JPH0570622A - Polypropylene-based resin crosslinked foamed body - Google Patents

Polypropylene-based resin crosslinked foamed body

Info

Publication number
JPH0570622A
JPH0570622A JP3201851A JP20185191A JPH0570622A JP H0570622 A JPH0570622 A JP H0570622A JP 3201851 A JP3201851 A JP 3201851A JP 20185191 A JP20185191 A JP 20185191A JP H0570622 A JPH0570622 A JP H0570622A
Authority
JP
Japan
Prior art keywords
foaming
foam
distribution
thickness direction
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3201851A
Other languages
Japanese (ja)
Inventor
Hirobumi Inoue
博文 井上
Eiichi Takahashi
栄一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP3201851A priority Critical patent/JPH0570622A/en
Publication of JPH0570622A publication Critical patent/JPH0570622A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title formed body useful for heat insulating material, etc., having excellent surface peel strength, molding and processing properties by controlling distribution of expansion ratio in the thickness direction in a shape such as chervon of rising from both surface layers toward the central part. CONSTITUTION:For example, 100 pts.wt. polyolefinic resin such as PE is blended with 15 pts.wt. blowing agent such as azodicarbonamide and 1 pt.wt. zinc flower, irradiated with ionizing radiation such as electron rays and crosslinked to give the objective foam wherein distribution of expansion ratio in the thickness direction is controlled substantially in a chevron or trapezoidal shape of rising from both surface layers toward the central part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリオレフィン系樹脂
架橋発泡体に関し、さらに詳しくは、表皮剥離強度およ
び成形加工性に優れたシート状のポリオレフィン系樹脂
架橋発泡体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyolefin resin crosslinked foam, and more particularly to a sheet-shaped polyolefin resin crosslinked foam excellent in skin peel strength and molding processability.

【0002】[0002]

【従来の技術】ポリオレフィン系樹脂架橋発泡体は、ポ
リオレフィン系樹脂に熱分解型発泡剤およびその他の添
加剤を配合し、発泡剤の分解温度未満の温度でシート状
に押出成形し、得られた発泡性樹脂組成物シートを架橋
した後、発泡剤の分解温度以上に加熱して発泡させるこ
とにより製造されている。
2. Description of the Related Art Polyolefin resin crosslinked foams are obtained by blending a polyolefin resin with a thermal decomposition type foaming agent and other additives, and extruding the composition into a sheet at a temperature lower than the decomposition temperature of the foaming agent. It is produced by crosslinking a foamable resin composition sheet and then heating it to a temperature equal to or higher than the decomposition temperature of a foaming agent for foaming.

【0003】架橋方法としては、電子線などの電離性放
射線を照射する照射架橋法や、有機過酸化物を用いた化
学架橋法などがあり、また、発泡方法としては、竪型ま
たは横型加熱炉中で熱風により加熱発泡させる方法(気
相法)や加熱した液浴に浸漬する方法(液相法)などが
ある。
Crosslinking methods include an irradiation crosslinking method of irradiating ionizing radiation such as an electron beam, a chemical crosslinking method using an organic peroxide, and a foaming method of a vertical or horizontal heating furnace. Among them, there are a method of foaming by heating with hot air (gas phase method) and a method of immersing in a heated liquid bath (liquid phase method).

