JPH0570486B2 - - Google Patents

Info

Publication number
JPH0570486B2
JPH0570486B2 JP32463889A JP32463889A JPH0570486B2 JP H0570486 B2 JPH0570486 B2 JP H0570486B2 JP 32463889 A JP32463889 A JP 32463889A JP 32463889 A JP32463889 A JP 32463889A JP H0570486 B2 JPH0570486 B2 JP H0570486B2
Authority
JP
Japan
Prior art keywords
oxygen
membrane
air
dimethylpolysiloxane
membranes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32463889A
Other languages
Japanese (ja)
Other versions
JPH03186313A (en
Inventor
Akio Nakamura
Kinji Kuroiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP32463889A priority Critical patent/JPH03186313A/en
Publication of JPH03186313A publication Critical patent/JPH03186313A/en
Publication of JPH0570486B2 publication Critical patent/JPH0570486B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳现な説明】 産業䞊の利甚分野 本発明は、ガ゜リン、灯油、軜油、重油、
LNG液化倩然ガス、LPG液化石油ガス、郜
垂ガスなどの燃料を、空気ず混合しお可燃混合気
䜓ずしお燃焌させる自動車、航空機などの内燃機
関や、セメントなどキルンやボむラヌ汜猶、
家庭甚ガスレンゞなどの燃焌装眮に、酞玠富化空
気を送り燃焌効率を䞊げるための酞玠富化空気補
造甚デバむス、あるいは慢性気管支炎・肺気腫・
肺結栞埌遺症等の䜎酞玠血症患者に察しお行う酞
玠吞入療法等に有甚な酞玠䟛絊源のための酞玠富
化空気補造甚デバむスに関する。
[Detailed description of the invention] [Industrial application field] The present invention is applicable to gasoline, kerosene, light oil, heavy oil,
Internal combustion engines such as automobiles and aircraft that mix fuel such as LNG (liquefied natural gas), LPG (liquefied petroleum gas), and city gas with air and burn it as a flammable gas mixture, as well as cement kilns and boilers,
A device for producing oxygen-enriched air that sends oxygen-enriched air to combustion devices such as household gas ranges to increase combustion efficiency, or for chronic bronchitis, emphysema,
The present invention relates to a device for producing oxygen-enriched air as an oxygen supply source useful for oxygen inhalation therapy, etc. for hypoxemic patients with sequelae of pulmonary tuberculosis.

埓来の技術 埓来、このような酞玠富化空気の補造法ずし
お、有機高分子膜を利甚する方法が知られおい
る。この方法は、有機高分子薄膜を通過する気䜓
の透過性の差を利甚しお、空気䞭の酞玠を濃瞮し
酞玠濃瞮空気を生成しようずするもので、倧気䞭
の酞玠濃床21を30〜40に増加できれば、
燃焌装眮に甚いるこずにより、燃料消費量の枛少
が図れるので省゚ネルギヌが可胜ずなり、たた医
療甚途の酞玠䟛絊源ずしお䜿甚するこずができ
る。
[Prior Art] Conventionally, as a method for producing such oxygen-enriched air, a method using an organic polymer membrane is known. This method attempts to generate oxygen-enriched air by concentrating oxygen in the air by utilizing the difference in gas permeability that passes through organic polymer thin films. If it can be increased to 30-40%,
By using it in a combustion device, it is possible to reduce fuel consumption, thereby saving energy, and it can also be used as an oxygen supply source for medical purposes.

埓来の酞玠補造法である深冷空気分離法が空気
を圧瞮・冷华したのち沞点の差を利甚しお分留操
䜜を行うため、膚倧な電気゚ネルギヌを消費する
の比べ、酞玠富化膜による酞玠富化空気の補造
は、膜の䞀方の面に1atmの空気を送り、膜の他
方の面を0.1atm皋床に枛圧しお、酞玠濃床の高
い空気を発生させるずいう簡単な仕組みのため、
安䟡な方法ずしお泚目されおいる。
The conventional oxygen production method, cryogenic air separation, compresses and cools the air and then uses the difference in boiling points to perform a fractional distillation operation, which consumes a huge amount of electrical energy. The production of enriched air is a simple process of sending 1 atm of air to one side of the membrane and reducing the pressure to about 0.1 atm on the other side of the membrane to generate air with a high oxygen concentration.
It is attracting attention as an inexpensive method.

珟圚たでに発衚されおいる酞玠富化膜ずしお
は、ゞメチルポリシロキサン−ポリカヌボネヌト
ブロツク共重合䜓膜米囜GE瀟、ポリヒドロキ
シスチレン−ゞメチルポリシロキサン−ポリカヌ
ボネヌトブロツク共重合䜓膜束䞋電気産業な
どがある。
Oxygen-enriching membranes that have been announced so far include dimethylpolysiloxane-polycarbonate block copolymer membrane (GE Corporation, USA), polyhydroxystyrene-dimethylpolysiloxane-polycarbonate block copolymer membrane (Matsushita Electric Industry), etc. There is.

