JPH0570386B2 - - Google Patents

Info

Publication number
JPH0570386B2
JPH0570386B2 JP57206428A JP20642882A JPH0570386B2 JP H0570386 B2 JPH0570386 B2 JP H0570386B2 JP 57206428 A JP57206428 A JP 57206428A JP 20642882 A JP20642882 A JP 20642882A JP H0570386 B2 JPH0570386 B2 JP H0570386B2
Authority
JP
Japan
Prior art keywords
voltage
waveform
pulse
frequency pulse
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57206428A
Other languages
Japanese (ja)
Other versions
JPS5996875A (en
Inventor
Yoichi Hayashi
Masahiko Nozawa
Hiroshi Yamaguchi
Hiroyuki Kotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP20642882A priority Critical patent/JPS5996875A/en
Publication of JPS5996875A publication Critical patent/JPS5996875A/en
Publication of JPH0570386B2 publication Critical patent/JPH0570386B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Description

【発明の詳細な説明】 本発明は直流電圧を交流電圧に変換するインバ
ータ装置に関し、特に太陽電池や燃料電池で得ら
れる直流電圧を正弦波に近い交流電圧に変換する
のに適したインバータ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inverter device that converts DC voltage to AC voltage, and particularly relates to an inverter device suitable for converting DC voltage obtained from solar cells or fuel cells into AC voltage close to a sine wave. It is something.

近時、太陽エネルギの有効利用を図るための
種々のシステムが検討されている。その1つとし
て太陽エネルギを電力に変換して需要者に供給す
る電力供給システムが開発されつつあり、この種
のシステムにおいて太陽電池を用いる場合には、
太陽電池から得られた直流電圧をインバータ装置
により交流電圧に変換する必要がある。また燃料
電池による電力供給システムも研究されている
が、このシステムにおいても同様にインバータ装
置が必要になる。従来知られているインバータ装
置として、直流電圧をスイツチング素子でオンオ
フすることにより正弦波形でパルス幅変調した高
周波パルスを発生させ、この高周波パルスをフイ
ルタ回路に通すことにより正弦波交流電圧を得る
ようにしたパルス幅変調(PWM)方式のものが
ある。しかしながらこのインバータでは、波高値
の高い高周波パルスをフイルタ回路に通すため電
力容量の大きいフイルタを必要とし、フイルタで
の電力損失が多くなつて変換効率が低くなる欠点
があつた。
Recently, various systems for effectively utilizing solar energy have been studied. As one of these, power supply systems are being developed that convert solar energy into electricity and supply it to consumers.When using solar cells in this type of system,
It is necessary to convert the DC voltage obtained from the solar cells into AC voltage using an inverter device. Further, a power supply system using fuel cells is also being researched, but this system also requires an inverter device. A conventionally known inverter device generates high frequency pulses whose pulse width is modulated in a sinusoidal waveform by turning DC voltage on and off with a switching element, and obtains a sinusoidal AC voltage by passing this high frequency pulse through a filter circuit. Some use pulse width modulation (PWM). However, this inverter requires a filter with a large power capacity in order to pass high-frequency pulses with high peak values through the filter circuit, which has the drawback of increasing power loss in the filter and lowering conversion efficiency.

そこで、特開昭56−86077号に見られるように、
矩形波の両端部分をパルス状に裁断した波形を有
する複数の電流を作つて、該複数の電流を所定の
位相差を持たせて重ね合わせることにより、全体
を平均値的に見たときに台形状を呈する波形の出
力を得るようにしたインバータ装置が提案され
た。
Therefore, as seen in JP-A No. 56-86077,
By creating a plurality of currents having waveforms obtained by cutting both ends of a rectangular wave into a pulse shape, and superimposing the plurality of currents with a predetermined phase difference, the average value of the whole becomes stable. An inverter device has been proposed that outputs a waveform output having a shape.

しかしながらこのインバータ装置では、出力波
形を正弦波に近付けようとするとすると、矩形波
の両端部分をパルス状にし裁断した波形を有する
電流を多数作つて合成する必要があり、装置の構
成が複雑になるという問題があつた。
However, in order to make the output waveform closer to a sine wave with this inverter device, it is necessary to create and synthesize a large number of currents that have a waveform in which both ends of a rectangular wave are pulsed and cut, making the device configuration complicated. There was a problem.