【0004】このようにして得られたポリオレフィン系
樹脂架橋発泡体は、断熱材、クッション材などとして広
範な分野で使用されている。ところが、従来のポリオレ
フィン系樹脂架橋発泡体は、成形加工性が悪く、例え
ば、複雑で深い形状体に成形することが極めて困難であ
った。その理由としては、従来の製造法によると、シー
ト状発泡体の厚味方向における発泡倍率の分布の制御が
できず、得られた架橋発泡体の厚味方向の発泡倍率が不
均一となり、その結果、成形性にバラツキが生じること
が挙げられる。また、表皮剥離強度が低く、高温での成
形時にちぎれる等の破損問題が挙げられる。
The polyolefin resin cross-linked foam thus obtained is used in a wide range of fields as a heat insulating material, a cushioning material and the like. However, the conventional polyolefin resin crosslinked foam has poor moldability, and it is extremely difficult to mold it into a complex and deep shape, for example. The reason is that, according to the conventional manufacturing method, the distribution of the expansion ratio in the thickness direction of the sheet-shaped foam cannot be controlled, and the expansion ratio in the thickness direction of the obtained crosslinked foam becomes uneven, As a result, the moldability may vary. Further, the peeling strength of the skin is low, and there is a problem of breakage such as tearing at the time of molding at high temperature.

【0005】従来、ポリオレフィン系樹脂架橋発泡体の
成形加工性を上げるために、直鎖状低密度ポリエチレン
(L−LDPE)をブレンドすることにより、機械的物
性を上げる方法が提案されている(特公平2−5757
6号、特公平2−57577号)。しかし、これらの公
報に開示されている方法では、厚味方向の発泡倍率の分
布を制御することができず、成形性にバラツキが生じ
る。
Conventionally, in order to improve the molding processability of a polyolefin resin cross-linked foam, a method of improving mechanical properties by blending linear low-density polyethylene (L-LDPE) has been proposed (special feature: Fair 2-5757
No. 6, Japanese Patent Publication No. 2-57577). However, in the methods disclosed in these publications, the distribution of the foaming ratio in the thickness direction cannot be controlled, and the moldability varies.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決することにより、従来のものより成形加工
性に優れたポリオレフィン系樹脂架橋発泡体を安定的に
提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a polyolefin resin crosslinked foam which is superior in molding processability to the conventional one by solving the above problems.

【0007】本発明者らは、鋭意研究した結果、従来の
製造方法によるシート状発泡体の発泡倍率の分布は、厚
味方向に形状が不均一であるのに対して、両面の表皮層
から中心部に向かって、発泡倍率の分布が山型ないしは
台形状に高くなるように制御すれば、成形加工性にバラ
ツキが生じないことを見出した。また、厚味方向の発泡
倍率の分布をこのような形状に制御すると、発泡体の表
皮剥離強度が向上し、成形加工性が改善される。本発明
は、これらの知見に基づいて完成するに至ったものであ
る。
As a result of intensive studies, the inventors of the present invention have found that the distribution of the expansion ratio of the sheet-shaped foam produced by the conventional manufacturing method is not uniform in the thickness direction, whereas the skin layers on both sides are It has been found that if the foaming ratio distribution is controlled so as to increase in the shape of a mountain or a trapezoid toward the center, there will be no variation in moldability. Further, if the distribution of the expansion ratio in the thickness direction is controlled to have such a shape, the skin peeling strength of the foam will be improved and the moldability will be improved. The present invention has been completed based on these findings.

【0008】[0008]

【課題を解決するための手段】即ち、本発明の要旨は、
厚味方向の発泡倍率の分布が、両表面層から中心部に向
かって実質的に山型ないしは台形状に高くなった形状で
あることを特徴とするシート状のポリオレフィン系樹脂
架橋発泡体にある。
That is, the gist of the present invention is as follows.
The sheet-like polyolefin resin crosslinked foam is characterized in that the distribution of the expansion ratio in the thickness direction is a shape in which a peak shape or a trapezoid shape is substantially increased from both surface layers toward the center. ..

【0009】以下、本発明について詳細に説明する。本
発明のポリオレフィン系樹脂架橋発泡体は、基本的に
は、ポリオレフィン系樹脂と熱分解型発泡剤を含む発泡
性樹脂組成物シートを架橋した後、加熱発泡させる方法
により製造される。
The present invention will be described in detail below. The polyolefin resin cross-linked foam of the present invention is basically produced by a method of crosslinking a foamable resin composition sheet containing a polyolefin resin and a thermal decomposition type foaming agent, and then heat-foaming.