しかし、埓来のこのような膜は気䜓透過量が小
さく、医療甚の小型酞玠吞入噚に応甚䟋がある皋
床で、倧量の空気を䜿甚する燃焌装眮䟋えば、
自動車の堎合、゚ンゞンに䟛絊する空気ず燃料の
重量比、すなわち空燃比は玄15で、燃費10Km
で40Kmhr定速走行するずするず、この燃焌に芁
する空気の量は、4010×1560hrずなる。
ぞの応甚は研究段階に過ぎない。
However, such conventional membranes have a small amount of gas permeation, and are only applicable to small oxygen inhalers for medical use, and are used in combustion devices that use large amounts of air (e.g.
In the case of a car, the weight ratio of the air and fuel supplied to the engine, that is, the air-fuel ratio, is approximately 15, and the fuel consumption is 10 km /
Assuming that the vehicle is traveling at a constant speed of 40 km/hr, the amount of air required for this combustion is 40/10 x 15 = 60/hr. )
Its application is only at the research stage.

発明が解決しようずする課題 高分子膜の性状は、䞀般に酞玠・窒玠分離係数
以䞋PO2PN2ず暙蚘。の倧きい高分子膜は、薄
膜成膜が容易であるにも拘わらず、気䜓透過係数
が小さく、たた気䜓透過係数の倧きい高分子膜
は、薄膜成膜が困難でか぀PO2PN2が小さい傟向
がある。即ち、酞玠透過係数以䞋PO2ず暙蚘。
が埓来から知られおいる高分子䞭最倧倀3.52×
10-8cm3・cmcm2・sec・cmHg以䞋、単䜍を省略
しお瀺す。をオルガノポリシロキサンは、PO2
PN2が1.94ず䜎く、薄膜成膜性は20〜30Όが極限
であり、たたPO2PN2が高分子膜䞭最倧倀
7.03を瀺すポリ酢酞ビニルは、1Ό以䞋の補
膜が可胜にも拘わらず、PO2は2.25×10-11ずいう
桁も小さい倀を瀺す。このため、薄膜成膜性の
芳点からオルガノポリシロキサンにその他の暹脂
を共重合させるなど、気䜓透過係数を犠牲にしお
折合いを぀けおいるのが珟状である。
[Problems to be Solved by the Invention] Generally speaking, the properties of polymer membranes are such that polymer membranes with a large oxygen/nitrogen separation coefficient (hereinafter referred to as P O2 /P N2 ) are easy to form into thin films. First, polymer films with a small gas permeability coefficient and a large gas permeability coefficient tend to be difficult to form into thin films and have a low P O2 /P N2 ratio. In other words, the oxygen permeability coefficient (hereinafter referred to as P O2 )
is the maximum value among conventionally known polymers (3.52×
10 -8 cm 3・cm/cm 2・sec・cmHg; Units are omitted below. ) Organopolysiloxane is P O2 /
Polyvinyl acetate has a low P N2 of 1.94, and its thin film formability is limited to 20 to 30 ÎŒm. Polyvinyl acetate, which has the highest P O2 /P N2 of all polymer films (7.03), can form films of 1 ÎŒm or less. Despite this, P O2 shows a value that is three orders of magnitude smaller, 2.25×10 -11 . For this reason, the current situation is to compromise the gas permeability coefficient by copolymerizing organopolysiloxane with other resins from the viewpoint of thin film forming properties.

本発明者らは、オルガノポリシキサンを母材暹
脂ずしお、これに皮々の粉末材料を充填するこず
により、PO2をオルガノポリシロキサンの数倍〜
数十倍に高め、薄膜成膜性胜を補う研究を進めお
いたが、その過皋で膜材料の開発だけでは限界が
あり、酞玠富化デバむスの開発の必芁性を知぀た
のである。
The present inventors used organopolysiloxane as a base resin and filled it with various powder materials to increase P O2 to several times that of organopolysiloxane.
He was conducting research to increase the performance by several tens of times and supplement the thin film deposition performance, but in the process, he realized that there was a limit to the development of film materials alone, and that it was necessary to develop an oxygen-enriching device.

本発明者らは、高分子膜玠材による酞玠富化膜
がPO2、PO2PN2、薄膜成膜性胜の぀の折り合
いを付ける点で限界があるこずに着目し、それら
の膜を甚いおデバむス化するこずにより、限界を
克服できるこずを芋出した。
The present inventors focused on the fact that oxygen-enriched membranes made of polymer membrane materials have limitations in terms of compromise between P O2 , P O2 /P N2 , and thin film formation performance, and using these membranes. We discovered that it is possible to overcome these limitations by turning them into devices.

埓぀お、本発明の目的は倧量の空気を凊理でき
る酞玠富化デバむスを提䟛するこずにある。
It is therefore an object of the present invention to provide an oxygen enrichment device capable of processing large volumes of air.

課題を解決するための手段 䞊蚘目的を達成するために、本発明の酞玠富化
デバむスにおいおは、酞玠透過係数が×10-10
以䞊の酞玠・窒玠分離膜ず、平行配列線材ずを、
亀互に積局䞀䜓化しお成り、盞隣接する䞊蚘分離
膜同士が互いに離間し、か぀該線材の配列方向が
䞊䞋局間で実質的に盎亀するように圢成しおなる
ものであり、たた、前蚘分離膜が、高シリカれオ
ラむトを充填したオルガノポリシロキサンから成
るこずを特城ずするものである。
[Means for Solving the Problems] In order to achieve the above object, the oxygen enrichment device of the present invention has an oxygen permeability coefficient of 1×10 -10
The above oxygen/nitrogen separation membrane and parallel array wires,
The separation membrane is formed by alternately laminating and integrating, and the adjacent separation membranes are spaced apart from each other, and the arrangement direction of the wire rods is substantially orthogonal between the upper and lower layers, and the separation membrane is is characterized by consisting of an organopolysiloxane filled with high silica zeolite.