またこのインバータ装置では、合成する電流の
数をいかに多くしても出力波形は台形状であるた
め、出力波形の頂上部で、正弦波とのずれが大き
くなり、その分高周波成分が多くなるという問題
があつた。、本発明の目的は、太陽電池や燃料電
池等の電池ユニツトの直流電圧を簡単な構成で効
率良く正弦波交流電圧に変換することができるよ
うにしたインバータ装置を提供することにある。
In addition, in this inverter device, no matter how many currents are combined, the output waveform is trapezoidal, so the deviation from the sine wave becomes large at the top of the output waveform, and the high frequency components increase accordingly. There was a problem. An object of the present invention is to provide an inverter device that can efficiently convert the DC voltage of a battery unit such as a solar cell or a fuel cell into a sinusoidal AC voltage with a simple configuration.

本発明は、電池ユニツトから得られる直流電圧
を略正弦波状の低周波交流電圧に変換するインバ
ータ装置に係わるもので、本発明においては、直
流電圧を入力として変換すべき交流電圧の波形に
近い波形に沿つて階段状に変化する低周波の階段
状波形電圧を発生する階段状波形発生回路と、直
流電圧を入力として階段状波形電圧の各部に重畳
する高周波パルス電圧を発生する高周波パルス発
生回路と、階段状波形電圧に高周波パルス電圧を
重畳させる電圧合成回路と、電圧合成回路の出力
電圧を略正弦波状の交流電圧に変換するフイルタ
回路とが設けられる。階段状波形電圧の各部に重
畳される高周波パルス電圧は、階段状波形電圧の
各部と変換すべき交流電圧波形の各部との差に相
応するようにパルス幅変調されている。
The present invention relates to an inverter device that converts a DC voltage obtained from a battery unit into a substantially sinusoidal low-frequency AC voltage. A step waveform generation circuit generates a low frequency step waveform voltage that changes in a stepwise manner along the direction of the step waveform voltage; , a voltage synthesis circuit that superimposes a high-frequency pulse voltage on a stepped waveform voltage, and a filter circuit that converts the output voltage of the voltage synthesis circuit into a substantially sinusoidal AC voltage. The high frequency pulse voltage superimposed on each part of the step waveform voltage is pulse width modulated so as to correspond to the difference between each part of the step waveform voltage and each part of the AC voltage waveform to be converted.

上記のように、変換すべき交流電圧の正弦波形
に沿つて階段状に変化する階段状波形電圧を発生
させて、この階段状波形電圧の各部と変換すべき
交流電圧波形の各部との差に相応するようにパル
ス幅変調された高周波パルス電圧を、階段状波形
電圧の各部に重畳することにより正弦波に近似し
た交流電圧波形を得るようにすると、直流電圧を
正弦波形でパルス幅変調して得た高周波パルスを
フイルタ回路に通すことにより正弦波交流電圧を
得るパルス幅変調方式による場合に比べてフイル
タ回路の入力電圧の高調波成分を少なくすること
ができる。
As described above, a step waveform voltage that changes stepwise along the sine waveform of the AC voltage to be converted is generated, and the difference between each part of this step waveform voltage and each part of the AC voltage waveform to be converted is By superimposing a correspondingly pulse width-modulated high-frequency pulse voltage on each part of the stepped waveform voltage, an AC voltage waveform that approximates a sine wave can be obtained. The harmonic components of the input voltage to the filter circuit can be reduced compared to a pulse width modulation method in which a sinusoidal AC voltage is obtained by passing the obtained high-frequency pulse through a filter circuit.