【0010】本発明で使用するポリオレフィン系樹脂と
しては、低密度ポリエチレン、中〜高密度ポリエチレ
ン、直鎖状低密度ポリエチレン、ポリプロピレン、ブテ
ン−プロピレン共重合体、エチレン−プロピレン共重合
体、エチレン−酢酸ビニル共重合体、塩化ビニル−エチ
レン共重合体、エチレン−アクリレート共重合体等を例
示することができ、これらは単独であるいは2種以上混
合して使用することができる。
The polyolefin resin used in the present invention includes low density polyethylene, medium to high density polyethylene, linear low density polyethylene, polypropylene, butene-propylene copolymer, ethylene-propylene copolymer, ethylene-acetic acid. Examples thereof include vinyl copolymers, vinyl chloride-ethylene copolymers and ethylene-acrylate copolymers, and these can be used alone or in combination of two or more.

【0011】発泡剤としては、アゾジカルボンアミド、
オキシベンゼンスルホニルヒドラジド、ニトロソペンタ
メチレンテトラミン等の熱で分解し、気泡を発生する熱
分解型発泡剤を使用する。所望の発泡倍率に応じて添加
部数を変化させて用いるが、一般的には、ポリオレフィ
ン系樹脂100重量部に対して2〜25重量部程度であ
る。
As the foaming agent, azodicarbonamide,
A thermal decomposition type foaming agent such as oxybenzenesulfonyl hydrazide, nitrosopentamethylenetetramine, etc. that decomposes by heat to generate bubbles is used. Although the number of parts to be added is changed depending on the desired expansion ratio, it is generally about 2 to 25 parts by weight with respect to 100 parts by weight of the polyolefin resin.

【0012】ポリオレフィン系樹脂には、所望により発
泡剤の分解性を改善する脂肪酸の金属塩や亜鉛華等の発
泡助剤、トリメチロールプロパントリメタクリレートな
どの架橋助剤、抗酸化剤、着色剤、難燃剤、充填剤など
の各種添加剤を加えることができる。また、化学架橋す
る場合には、ジクミルパーオキサイド、ベンゾイルパー
オキサイド等の有機過酸化物を配合する。
The polyolefin resin includes, as desired, a foaming aid such as a metal salt of a fatty acid or zinc white that improves the decomposability of the foaming agent, a crosslinking aid such as trimethylolpropane trimethacrylate, an antioxidant, a colorant, Various additives such as flame retardants and fillers can be added. When chemically cross-linking, an organic peroxide such as dicumyl peroxide or benzoyl peroxide is added.

【0013】架橋方法としては、電子線などの電離性放
射線を照射する方法、有機過酸化物を用いた化学架橋
法、あるいは架橋反応性ビニルメトキシシラン等を樹脂
にグラフトまたは共重合して水架橋する方法などがあ
り、また、発泡方法としては、気相法や液相法などがあ
る。
Examples of the cross-linking method include a method of irradiating ionizing radiation such as an electron beam, a chemical cross-linking method using an organic peroxide, or a water-cross-linking method in which a cross-linking reactive vinyl methoxysilane or the like is grafted or copolymerized with a resin. And the like, and the foaming method includes a vapor phase method and a liquid phase method.

【0014】発泡体の厚味方向の発泡倍率の分布が、両
表面層から中心部に向かって実質的に山型ないしは台形
状に高くなった形状となるように制御する方法として
は、次のような方法が挙げられる。
As a method for controlling the foaming ratio distribution of the foam in the thickness direction so as to be substantially mountain-shaped or trapezoidal from both surface layers toward the center, Such a method can be cited.