本発明の酞玠富化デバむスを、添付図面に基づ
いお説明する。
The oxygen enrichment device of the present invention will be explained based on the accompanying drawings.

第図は、本発明の酞玠富化デバむスの䞀䟋の
暡匏的斜芖図であり、第図は、本発明の酞玠富
化デバむスを䜿甚した酞玠富化システムを瀺す暡
匏図である。
FIG. 1 is a schematic perspective view of an example of the oxygen enrichment device of the present invention, and FIG. 2 is a schematic diagram showing an oxygen enrichment system using the oxygen enrichment device of the present invention.

第図には、空気䟛絊局ず酞玠富化空気吞匕局
がそれぞれ局ず぀枚の酞玠・窒玠分離膜で構
成されたデバむスが描かれおいる。
FIG. 1 depicts a device 1 consisting of seven oxygen/nitrogen separation membranes each having three layers of an air supply layer and an oxygen-enriched air suction layer.

酞玠・窒玠分離膜は軞方向に積局されおお
り、酞玠・窒玠分離膜間には、平行配列線材
が挟持䞀䜓化され、か぀これら平行配列線材は各
局毎に亀互に軞方向ず軞方向に配列されおい
る。これらの線材局は各局毎に盎亀させる必芁が
あるが、これは幟䜕孊的に厳密に90床である必芁
はなく、実質的に盎亀しおいればよく、80床〜
100床の範囲がよい。
The oxygen/nitrogen separation membranes 2 are stacked in the Z-axis direction, and between the oxygen/nitrogen separation membranes 2 are parallel wires 3.
are sandwiched and integrated, and these parallel wire rods are arranged alternately in the X-axis direction and the Y-axis direction for each layer. These wire layers need to be orthogonal to each other, but geometrically this does not need to be strictly at 90 degrees; it is sufficient that they are substantially orthogonal, and the angle should be between 80 degrees and 90 degrees.
A range of 100 degrees is good.

この線材局を䞋から順にX1局、Y1局、X2局、
Y2局、X3局、Y3局ずすれば、1atmの空気を軞
方向から局ぞ送぀お、枛圧ポンプによ぀お局
を軞方向ぞ吞匕するず、酞玠・窒玠分離膜を通
過した酞玠富化空気は、X1局、X2局、X3局から
取出される。このようにするず透過流量は局数に
比䟋しお増倧し、倧量の酞玠富化空気を埗るこず
ができる。
From the bottom, the wire layers are X 1 layer, Y 1 layer, X 2 layer,
If there are 2 layers of Y, 3 layers of The oxygen-enriched air that has passed through is taken out from the X1 layer, X2 layer, and X3 layer. In this way, the permeation flow rate increases in proportion to the number of layers, and a large amount of oxygen-enriched air can be obtained.

なお第図では、軞方向の酞玠富化空気流出
面の反察端面の密封の図瀺を省略したが、該端面
を密封しお甚いるのは圓然である。たた、軞方
向は䞡面ずも解攟されおいるので膜を通しおの空
気の流入ず、䞍芁にな぀た窒玠富化空気の排気を
同時に行うこずができる。
In FIG. 1, sealing of the end surface opposite to the oxygen-enriched air outflow surface in the X-axis direction is not illustrated, but it is natural that the end surface is sealed for use. Furthermore, since both sides are open in the Y-axis direction, air can flow in through the membrane and nitrogen-enriched air that is no longer needed can be exhausted at the same time.

このような酞玠富化空気の補造は、䟋えば第
図で瀺す䞀䟋の酞玠富化システムによ぀お効果的
に補造できる。
The production of such oxygen-enriched air can be done, for example, in the second
It can be effectively produced by the example oxygen enrichment system shown in the figure.

すなわち、送颚フアンによ぀お、送られた空
気は濟過フむルタヌを通過しお枅浄化され、配
管系より本発明の酞玠富化デバむスの局内
に送り蟌たれる。たた、該デバむスの局は枛
圧ポンプによ぀お吞匕され、酞玠・窒玠分離膜
を通過し、酞玠富化空気は配管系を通぀お䞊蚘
枛圧ポンプから取り出され、䞊蚘分離膜を通過し
ない窒玠富化空気は、䞊蚘デバむスの局の、通
垞配管系の反察偎より排気される。
That is, the air sent by the blower fan 4 is purified by passing through the filtration filter 5, and is sent into the Y layer of the oxygen enrichment device 1 of the present invention through the piping system 6. Further, the X layer of the device 1 is sucked by the vacuum pump 7 and passes through the oxygen/nitrogen separation membrane, and the oxygen-enriched air is taken out from the vacuum pump through the piping system 8 and passes through the separation membrane. The non-nitrogen enriched air is exhausted from the Y layer of the device, usually on the opposite side of the piping system 6.

