Publication Publication Date Title
USRE37633E1 (en) Accumulating fuel injection apparatus
JP3931120B2 (en) Accumulated fuel injection system
DE60017307T2 (en) Common-rail fuel injection system
JPS62203932A (en) Fuel injector for internal combustion engine
WO1999045256A1 (en) Method for a controlled transition between operating modes of a dual fuel engine
DE10109352A1 (en) Internal combustion engine
DE60303470T2 (en) Fuel injection system for an internal combustion engine
KR20090060318A (en) Method of controlling common rail fuel injection device
US5150684A (en) High pressure fuel injection unit for engine
JPH0571438A (en) Fuel injector
JPH02191865A (en) Fuel injection device
US5915358A (en) Method of controlling an internal-combustion engine having at least two intake valves for each cylinder
JP2001207893A (en) Fuel injection quantity control device of common rail type fuel injector
JP2738190B2 (en) Intake control device for internal combustion engine
JP2000297719A (en) Fuel injector for diesel engine
JP3212408B2 (en) Fuel / water injection device
EP1437505A4 (en) Fuel injection device and diesel engine having the same, and fuel injection device controlling method
JP2592544B2 (en) High pressure fuel injection device
US10030612B2 (en) Fuel-injection system
JPS59211727A (en) Fuel injection device for internal combustion engine
JP2888013B2 (en) Control device for intake control valve for internal combustion engine
JPH0666226A (en) Fuel injector for internal combustion engine
JP4216262B2 (en) Fuel injection system for diesel engine
JPH01267328A (en) Fuel injection device for engine
JPH0127260B2 (en)