【0015】(1)加熱発泡時の雰囲気温度を制御する
方法がある。竪型炉や横型炉を用いて気相法により加熱
し発泡させる場合には、炉内の雰囲気温度を230℃以
下に調整する。また、ソルトバスなどを用いた液相法に
より加熱し発泡させる場合には、液浴の温度を230℃
以下に調整する。
(1) There is a method of controlling the ambient temperature at the time of foaming by heating. When heating and foaming by a gas phase method using a vertical furnace or a horizontal furnace, the atmospheric temperature in the furnace is adjusted to 230 ° C. or lower. Further, when heating and foaming by a liquid phase method using a salt bath or the like, the temperature of the liquid bath is 230 ° C.
Adjust as follows.

【0016】高温で発泡性樹脂組成物シートを急激に加
熱し発泡させると、シート内部の発泡度合いに比較して
表面層の発泡が進み、例えば図2に示すような厚味方向
の発泡倍率の分布となり、中心部の発泡倍率が低くな
る。このようなシート状発泡体は、表皮強度が低く成形
加工性に劣っている。また、発泡倍率の分布が不均一と
なるため、成形性にバラツキが生じる。
When the foamable resin composition sheet is rapidly heated and foamed at a high temperature, the foaming of the surface layer proceeds as compared with the degree of foaming inside the sheet, and for example, as shown in FIG. It becomes a distribution, and the expansion ratio of the central part becomes low. Such a sheet foam has low skin strength and poor moldability. Further, since the distribution of the foaming ratio becomes non-uniform, the moldability varies.

【0017】これに対して、加熱発泡時の雰囲気温度を
調整すると、例えば図1に示すような低発泡倍率である
両表面層から中心部に向かって実質的に山型ないしは台
形状に高くなった形状の均一な発泡倍率の分布が得ら
れ、表皮強度も高くなる。
On the other hand, when the atmospheric temperature during heat-foaming is adjusted, for example, as shown in FIG. 1, both surface layers having a low foaming ratio increase substantially in the shape of a mountain or a trapezoid from the center toward the center. The uniform distribution of the foaming ratio is obtained, and the skin strength is also increased.

【0018】(2)発泡直後に発泡体の表面層を急冷す
る方法がある。高温雰囲気下で発泡性樹脂組成物シート
を発泡させ、その直後に、表面層を急冷すると、発泡で
発生した熱が内部の発泡に利用されるため、内部の方の
発泡倍率が高くなり、山型ないしは台形状に高くなった
形状の厚味方向の発泡倍率分布を得ることができる。
(2) There is a method of rapidly cooling the surface layer of the foam immediately after foaming. When the foamable resin composition sheet is foamed in a high-temperature atmosphere, and immediately after that, the surface layer is rapidly cooled, the heat generated by the foaming is used for the internal foaming, so that the foaming ratio of the interior becomes higher and It is possible to obtain a foaming ratio distribution in the thickness direction of a mold or a trapezoidal shape.

【0019】表面層の急冷には、発泡直後の発泡体シー
トに冷風を吹き付ける方法、発泡体を冷水に浸漬する方
法、発泡体を冷却ロールに通す方法などがある。ただ
し、表面層のみを急冷するために、これらの冷却媒体と
の接触は、ごく短時間、例えば10秒以内程度に制御す
る。冷却媒体との接触時間は、冷却媒体の種類や発泡時
の雰囲気温度等により変化するため、あらかじめ実験を
して好ましい条件を定めておくことが望ましい。
The surface layer may be rapidly cooled by blowing cold air onto the foam sheet immediately after foaming, immersing the foam in cold water, passing the foam through a cooling roll, or the like. However, in order to quench only the surface layer, the contact with these cooling media is controlled for a very short time, for example, within about 10 seconds. Since the contact time with the cooling medium changes depending on the type of the cooling medium, the ambient temperature at the time of foaming, etc., it is desirable to conduct experiments in advance to determine preferable conditions.