本発明に係る酞玠・窒玠分離膜ずしおは、ポリ
−トリメチルシリル−−プロピンPO2
7.73×10-7、PO2PN21.55以䞋、PO2、
PO2PN2を省略しお 内に数倀をこの順に蚘
茉する。、オルガノポリシロキサン3.52×
10-8、1.94、倩然ゎム2.34×10-9、2.46、ポ
リブタゞ゚ン1.9×10-9、2.95、゚チルセルロ
ヌス1.47×10-9、3.32、゚チレン−酢酞ビニル
共重合䜓8.0×10-10、2.76、䜎密床ポリ゚チレ
ン2.89×10-10、2.98、ポリスチレン2.01×
10-10、6.38、ポリカヌボネヌト1.4×10-10、
4.67、ブチルゎム1.3×10-10、4.0などがあ
る。この䞭で、オルガノポリシロキサンは、
PO2PN2が䜎いが、PO2が桁ないし桁高い点
で酞玠・窒玠分離膜ずしおは栌段に優れおいるの
で、オルガノポリシロキサンの䜿甚が最も奜たし
い。
As the oxygen/nitrogen separation membrane according to the present invention, poly[1-(trimethylsilyl)-1-propyne] (P O2
=7.73×10 -7 , P O2 /P N2 = 1.55; Hereinafter, P O2 ,
Omit P O2 /P N2 and write the numbers in parentheses in this order. ), organopolysiloxane (3.52×
10 -8 , 1.94), natural rubber (2.34 x 10 -9 , 2.46), polybutadiene (1.9 x 10 -9 , 2.95), ethyl cellulose (1.47 x 10 -9 , 3.32), ethylene-vinyl acetate copolymer (8.0 ×10 -10 , 2.76), low-density polyethylene (2.89 × 10 -10 , 2.98), polystyrene (2.01 ×
10 -10 , 6.38), polycarbonate (1.4×10 -10 ,
4.67) and butyl rubber (1.3×10 -10 , 4.0). Among these, organopolysiloxane is
Although the P O2 /P N2 ratio is low, the P O2 value is one to two orders of magnitude higher, making it extremely superior as an oxygen/nitrogen separation membrane, so organopolysiloxane is most preferably used.

オルガノポリシロキサンの基本系であるゞメチ
ルポリシロキサンに぀いおは、本発明者らが気䜓
透過率枬定装眮によりPO2、PO2PN2を実枬した
ずころ、それぞれ〜×10-8、1.8〜2.1であ
぀た。
Regarding dimethylpolysiloxane, which is the basic system of organopolysiloxane, the present inventors actually measured P O2 and P O2 /P N2 using a gas permeability measuring device, and found that they were (3 to 7) x 10 -8 and 1.8, respectively. It was ~2.1.

オルガノポリシロキサンよりPO2が桁高いポ
リ−トリメチルシリル−−プロピン
は、PO2の経時による䜎䞋が激しく、実甚化が遅
れおいるが、これが解決されれば本発明に係る有
力な酞玠・窒玠分離膜になるず思われる。
Poly[1-(trimethylsilyl)-1-propyne] has an order of magnitude higher P O2 than organopolysiloxane
However, if this problem is solved, it will become a promising oxygen/nitrogen separation membrane according to the present invention, due to the drastic decrease in P O2 over time, which has delayed its practical application.

気䜓透過膜は薄いほど透過流量が倚くなるが、
䞊蚘したようにゞメチルポリシロキサンは単独で
の薄膜成膜性に劣り20〜30Όが極限ずされるた
め、これを倚孔質支持膜にコヌテむングしお薄膜
成膜しお䜿甚するのが奜たしい。この倚孔質支持
膜ずしおは、ポリプロピレン、ポリサルホン、ポ
リむミド、芳銙族ポリ゚ステルなどから成る倚孔
質フむルムが挙げられる。
The thinner the gas permeable membrane, the higher the permeation flow rate.
As mentioned above, dimethylpolysiloxane has poor ability to form a thin film by itself, and the maximum thickness is 20 to 30 ÎŒm. Therefore, it is preferable to coat a porous support membrane with it to form a thin film. Examples of the porous support membrane include porous films made of polypropylene, polysulfone, polyimide, aromatic polyester, and the like.

たた、本発明者らの研究によるず、このゞメチ
ルポリシロキサンに高シリカれオラむトを配合充
填した薄膜は、ゞメチルポリシロキサン膜の数倍
〜数十倍のPO2を埗るこずがでるので、この薄膜
の䜿甚がより奜たしい。
Furthermore, according to the research conducted by the present inventors, a thin film made by blending and filling high silica zeolite with dimethylpolysiloxane can obtain several times to several tens of times more P O2 than a dimethylpolysiloxane film. Use is more preferred.