また正弦波電圧に近似した階段状波形電圧を発
生させて、この階段状波形電圧にパルス電圧を重
畳するようにすると、階段状波形電圧の頂上部に
も高周波パルスを重畳できるため、正弦波を台形
状の波形で近似させる場合に比べて、フイルタ回
路の入力波形をより正弦波に近付けることがで
き、フイルタ回路の入力電圧の高調波成分を少な
くすることができる。したがつて波形歪みがな
く、高調波成分が少ない交流出力電圧を得ること
ができる。
In addition, by generating a step waveform voltage that approximates a sine wave voltage and superimposing a pulse voltage on this step waveform voltage, a high frequency pulse can also be superimposed on the top of the step waveform voltage. Compared to the case where the waveform is approximated by a trapezoidal waveform, the input waveform of the filter circuit can be made closer to a sine wave, and the harmonic components of the input voltage of the filter circuit can be reduced. Therefore, an AC output voltage without waveform distortion and with few harmonic components can be obtained.

また上記のように、正弦波に近似した階段状波
形電圧を得て、この階段状波形電圧に高周波パル
ス電圧を重畳するようにすると、高周波パルスを
発生させるための回路を多数設ける必要がないた
め、インバータ装置の回路構成を簡単にすること
ができる。
Furthermore, as mentioned above, if a step waveform voltage that approximates a sine wave is obtained and a high frequency pulse voltage is superimposed on this step waveform voltage, there is no need to provide many circuits to generate high frequency pulses. , the circuit configuration of the inverter device can be simplified.

以下図面を参照して本発明のインバータ装置を
詳細に説明する。
The inverter device of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の基本的な構成を示すブロツク
図で、同図において1は太陽電池の電池ユニツ
ト、2は電池ユニツト1から得られる直流電圧
Edを入力として、変換すべき交流電圧e0の波形に
近い波形に沿つて階段状に変化する低周波の階段
状波形電圧VSを発生する階段状波形発生回路、
3は上記直流電圧Edを入力として階段状波形電
圧VSを変換すべき交流電圧e0の波形に近似させ
るために該階段状波形電圧VSに重畳する必要が
ある高周波パルスを出力する高周波パルス発生回
路である。4は階段状波形電圧VSに高周波パル
ス電圧VPを重畳する電圧合成回路、5は電圧合
成回路4から得られる高周波パルス重畳波形を整
形して正弦波交流電圧波形e0に変換するフイルタ
回路である。
FIG. 1 is a block diagram showing the basic configuration of the present invention, in which 1 is a battery unit of a solar cell, and 2 is a DC voltage obtained from battery unit 1.
a step waveform generation circuit that receives E d as an input and generates a low frequency step waveform voltage V S that changes stepwise along a waveform close to the waveform of the alternating current voltage e 0 to be converted;
3 is a high frequency generator that receives the DC voltage E d as input and outputs a high frequency pulse that needs to be superimposed on the step waveform voltage V S in order to approximate the waveform of the AC voltage e 0 to be converted . This is a pulse generation circuit. 4 is a voltage synthesis circuit that superimposes the high-frequency pulse voltage V P on the stepped waveform voltage V S , and 5 is a filter circuit that shapes the high-frequency pulse superimposed waveform obtained from the voltage synthesis circuit 4 and converts it into a sinusoidal AC voltage waveform e0 . It is.