【0020】[0020]

【実施例】以下、本発明について、実施例および比較例
を挙げて具体的に説明するが、本発明はこれらの実施例
のみに限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0021】[実施例1]低密度ポリエチレン(LDP
E:MI=4.0、密度0.923)100重量部に対
し、アゾジカルボンアミド15重量部、亜鉛華1重量部
を添加し、ヘンシェルミキサーで混練した。この混合物
を65mmφの押出機(L/D=26)に投入し、溶融
混練してTダイから押出し、厚味1.5mm、幅450
mmの発泡性樹脂組成物シートを成形した。
[Example 1] Low density polyethylene (LDP)
E: MI = 4.0, density 0.923) To 100 parts by weight, 15 parts by weight of azodicarbonamide and 1 part by weight of zinc white were added and kneaded with a Henschel mixer. This mixture was put into a 65 mmφ extruder (L / D = 26), melt-kneaded and extruded from a T-die, thickness 1.5 mm, width 450
mm foamable resin composition sheet was molded.

【0022】発泡性樹脂組成物シートに、3Mradの
電子線を照射して架橋させ、雰囲気温度230℃の堅型
発泡炉で発泡させて、厚味5mm、幅1200mmのシ
ート状発泡体を得た。
The foamable resin composition sheet was irradiated with an electron beam of 3 Mrad to be crosslinked, and foamed in a rigid foaming furnace at an ambient temperature of 230 ° C. to obtain a sheet-like foam having a thickness of 5 mm and a width of 1200 mm. ..

【0023】得られた発泡体の厚味方向の発泡倍率の分
布を測定した結果を図1に示す。また、物性の測定結果
を表1に示す。
The result of measuring the distribution of the foaming ratio in the thickness direction of the obtained foam is shown in FIG. Table 1 shows the measurement results of physical properties.

【0024】[実施例2]発泡を横型発泡炉で行ったこ
と以外は、実施例1と同様にした。
[Example 2] The same as Example 1 except that the foaming was carried out in a horizontal foaming furnace.

【0025】[実施例3]発泡を220℃のソルトバス
で行ったこと以外は、実施例1と同様にした。
Example 3 The procedure of Example 1 was repeated except that the foaming was performed in a salt bath at 220 ° C.

【0026】[実施例4]樹脂成分としてポリプロピレ
ン80重量部とLDPE20重量部をブレンドして用い
たこと以外は、実施例1と同様にした。
Example 4 The procedure of Example 1 was repeated except that 80 parts by weight of polypropylene and 20 parts by weight of LDPE were blended and used as the resin component.

【0027】[実施例5]発泡を横型発泡炉で行ったこ
と以外は、実施例4と同様にした。
[Example 5] The same procedure as in Example 4 was carried out except that the foaming was carried out in a horizontal foaming furnace.

【0028】[実施例6]発泡を220℃のソルトバス
で行ったこと以外は、実施例4と同様にした。
[Example 6] The procedure of Example 4 was repeated except that the foaming was performed in a salt bath at 220 ° C.

【0029】[実施例7]発泡温度を240℃として、
発泡直後に40℃の水に7秒間浸漬して、発泡体の表面
を冷却したこと以外は、実施例1と同様にした。
[Example 7] The foaming temperature was set to 240 ° C,
Immediately after foaming, the same procedure as in Example 1 was carried out except that the surface of the foam was cooled by immersing in water at 40 ° C. for 7 seconds.

【0030】[実施例8]発泡温度を240℃として、
発泡直後に40℃の水で7秒間浸漬して、発泡体の表面
を冷却したこと以外は、実施例6と同様にした。
[Embodiment 8] With a foaming temperature of 240 ° C.,
Immediately after foaming, the same procedure as in Example 6 was carried out except that the surface of the foam was cooled by immersing in water at 40 ° C. for 7 seconds.

【0031】[比較例1]発泡温度を260℃としたこ
と以外は、実施例1と同様にした。得られた発泡体の厚
味方向の発泡倍率の分布を測定した結果を図2に示す。
[Comparative Example 1] The procedure of Example 1 was repeated except that the foaming temperature was 260 ° C. The result of measuring the distribution of the expansion ratio in the thickness direction of the obtained foam is shown in FIG.