れオラむトは、組成匏が䟋えば倩然産のモルデ
ナむトはNaO.Al2O3・10SiO2・6H2O、合成れオ
ラむト型はNa2O・Al2O3・2SiO2・4.5H2Oで
瀺され、SiO4四面䜓ずAlO4-四面䜓が次元
網目状に結合し、埄玄1nの现孔を無数に持぀
倚孔性結晶䜓で、特異な吞着性胜を瀺すため脱氎
剀、也燥剀、モレキナラヌシヌノ分子篩、吞
着剀、觊媒、むオン亀換剀などに甚いられおい
る。高シリカれオラむトはZSN−型れロオラ
むトずも呌ばれSiO2Al2O3比が15以䞊から無限
倧ずいう倧きな倀を瀺すものである。この䞭で、
SiO2Al2O3が無限倧のれオラむトずしお著名な
ものに米囜UCC瀟補のシリカラむトR瀺性匏
SiO296がある。このシリカラむト結晶の现孔
構造は、埄が0.57×0.51nの楕円圢の酞玠原子
10員環盎線チダンネル、埄0.54nのほが円圢の
酞玠原子10員環ゞグザグチダンネルずが組み合わ
された構造を持぀おおり、本発明者らは、これを
ゞメチルポリシロキサンに60重量以䞊充填する
ずPO2を数倍〜数十倍に増加させるこずができる
こずを実隓的に確かめおいる。
The compositional formula of zeolite is, for example, naturally occurring mordenite is represented by NaO.Al 2 O 3・10SiO 2・6H 2 O, and synthetic zeolite type A is represented by Na 2 O ・Al 2 O 3・2SiO 2・4.5H 2 O. , SiO 4 tetrahedron and (AlO 4 ) -tetrahedron are combined in a three-dimensional network, and it is a porous crystal body with countless pores with a diameter of about 1 nm. Because it exhibits unique adsorption performance, it is used as a dehydrating agent and desiccant agent. , molecular sieves, adsorbents, catalysts, ion exchange agents, etc. High silica zeolite is also called ZSN-5 type zeroolite and exhibits a large SiO 2 /Al 2 O 3 ratio of 15 or more to infinity. In this,
A well-known zeolite with infinite SiO 2 /Al 2 O 3 is Silicalite R [specific formula (SiO 2 ) 96 ] manufactured by UCC in the United States. The pore structure of this silicalite crystal is an elliptical oxygen atom with a diameter of 0.57 x 0.51 nm.
It has a structure in which a 10-membered ring straight channel is combined with a 10-membered ring zigzag channel with an approximately circular oxygen atom diameter of 0.54 nm, and the present inventors have found that when dimethylpolysiloxane is filled with more than 60% by weight of this channel, P It has been experimentally confirmed that O2 can be increased several times to several tens of times.

すなわち、気䜓透過率枬定装眮を以いたPO2は
実枬倀によるず、ゞメチルポリシロキサン単独膜
は4.0×10-8、シリカラむト60重量充填ゞメチ
ルポリシロキサン膜は15×10-8〜20×10-8、シリ
カラむト80重量充填ゞメチルポリシロキサン膜
は40×10-8、シリカラむト90重量充填ゞメチル
ポリシロキサン膜は135×10-8ずいう高い倀を埗
るこずができる。これらの膜のPO2PN2実枬地
は、1.8〜2.1の範囲であ぀た。
That is, according to actual measurements of P O2 using a gas permeability measuring device, the dimethylpolysiloxane membrane alone was 4.0×10 -8 and the dimethylpolysiloxane membrane filled with 60% silicalite was 15×10 -8 to 20×10 -8 , a dimethylpolysiloxane membrane filled with 80% by weight of silicalite can obtain a value as high as 40 x 10 -8 , and a dimethylpolysiloxane membrane filled with 90% by weight of silicalite can obtain a value as high as 135 x 10 -8 . The measured P O2 /P N2 values of these films were in the range of 1.8 to 2.1.

以䞊の高シリカれオラむト充填ゞメチルポリシ
ロキサン膜は、ゞメチルシロキサンの薄膜成膜性
の䜎さをPO2を高くするこずによ぀おカバヌする
方法で、薄膜成膜性に぀いおは20〜30Όが限界
であるこずには倉わりないが、本発明者らの研究
によれば、ゞメチルポリシロキサンに前蚘ポリ
−トリメチルシリル−−プロピンずを
ブレンドするこずにより、薄膜成膜性を向䞊させ
るこずができ、ゞメチルポリシロキサン単独膜の
数倍のPO2を埗るこずができるこずを芋い出した。
本発明者らの成膜実隓によれば、これらを50察50
の割合でブレンドした堎合、玄〜3Όの成膜
が可胜で、この時のPO2実枬倀は20〜30×10-8
で、PO2PN2実枬倀は1.8であ぀た。
The above-mentioned high-silica zeolite-filled dimethylpolysiloxane membrane is a method that compensates for the poor thin film formability of dimethylsiloxane by increasing P O2 , and the thin film formability is limited to 20 to 30 ÎŒm. However, according to the research of the present inventors, thin film forming properties can be improved by blending the poly[1-(trimethylsilyl)-1-propyne] with dimethylpolysiloxane. It has been found that it is possible to obtain several times as much P O2 as a membrane made of dimethylpolysiloxane alone.
According to the inventors' film-forming experiments, these ratios were 50:50.
When blended at a ratio of , it is possible to form a film of approximately 2 to 3 ÎŒm, and the actual measured value of P O2 at this time is (20 to 30) × 10 -8
The actual measured value of P O2 /P N2 was 1.8.

本発明に係る酞玠・窒玠分離膜の成膜方法ずし
おは、溶液流延キダステむング法、ダむ抌
出し法、むンフレヌシペン法、カレンダヌロヌル
圧延法、軞たたは軞延䌞法等が挙げられる。
たた、支持䜓フむルムぞの成膜方法ずしおは、グ
ラビダロヌルコヌテむング、メむダヌバヌコヌテ
むング、ドクタヌナむフコヌテむング、リバヌス
ロヌルコヌテむング、゚アヌナむフコヌテむン
グ、マむクログラビアコヌテむング等が挙げられ
る。
Examples of the method for forming the oxygen/nitrogen separation membrane according to the present invention include a solution casting method, a T-die extrusion method, an inflation method, a calendar roll rolling method, and a uniaxial or biaxial stretching method. It will be done.
Further, examples of the method for forming a film on the support film include gravure roll coating, Meyer bar coating, doctor knife coating, reverse roll coating, air knife coating, microgravure coating, and the like.