階段状波形発生回路2は一種のパルス振幅変調
(PAM)回路であつて、サイリスタ、トランジス
タ、電界効果トランジスタ等のスイツチング素子
により直流電圧Edをオンオフして得た種々の波
高値の矩形波電圧を合成することにより第2図B
に示すように変換すべき正弦波交流電圧e0に近い
波形に沿つて階段状に変化する階段状波形電圧
VSを出力する。この階段状波形電圧VSを得るに
は例えば第2図Bに示すように正弦波交流電圧e0
の各半サイクルの期間を適宜の数の期間T1〜T7
(T1=T7,T2=T6,T3=T5)に分割して第1の
期間T1の終了時刻t1から第6の期間T6の終了時
刻t6まで持続する方形波電圧υS1と第2の期間T2
の終了時刻t2から第5の期間T5の終了時刻t5まで
持続する方形波電圧υS2と、第3の期間T3の終了
時刻t3から第4の期間T4の終了時刻t4まで持続す
る方形波電圧υS3とを発生させて、これら発生時
刻及び幅が異なる方形波電圧υS1〜υS3を重畳する
ことにより得ることができる。またパルス幅が
T2で波高値がA1の矩形波パルスと、パルス幅が
T3で波高値がA2の矩形波パルスと、パルス幅が
T4で波高値がA3(>A2>A1)の矩形波パルスと、
パルス幅がT5で波高値がA2の矩形波パルスと、
パルス幅がT6で波高値がA1の矩形波パルスとを
それぞれ時刻t1〜t5で順次発生させることによつ
ても同様に階段状波形電圧VSを得ることができ
る。電圧の極性を反転させて同様のことを行なう
ことにより、正弦波交流電圧e0の負の半サイクル
に近似した階段状波形電圧を得ることができる。
いずれの方法により階段状波形電圧VSを得るに
しても、この電圧VSは変換すべき交流電圧e0
波形に正確に沿つて変化するものである必要はな
く、交流電圧e0に近い波形に沿つて変化するもの
であればよい。
The stepped waveform generation circuit 2 is a type of pulse amplitude modulation (PAM) circuit, which generates rectangular wave voltages with various peak values obtained by turning on and off the DC voltage E d using switching elements such as thyristors, transistors, and field effect transistors. Figure 2B is obtained by synthesizing
The sinusoidal AC voltage to be converted as shown in e is a stepped waveform voltage that changes stepwise along a waveform close to 0 .
Outputs V S. To obtain this stepped waveform voltage V S, for example, as shown in FIG. 2B, a sine wave AC voltage e 0
The period of each half cycle of the appropriate number of periods T 1 to T 7
(T 1 = T 7 , T 2 = T 6 , T 3 = T 5 ) and lasts from the end time t 1 of the first period T 1 to the end time t 6 of the sixth period T 6 Wave voltage υ S1 and second period T 2
A square wave voltage υ S2 that lasts from the end time t 2 of the fifth period T 5 to the end time t 5 of the third period T 3 and from the end time t 3 of the third period T 3 to the end time t 4 of the fourth period T 4 This can be obtained by generating a square wave voltage υ S3 that lasts until 2000, and then superimposing these square wave voltages υ S1 to υ S3 having different generation times and widths. Also, the pulse width
A square wave pulse with a peak value of A 1 at T 2 and a pulse width of
A square wave pulse with a peak value of A 2 at T 3 and a pulse width of
A square wave pulse with a peak value of A 3 (>A 2 >A 1 ) at T 4 ,
A square wave pulse with a pulse width of T 5 and a peak value of A 2 ,
Similarly, the stepped waveform voltage V S can be obtained by sequentially generating rectangular wave pulses having a pulse width of T 6 and a peak value of A 1 at times t 1 to t 5 . By inverting the polarity of the voltage and doing the same thing, it is possible to obtain a stepped waveform voltage that approximates the negative half cycle of the sinusoidal AC voltage e 0 .
Regardless of which method is used to obtain the stepped waveform voltage V S , this voltage V S does not need to change exactly along the waveform of the AC voltage e 0 to be converted, but must be close to the AC voltage e 0 . Any material that changes along the waveform may be used.

高周波パルス発生回路3はパルス幅変調
(PWM)回路であつて、この回路は、上記階段
状波形発生回路2に同期して上記T1,T2,…T7
の各期間(これらの期間は階段状波形発生回路2
内に設定されている。)毎に、各パルスの幅が交
流正弦波電圧e0の波形の内側の面積と階段状波形
電圧VSの波形の内側の面積との差に相応するよ
うにパルス幅変調された第2図Aに示す如き高周
波パルスVpを発生させる。この高周波パルス電
圧Vpの周波数は変換すべき交流電圧e0の周波数
の約100倍に設定されている。
The high frequency pulse generating circuit 3 is a pulse width modulation (PWM) circuit, and this circuit synchronizes with the stepped waveform generating circuit 2 to generate the above T 1 , T 2 ,...T 7 .
each period (these periods are the step waveform generation circuit 2
is set within. ), the pulse width is modulated such that the width of each pulse corresponds to the difference between the area inside the waveform of the AC sinusoidal voltage e 0 and the area inside the waveform of the stepwise waveform voltage VS. A high frequency pulse V p as shown in A is generated. The frequency of this high-frequency pulse voltage V p is set to approximately 100 times the frequency of the AC voltage e 0 to be converted.