【0032】[比較例2]冷却時間を16秒間としたこ
と以外は、実施例8と同様にした。
[Comparative Example 2] The procedure of Example 8 was repeated except that the cooling time was 16 seconds.

【0033】以上の各実施例および比較例で得られたシ
ート状発泡体について、物性を測定した結果を表1に示
す。なお、物性の測定方法は、次の通りである。
Table 1 shows the results of measuring the physical properties of the sheet-like foams obtained in the above Examples and Comparative Examples. The methods for measuring the physical properties are as follows.

【0034】〈真空成形性(H/L)〉発泡体を遠赤外
線ヒーターにて発泡体の表面温度が150〜160℃に
なるように設定し、円柱状メス型金型を用いて真空成形
を行い、その成形時の深さHと直径Lの比で表示する。
H/Lの値が大きいほど成形性が良好である。
<Vacuum Formability (H / L)> The foam is set with a far infrared heater so that the surface temperature of the foam is 150 to 160 ° C., and vacuum forming is performed using a cylindrical female die. It is carried out, and is displayed by the ratio of the depth H and the diameter L at the time of molding.
The larger the value of H / L, the better the moldability.

【0035】〈表皮強度(MD)〉25mm巾の布テー
プを発泡体表面に貼り、その上を4Kgのロールを2往
復させた後、引張り試験機でテープと表皮を剥離させ、
その時の強度を測定する。
<Outer skin strength (MD)> A cloth tape having a width of 25 mm was adhered to the surface of the foam, and a roll of 4 Kg was reciprocated twice on the surface of the foam, and then the tape and the outer skin were separated by a tensile tester.
The strength at that time is measured.

【0036】[0036]

【表1】 [Table 1]

【0037】表1から、表皮強度については、実施例1
〜8では、比較例1〜2と比べて大幅に改善されている
ことが分かる。
From Table 1, the skin strength is shown in Example 1.
It can be seen that in Nos. 8 to 8, significantly improved as compared with Comparative Examples 1 and 2.

【0038】発泡体の発泡倍率分布は、実施例1のよう
に、発泡温度を230℃以下に制御した場合は、図1の
ように山型あるいは台形状であり、比較例1の発泡温度
を260℃に設定したものは、中心部の発泡倍率が低下
して谷型をなしており、表面層近傍の発泡倍率が高くな
っている。両者の発泡倍率の分布の差が表皮強度に影響
していることが分かる。
When the foaming temperature was controlled to 230 ° C. or less as in Example 1, the foaming ratio distribution of the foam was mountain-shaped or trapezoidal as shown in FIG. In the case where the temperature is set to 260 ° C., the foaming ratio in the central portion is lowered to form a valley shape, and the foaming ratio near the surface layer is increased. It can be seen that the difference in the distribution of the expansion ratio between the two affects the skin strength.

【0039】実施例7や実施例8のように、発泡時の雰
囲気温度が240℃と高い場合であっても、表皮層を急
冷することにより、表皮強度は向上していることが分か
る。しかし、長時間冷却すると比較例2のごとく、中心
層まで冷却され表皮強度が低下することが分かる。
It can be seen that even when the atmospheric temperature at the time of foaming is as high as 240 ° C. as in Examples 7 and 8, the skin strength is improved by rapidly cooling the skin layer. However, when cooled for a long time, as in Comparative Example 2, the central layer is cooled and the skin strength is reduced.

【0040】[0040]

【発明の効果】本発明によれば、シートの厚味方向にお
ける発泡倍率の分布を山型ないしは台形状に制御するこ
とにより、表皮剥離強度が強く、かつ、成形加工性(H
/L)の良い発泡体を安定的に得ることができる。
According to the present invention, by controlling the distribution of the foaming ratio in the thickness direction of the sheet in a mountain shape or a trapezoidal shape, the peeling strength of the skin is high and the molding processability (H) is high.
It is possible to stably obtain a foam having good / L).