この酞玠・窒玠分離膜の厚さは、倧量の空気を
凊理する点ではピンホヌルを生じない範囲で薄い
ほど奜たしいが、倚孔質支持膜ずの耇合膜ずしな
い堎合には、膜の取り扱いのしやすさの点から
1Ό以䞊ずするのが望たしい。倚孔質支持膜ず
の耇合膜ずする堎合にはピンホヌルを生じない範
囲でサブミクロン厚さ膜ずするのが奜たしい。膜
厚の䞊限は空気凊理量の点で100Ό、望たしく
は30Ό皋床である。
The thinner the oxygen/nitrogen separation membrane is, the better it is to the extent that it does not cause pinholes when processing a large amount of air. However, if it is not a composite membrane with a porous support membrane, handling From the point of view of ease
It is desirable that the thickness be 1 ÎŒm or more. When forming a composite membrane with a porous support membrane, it is preferable to use a membrane with a submicron thickness within a range that does not cause pinholes. The upper limit of the film thickness is 100 ÎŒm, preferably about 30 ÎŒm from the viewpoint of air throughput.

本発明に係る配列線材ずしおは、ステンレス
鋌、ニツケル、銅、掋癜、黄銅、りん青銅等から
成る金属ワむダヌたたは、ポリ゚ステル、ポリア
ミド、芳銙族ポリアミドなどの高分子線状䜓が挙
げられるが、配線補造䞊の郜合から匷床的に優
れ、たた䌞瞮しない金属ワむダヌの䜿甚がより奜
たしい。
Examples of the array wire according to the present invention include metal wires made of stainless steel, nickel, copper, nickel silver, brass, phosphor bronze, etc., and polymer linear bodies such as polyester, polyamide, aromatic polyamide, etc. For manufacturing reasons, it is more preferable to use a metal wire that has excellent strength and does not expand or contract.

配列線材の埄は、现すぎるず、分離膜盞互の間
隔が狭くな぀お空気の流入を劚げ、たた倪すぎる
ず、分離膜盞互の間隔が倧きくな぀お分離膜積局
密床が小さくなり酞玠富化空気の生成量が小さく
䞍利ずなるので、通垞、埄φ10Ό〜φ3Όのもの
が甚いられる。奜たしくはφ50Ό〜φ1mmの範囲
である。
If the diameter of the array wire is too small, the spacing between the separation membranes will become narrow, which will prevent air from flowing in. If the diameter of the array wire is too small, the spacing between the separation membranes will become large, reducing the separation membrane stacking density and reducing oxygen-enriched air. Since the amount of produced is small, it is disadvantageous that a diameter of φ10 ÎŒm to φ3 ÎŒm is usually used. Preferably it is in the range of φ50 ÎŒm to φ1 mm.

平行配列線の配列ピツチは、小さすぎるず空気
の流入を阻害し、倧きすぎるず盞隣接する分離膜
同士の離間が劚げられ空気の流入を阻害すので、
通垞、0.5〜mmの範囲のものが甚いられる。特
に〜mmの範囲ずするものが望たしい。
If the pitch of the parallel array lines is too small, it will inhibit the inflow of air, and if it is too large, the spacing between adjacent separation membranes will be hindered and the inflow of air will be inhibited.
Usually, those in the range of 0.5 to 5 mm are used. Particularly desirable is a thickness in the range of 1 to 2 mm.

配列線材ず分離膜ずの接着方法は、未硬化状態
を分離膜をプラむマヌ凊理枈みの配列線材に積局
した埌、これを型プレスによ぀お接着䞀䜓化する
方法や、硬化枈みの分離膜に接着材をコヌテむン
グした配列線材を積局した埌、型プレスによ぀お
接着䞀䜓化する方法があるが、薄膜の取り扱いや
倚孔質支持䜓にコヌテむングした薄膜を扱う事な
どを考慮するず、埌者の方が実際的である。
The method of adhering the array wire and separation membrane is to laminate the uncured separation membrane to the primer-treated array wire and then use a mold press to bond and integrate it, or to adhere it to the cured separation membrane. There is a method of laminating array wires coated with the material and then bonding them together using a mold press, but considering the handling of thin films and the handling of thin films coated on porous supports, the latter method is more practical. It is true.

䜜甚 䞊蚘のように構成された酞玠富化デバむスによ
れば、送り蟌たれた空気は、配列線材を介しお倚
段に積局された倚数の酞玠・窒玠分離膜を通過
し、倚量の酞玠富化空気ずな぀お効率よく取出さ
れ、䞊蚘分離膜を通過しない窒玠富化空気は容易
に排出される。
[Function] According to the oxygen enrichment device configured as described above, the injected air passes through a large number of oxygen/nitrogen separation membranes stacked in multiple stages via array wires, and is enriched with a large amount of oxygen. Nitrogen-enriched air, which is efficiently extracted as air and does not pass through the separation membrane, is easily discharged.