電圧合成回路4は、上記階段状波形電圧VS
高周波パルス電圧Vpを重畳して第3図に示すよ
うな波形の電圧を発生させる。階段状波形発生回
路2及び高周波パルス発生回路3の出力が出力ト
ランスから得られるようになつている場合には、
両回路の出力トランスの2次巻線を直列に接続す
ることにより上記電圧合成回路を構成することが
できる。また、階段状波形電圧VSと高周波パル
ス電圧Vpとを直接または半導体素子を介して合
成することもできる。
The voltage synthesis circuit 4 superimposes the high frequency pulse voltage V p on the stepped waveform voltage V S to generate a voltage having a waveform as shown in FIG. 3. When the outputs of the stepped waveform generation circuit 2 and the high frequency pulse generation circuit 3 are obtained from an output transformer,
The voltage combining circuit can be constructed by connecting the secondary windings of the output transformers of both circuits in series. Furthermore, the stepped waveform voltage V S and the high-frequency pulse voltage V p can also be combined directly or via a semiconductor element.

フイルタ回路5はインダクタンス及びコンデン
サ等からなつていて、電圧合成回路4の出力から
高調波分を除去し、正弦波状の交流電圧を出力す
る。第3図に示した重畳波形がフイルタ回路5を
通過する際に高周波パルスの部分が階段状波形の
段状部分を埋めるので、第3図に実線で示すよう
な正弦波に近い波形の出力電圧e0を得ることがで
き、波形歪の少ない正弦波交流電圧を得ることが
できる。
The filter circuit 5 is composed of an inductance, a capacitor, etc., and removes harmonic components from the output of the voltage synthesis circuit 4, and outputs a sinusoidal AC voltage. When the superimposed waveform shown in FIG. 3 passes through the filter circuit 5, the high-frequency pulse portion fills the stepped portion of the stepped waveform, so the output voltage has a waveform close to a sine wave as shown by the solid line in FIG. e 0 can be obtained, and a sinusoidal AC voltage with less waveform distortion can be obtained.

上記のように正弦波交流電圧の波形に近い波形
に沿つて変化する階段状波形電圧VSを得てこれ
に高周波パルスを重畳させることにより正弦波交
流電圧波形に近似させるようにすれば、高周波パ
ルスの波高値を低くすることができ、また高周波
パルスの周波数を高くすることができる。したが
つてフイルタ回路として容量が小さいものを用い
ることができ、フイルタ回路での電力損失を少な
くすることができる。一般にフイルタの電力損失
はその負荷率の変化に対して略一定しているた
め、上記のように電力損失の低減を図ることがで
きれば低負荷率においての電力損失を顕著に低減
させ得ることになり、経済的である。
As mentioned above, if we obtain a step-like waveform voltage V S that changes along a waveform close to that of a sine-wave AC voltage, and then make it approximate to a sine-wave AC voltage waveform by superimposing a high-frequency pulse on it, we can generate a high-frequency The peak value of the pulse can be lowered, and the frequency of the high-frequency pulse can be increased. Therefore, a filter circuit with a small capacity can be used, and power loss in the filter circuit can be reduced. Generally, the power loss of a filter is approximately constant with respect to changes in its load factor, so if the power loss can be reduced as described above, the power loss at low load factors can be significantly reduced. , economical.

上記の説明では正弦波交流電圧の半サイクルを
7つの期間T1〜T7に分割したがこの分割数は任
意であり、この分割数(階段状波形の段数)を多
くすればより正弦波に近づけることができるのは
勿論である。
In the above explanation, the half cycle of the sine wave AC voltage is divided into seven periods T 1 to T 7 , but this number of divisions is arbitrary, and increasing the number of divisions (the number of stages of the stepped waveform) will make the sine wave more Of course, you can get closer.

更に、高周波パルスの幅を制御することにより
変換された交流電圧値を調整することが可能であ
り、また階段状波形の各ステツプの幅を高周波パ
ルスの幅と協調をとりつつ制御することによつて
も交流電圧値を調整することができる。
Furthermore, it is possible to adjust the converted AC voltage value by controlling the width of the high-frequency pulse, and by controlling the width of each step of the stepped waveform in coordination with the width of the high-frequency pulse. The AC voltage value can also be adjusted.