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のシート状発泡体の、厚み方向の発泡
倍率分布を示した図である。
FIG. 1 is a view showing a foaming ratio distribution in a thickness direction of a sheet-shaped foamed body of Example 1.

【図2】比較例1のシート状発泡体の、厚み方向の発泡
倍率分布を示した図である。
FIG. 2 is a view showing a foaming ratio distribution in a thickness direction of a sheet-shaped foamed product of Comparative Example 1.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29L 7:00 4F C08L 23:00 Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display area B29L 7:00 4F C08L 23:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 厚味方向の発泡倍率の分布が、両表面層
から中心部に向かって実質的に山型ないしは台形状に高
くなった形状であることを特徴とするシート状のポリオ
レフィン系樹脂架橋発泡体。
1. A sheet-like polyolefin resin characterized in that the distribution of the expansion ratio in the thickness direction is substantially mountain-shaped or trapezoidal from both surface layers toward the center. Crosslinked foam.
JP3201851A 1991-08-12 1991-08-12 Polypropylene-based resin crosslinked foamed body Pending JPH0570622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201851A JPH0570622A (en) 1991-08-12 1991-08-12 Polypropylene-based resin crosslinked foamed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201851A JPH0570622A (en) 1991-08-12 1991-08-12 Polypropylene-based resin crosslinked foamed body

Publications (1)

Publication Number Publication Date
JPH0570622A true JPH0570622A (en) 1993-03-23

Family

ID=16447940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201851A Pending JPH0570622A (en) 1991-08-12 1991-08-12 Polypropylene-based resin crosslinked foamed body

Country Status (1)

Country Link
JP (1) JPH0570622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111043872A (en) * 2019-12-31 2020-04-21 江西中材新材料有限公司 Production quality detection method of foamed ceramic and kiln

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111043872A (en) * 2019-12-31 2020-04-21 江西中材新材料有限公司 Production quality detection method of foamed ceramic and kiln
CN111043872B (en) * 2019-12-31 2021-11-26 江西中材新材料有限公司 Production quality detection method of foamed ceramic and kiln

Similar Documents

Publication Publication Date Title
US3812225A (en) Method of manufacturing foamed crosslinked polyolefin slabs involving multiple expansion techniques and direct gas pressure
US4097319A (en) Method of manufacturing a composite foamed polyolefin sheet
JPH0570622A (en) Polypropylene-based resin crosslinked foamed body
JPH05214144A (en) Polypropylene-based resin crosslinked foam
JPH07173317A (en) Polypropylene-based and electron radiation-cross-linked foam excellent in moldability
JP2505664B2 (en) Method for producing crosslinked polyolefin resin foam
JPH0362832A (en) Foamed polyolefin resin and its production
JP2663598B2 (en) Method for producing polyolefin resin foam
JP2507202B2 (en) Polyolefin resin cross-linked foam
JPH02175227A (en) Sheetlike foam
JP4027730B2 (en) Polyolefin resin composition having foaming ability and method for producing the same
JPH0257576B2 (en)
JPH07299832A (en) Production of polyolefinic resin foamed sheet
JPH10316796A (en) Production of foamed olefin resin sheet subjected to corona discharge treatment
JP2983304B2 (en) Polyolefin resin crosslinked foam
JP3279456B2 (en) Crosslinked polyolefin resin foam
JPH07113018A (en) Production of crosslinked foamed product of polyolefin resin
JPS63309431A (en) Manufacture of crosslinked polypropylene foam
JP2708496B2 (en) Method for producing cross-linked olefin resin foam
JPH0455440A (en) Production of flame retardant resin-crosslinked foam
JPS636032A (en) Production of polypropylene foam
JPH07100745B2 (en) Crosslinked polyethylene resin foam
JPH04249547A (en) Crosslinked olefin resin foam
JPH02182427A (en) Method for heat-molding of polyolefinic sheet like foam
JPH057417B2 (en)