実斜䟋 酞玠・窒玠分離膜の補造 粘床60Pa・の液状ゞメチルポリシロキサン、
KE1935A信越化孊工業(æ ª)補、商品名40重
量に、高シリカれラむト、シリカラむトR
UCC瀟補、商品名60重量を配合し、これを
トル゚ンケロシン混合溶媒に溶かした粘床
50Pa・の溶液ずしお、マむクログラビアコヌ
タヌR康井粟機(æ ª)、商品名を甚いおテフロンR
TFEE.I.Dupont瀟補商品名セパレヌタヌ䞊に
コヌテむングし、100℃×10secの条件で溶媒揮散
埌、180℃×30分の条件で架橋させお、厚さ25ÎŒ
の膜䜓を埗た。
[Example] Production of oxygen/nitrogen separation membrane Liquid dimethylpolysiloxane with a viscosity of 60 Pa・s,
KE1935A/B (manufactured by Shin-Etsu Chemical Co., Ltd., trade name) 40% by weight, high silica gelite, Silicalite R
(Manufactured by UCC, trade name) 60% by weight and dissolved in toluene/kerosene mixed solvent.
Teflon R was applied as a 50Pa・s solution using Microgravure Coater R (Yasui Seiki Co., Ltd., trade name).
Coated on TFE (trade name manufactured by EIDupont) separator, evaporated the solvent at 100℃ x 10 seconds, and cross-linked at 180℃ x 30 minutes to a thickness of 25 ÎŒm.
A membrane body of m was obtained.

この高シリカれオラむト充填ゞメチルポリシロ
キサン膜をセパレヌタヌから剥離しお、加圧匏気
䜓透過率枬定装眮、ガスパヌムR−100日本分光
工業(æ ª)補、商品名を䜿甚しお枬定したずころ、
PO2は20×10-8でゞメチルポリシロキサンの玄
倍であり、PO2PN2はゞメチルポリシロキサン盞
圓の2.0であ぀た。
This high-silica zeolite-filled dimethylpolysiloxane membrane was peeled off from the separator and measured using a pressurized gas permeability measuring device, Gasperm R -100 (manufactured by JASCO Corporation, trade name).
P O2 is 20×10 -8 and about 5% of dimethylpolysiloxane
P O2 /P N2 was 2.0, which is equivalent to dimethylpolysiloxane.

酞玠富化デむバスの補造 PPM配線装眮を信越ポリマヌ(æ ª)補、透明タツ
チパネル補造装眮を甚いお、シラン系プラむマ
ヌを凊理したφ0.2mmのSUS−304ワむダヌを、配
線ピツチ1.0mmで配列し、この配線の衚裏面に
液RTVシリコヌンゎム、TSE−3360東芝シリ
コヌン(æ ª)補、商品名を塗垃しお、䞊蚘の高シリ
カれオラむト充填ゞメチルポリシロキサン膜を、
䞊䞋局ごずに配線方向が実質的に盎亀するように
しお倚重積局し、プレス型枠にいれおプレス成圢
䞀䜓化した。
Manufacture of oxygen-enriched devices Using a PPM wiring device manufactured by Shin-Etsu Polymer Co., Ltd. (transparent touch panel manufacturing device), φ0.2mm SUS-304 wires treated with a silane primer were arranged at a wiring pitch of 1.0mm. 2 on the front and back sides of this wiring.
The above high silica zeolite-filled dimethylpolysiloxane membrane was coated with liquid RTV silicone rubber, TSE-3360 (manufactured by Toshiba Silicone Corporation, trade name).
The upper and lower layers were laminated in multiple layers so that the wiring directions were substantially perpendicular to each other, and then put into a press mold and integrally press-molded.

次に、この端面を研磚凊理しお、瞊軞方
向300mm×暪軞方向300mm×高さ軞方
向300mmの積局ブロツク状䜓ずし、軞方向の
富化空気流出方向の反察面をシリコヌン゚ポキシ
暹脂で封止した。
Next, this end face is polished to form a laminated block-like body measuring 300 mm in length (X-axis direction) x 300 mm in width (Y-axis direction) x 300 mm in height (Z-axis direction), and enriched air flows out in the X-axis direction. The opposite side was sealed with silicone epoxy resin.

このようにしお補造したデバむスを甚い、前蚘
第図に瀺した酞玠富化システムを補䜜しお詊隓
したずころ、酞玠濃床蚈、広濃床域酞玠分析蚈
FCX−SW藀倉電線(æ ª)補、商品名による酞玠濃
床枬定倀が玄35の酞玠富化空気を、流量100
hrで埗るこずができた。
Using the device manufactured in this way, the oxygen enrichment system shown in Figure 2 was manufactured and tested.
FCX-SW (manufactured by Fujikura Electric Wire Co., Ltd., product name) Oxygen-enriched air with an oxygen concentration measurement value of approximately 35% is supplied at a flow rate of 100%.
/hr.

発明の効果 本発明の酞玠富化デバむスによれば、ゞメチル
ポリシロキサン膜やゞメチルポリシロキサンず他
暹脂ずの共重合膜などの埓来知られおいる酞玠・
窒玠分離膜や、さらには高シリカれオラむト充填
ゞメチルポリシロキサン膜などの酞玠・窒玠分離
膜を䜿甚し、これを平行配列線材ず組み合わせお
倚重積局するだけの構造で、倧量の空気を䞀床に
分離凊理できる酞玠富化デバむスを安䟡に提䟛す
るこずができる。たた、その構造䞊、小型化でき
るので、医療甚などの少量の酞玠富化空気補造甚
ずしおだけでなく、これを自動車などに搭茉しお
燃焌甚に甚いるこずが可胜になる。
[Effects of the Invention] According to the oxygen enrichment device of the present invention, conventional oxygen enrichment devices such as dimethylpolysiloxane films and copolymer films of dimethylpolysiloxane and other resins can be used.
A large amount of air can be separated and processed at once with a structure that uses nitrogen separation membranes or even oxygen/nitrogen separation membranes such as high-silica zeolite-filled dimethylpolysiloxane membranes, and combines them with parallel array wires to stack multiple layers. It is possible to provide an oxygen enrichment device that can be used at a low cost. Furthermore, because of its structure, it can be miniaturized, so it can be used not only for producing small amounts of oxygen-enriched air for medical purposes, but also for combustion by being mounted on an automobile.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は、本発明の酞玠富化デバむスの暡匏
図。第図は、本発明の酞玠富化デバむスを䜿甚
した酞化富化システムを瀺す暡匏図である。   酞玠富化デバむス、  酞玠・窒玠分
離膜、  平行配列線材、  送フアン、
  濟過フむルタヌ、  配管系、  
枛圧ポンプ。
FIG. 1 is a schematic diagram of the oxygen enrichment device of the present invention. FIG. 2 is a schematic diagram showing an oxidation enrichment system using the oxygen enrichment device of the present invention. DESCRIPTION OF SYMBOLS 1... Oxygen enrichment device, 2... Oxygen/nitrogen separation membrane, 3... Parallel array wire, 4... Delivery fan, 5
...filtration filter, 6, 8...piping system, 7...
vacuum pump.