以上のように、本発明によれば、正弦波形に沿
つて階段状に変化する階段状波形電圧を発生させ
て、この階段状波形電圧の各部と変換すべき交流
電圧波形の各部との差に相応するようにパルス幅
変調された高周波パルス電圧を階段状波形電圧の
各部に重畳するとにより、正弦波に近似した交流
電圧波形を得るようにしたので、直流電圧を正弦
波形でパルス幅変調して得た高周波パルスをフイ
ルタ回路に通すことにより正弦波交流電圧を得る
パルス幅変調方式による場合に比べて、フイルタ
回路の入力電圧の高調波成分を少なくすることが
できる。また本発明によれば、階段状波形電圧の
頂上部にも高周波パルスを重畳できるため、正弦
波を台形状の波形で近似する場合に比べても、フ
イルタ回路の入力電圧波形をより正弦波に近付け
ることができ、波形歪みが少なく、高調波成分が
少ない交流出力電圧を得ることができる。
As described above, according to the present invention, a step waveform voltage that changes stepwise along a sine waveform is generated, and the difference between each part of the step waveform voltage and each part of the AC voltage waveform to be converted is By superimposing a correspondingly pulse width-modulated high-frequency pulse voltage on each part of the stepped waveform voltage, an AC voltage waveform that approximates a sine wave was obtained. Compared to a pulse width modulation method in which a sinusoidal AC voltage is obtained by passing the obtained high-frequency pulse through a filter circuit, harmonic components of the input voltage to the filter circuit can be reduced. Furthermore, according to the present invention, a high-frequency pulse can also be superimposed on the top of the stepped waveform voltage, so the input voltage waveform of the filter circuit can be made into a more sinusoidal wave than when a sine wave is approximated by a trapezoidal waveform. It is possible to obtain an AC output voltage with less waveform distortion and less harmonic components.

また、本発明によれば、正弦波に近似した階段
状波形電圧を得て、この階段状波形電圧に高周波
パルス電圧を重畳するようにしたので、高周波パ
ルスを発生させるための回路を多数設ける必要が
なく、インバータ装置の回路構成が複雑になるの
を防ぐことができる。
Furthermore, according to the present invention, a stepped waveform voltage that approximates a sine wave is obtained and a high frequency pulse voltage is superimposed on this stepped waveform voltage, so it is not necessary to provide a large number of circuits for generating high frequency pulses. Therefore, the circuit configuration of the inverter device can be prevented from becoming complicated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的構成を示すブロツク
図、第2図A及びBは第1図のインバータの動作
を説明するための波形図、第3図は第1図のイン
バータにおいてフイルタ回路に入力される電圧の
波形を示す波形図である。 1……電池ユニツト、2……階段状波形発生回
路、3……高周波パルス発生回路、4……電圧合
成回路、5……フイルタ回路。
Fig. 1 is a block diagram showing the basic configuration of the present invention, Fig. 2 A and B are waveform diagrams for explaining the operation of the inverter shown in Fig. 1, and Fig. 3 shows the filter circuit in the inverter shown in Fig. 1. FIG. 3 is a waveform diagram showing the waveform of an input voltage. DESCRIPTION OF SYMBOLS 1... Battery unit, 2... Staircase waveform generation circuit, 3... High frequency pulse generation circuit, 4... Voltage synthesis circuit, 5... Filter circuit.

Claims (1)