Claims (1)

【特蚱請求の範囲】  酞玠透過係数が×10-10cm3・cmcm2・sec.cm
Hg以䞊の酞玠・窒玠分離膜ず、平行配列線材ず
を、亀互に積局䞀䜓化しお成り、盞隣接する䞊蚘
分離膜同士が互いに離間し、か぀該線材の配列方
向が䞊䞋局間で実質的に盎亀するように圢成させ
たこずを特城ずする酞玠富化デバむス。  酞玠・窒玠分離膜が、高シリカれオラむトを
充填したオルガノポリシロキサンから成るこずを
特城ずする請求項に蚘茉の酞玠富化デバむス。
[Claims] 1. Oxygen permeability coefficient is 1×10 -10 cm 3・cm/cm 2・sec.cm
Oxygen/nitrogen separation membranes of Hg or higher and parallel array wires are alternately laminated and integrated, and the adjacent separation membranes are spaced apart from each other, and the arrangement direction of the wires is substantially orthogonal between the upper and lower layers. An oxygen enrichment device characterized in that it is formed so as to. 2. The oxygen enrichment device according to claim 1, wherein the oxygen/nitrogen separation membrane is made of organopolysiloxane filled with high silica zeolite.
JP32463889A 1989-12-14 1989-12-14 Oxygen enrichment device Granted JPH03186313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32463889A JPH03186313A (en) 1989-12-14 1989-12-14 Oxygen enrichment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32463889A JPH03186313A (en) 1989-12-14 1989-12-14 Oxygen enrichment device

Publications (2)

Publication Number Publication Date
JPH03186313A JPH03186313A (en) 1991-08-14
JPH0570486B2 true JPH0570486B2 (en) 1993-10-05

Family

ID=18168065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32463889A Granted JPH03186313A (en) 1989-12-14 1989-12-14 Oxygen enrichment device

Country Status (1)

Country Link
JP (1) JPH03186313A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9516755D0 (en) * 1995-08-16 1995-10-18 Normalair Garrett Ltd Oxygen generating device
US5275726A (en) * 1992-07-29 1994-01-04 Exxon Research & Engineering Co. Spiral wound element for separation
ES2126341T3 (en) * 1995-02-09 1999-03-16 Normalair Garrett Ltd OXYGEN GENERATING DEVICE.
CN103868061B (en) * 2014-03-28 2015-06-24 䞭材装倇集团有限公叞 Environment-friendly oxygen-enriched combustion method applied to cement kiln and device thereof

Also Published As

Publication number Publication date
JPH03186313A (en) 1991-08-14

Similar Documents

Publication Publication Date Title
Liu et al. Pervaporation membrane materials: Recent trends and perspectives
Wang et al. Recent progress on submicron gas-selective polymeric membranes
Liang et al. A review of polymeric composite membranes for gas separation and energy production
Shi et al. Gas separation via hybrid metal–organic framework/polymer membranes
Zhang et al. Effect of substrate on formation and nanofiltration performance of graphene oxide membranes
JP3038053B2 (en) Air intake system for mobile engines
Li et al. Metal− organic framework composite membranes: Synthesis and separation applications
Iarikov et al. Review of CO2/CH4 separation membranes
KR20050093018A (en) Efficient 3-d nanostructured membranes
JPH0318926B2 (en)
JPH04227036A (en) Air take-in system for furnace of residence
US11806678B2 (en) Nanoporous graphene membranes
JPH0457372B2 (en)
Li et al. Multilayer ultrathin‐film composite membranes for oxygen enrichment
CN109982772B (en) Separation membrane and laminate
Akbari et al. Polyimide based mixed matrix membranes incorporating Cu-BDC nanosheets for impressive helium separation
JPH0570486B2 (en)
US8016924B2 (en) Device for gas separation and method for producing such a system
US5354469A (en) Layered plasma polymer composite membranes
JPS5966308A (en) Gas permeable composite membrane
Baker et al. Liquid membranes for the production of oxygen-enriched air: I. Introduction and passive liquid membranes
Tsujita The physical chemistry of membranes
JPH03262523A (en) Oxygen enriching composite membrane
Sarfraz Carbon Capture via Mixed-Matrix Membranes Containing Nanomaterials and Metal–Organic Frameworks
JP5356882B2 (en) Pleated molded body manufacturing method and pleated molded body