【特許請求の範囲】 1 電池ユニツトから得られる直流電圧を略正弦
波状の低周波交流電圧に変換するインバータ装置
において、 前記直流電圧を入力として変換すべき交流電圧
の波形に近い波形に沿つて階段状に変化する低周
波の階段状波形電圧を発生する階段状波形発生回
路と、 前記直流電圧を入力として前記階段状波形電圧
の各部に重畳する高周波パルス電圧を発生する高
周波パルス発生回路と、 前記階段状波形電圧に前記高周波パルス電圧を
重畳させる電圧合成回路と、 前記電圧合成回路の出力電圧を略正弦波状の交
流電圧に変換するフイルタ回路とを具備し、 前記階段状波形電圧の各部に重畳される高周波
パルス電圧は、前記階段状波形電圧の各部と前記
変換すべき交流電圧波形の各部との差に相応する
ようにパルス幅変調されていることを特徴とする
インバータ装置。
[Scope of Claims] 1. In an inverter device that converts a DC voltage obtained from a battery unit into a substantially sinusoidal low-frequency AC voltage, the DC voltage is input and a step is applied along a waveform close to the waveform of the AC voltage to be converted. a high-frequency pulse generation circuit that receives the DC voltage as an input and generates a high-frequency pulse voltage that is superimposed on each part of the stepped waveform voltage; a voltage synthesis circuit that superimposes the high-frequency pulse voltage on the step waveform voltage; and a filter circuit that converts the output voltage of the voltage synthesis circuit into a substantially sinusoidal alternating voltage; The inverter device is characterized in that the high frequency pulse voltage to be converted is pulse width modulated so as to correspond to the difference between each part of the stepped waveform voltage and each part of the AC voltage waveform to be converted.
JP20642882A 1982-11-25 1982-11-25 Inverter device Granted JPS5996875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20642882A JPS5996875A (en) 1982-11-25 1982-11-25 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20642882A JPS5996875A (en) 1982-11-25 1982-11-25 Inverter device

Publications (2)

Publication Number Publication Date
JPS5996875A JPS5996875A (en) 1984-06-04
JPH0570386B2 true JPH0570386B2 (en) 1993-10-05

Family

ID=16523211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20642882A Granted JPS5996875A (en) 1982-11-25 1982-11-25 Inverter device

Country Status (1)

Country Link
JP (1) JPS5996875A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686077A (en) * 1979-12-12 1981-07-13 Fuji Electric Co Ltd Controlling method for multipled current type inverter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686077A (en) * 1979-12-12 1981-07-13 Fuji Electric Co Ltd Controlling method for multipled current type inverter

Also Published As

Publication number Publication date
JPS5996875A (en) 1984-06-04

Similar Documents

Publication Publication Date Title
US11456679B2 (en) Voltage level multiplier module for multilevel power converters
Buticchi et al. A nine-level grid-connected converter topology for single-phase transformerless PV systems
Buticchi et al. A five-level single-phase grid-connected converter for renewable distributed systems
Song et al. Cascaded multilevel inverter employing three-phase transformers and single DC input
US8031495B2 (en) Prediction scheme for step wave power converter and inductive inverter topology
CN104158212A (en) Topological structure of multi-level photovoltaic power generation system and control method of topological structure
KR940006328A (en) Power converter
Kumar et al. Analysis of grid-connected reduced switch MLI with high-gain interleaved boost converter and hybrid MPPT for solar PV
Kang A modified cascade transformer-based multilevel inverter and its efficient switching function
Roncero-Clemente et al. Maximum boost control for interleaved single-phase Quasi-Z-Source inverter
Nguyen-Van et al. An indirect hysteresis voltage digital control for half bridge inverters
JP3200283B2 (en) Inverter control method and inverter control device
Nathan et al. The 27-level multilevel inverter for solar PV applications
Loukriz et al. Experimental realization of a single-phase five level inverter for PV applications
Prasetiyo et al. Design and implementation of inverter single phase nine-level using pic18f4550
JPH0570386B2 (en)
Bhattacharjee et al. A new bidirectional AC-link microinverter based on dual active bridge topology
Edwin Deepak et al. Three phase z-source neutral point clamped inverter with multicarrier PWM technique
Marouchos et al. A new switched capacitor inverter for stand alone photovoltaic applications
Harish et al. Three phase multi level inverter for high power applications
Sundararajan et al. Comparison of current controllers for a five-level cascaded H-bridge multilevel inverter
KR0155248B1 (en) Stability dc-power supply with variable function for high voltage
Islam et al. Harmonic Reduction of Cascaded H-Bridge Multilevel Inverter Using Advanced Level Shifted Pulse Width Modulation Technique
Seyezhai et al. Analysis and implementation of PS-PWAM technique for Quasi Z-source multilevel inverter
SU1001396A1 (en) Method and apparatus for forming quasisinusoidal staircase voltage