JPH0570097B2 - - Google Patents

Info

Publication number
JPH0570097B2
JPH0570097B2 JP58178847A JP17884783A JPH0570097B2 JP H0570097 B2 JPH0570097 B2 JP H0570097B2 JP 58178847 A JP58178847 A JP 58178847A JP 17884783 A JP17884783 A JP 17884783A JP H0570097 B2 JPH0570097 B2 JP H0570097B2
Authority
JP
Japan
Prior art keywords
calibration curve
sample
standard
adjustment
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58178847A
Other languages
Japanese (ja)
Other versions
JPS6069535A (en
Inventor
Hidehisa Nishigaki
Kikuo Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17884783A priority Critical patent/JPS6069535A/en
Publication of JPS6069535A publication Critical patent/JPS6069535A/en
Publication of JPH0570097B2 publication Critical patent/JPH0570097B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はフレーム原子吸光分光分析装置或はフ
レームレス原子吸光分光分析装置等における測定
条件調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a measurement condition adjustment device for a flame atomic absorption spectrometer, a frameless atomic absorption spectrometer, or the like.

(ロ) 従来技術 フレーム原子吸光分析は火炎中に試料を導入し
て原子化し、測定しようとする元素の輝線を出す
光源の光を上記炎中を透過させ、この透過光中の
上記輝線の吸収を測定する。またフレームレス原
子吸光分析は炭素筒等の試料原子化炉によつて試
料を原子化し、測定しようとする元素の輝線を出
す光源の光を上記炭素筒を通過させ、この通過光
中の上記輝線の吸収を測定する。これらの分析方
法では予め標準試料を用いて検量線を作つておい
て、試料の定量分析を行うが、試料の溶液濃度が
濃過ぎたり、使用している分析線(輝線)の感度
が良過ぎたりすると検量線に曲りを生じる。これ
はこのような場合試料による分析線の吸収が大き
いから、試料中の測定元素の%が大きい領域では
検出器に入射する光量の減少が著るしく試料濃度
に関係しない迷光やランプの自己吸収の影響が相
対的に大きくなるためである。曲りの大きい検量
線を用いると検量線が曲つて寝ている部分で雑音
の影響が大きくなる。第1図で横軸は濃度、縦軸
は吸光度で曲りの大きな検量線Bと曲りの少い検
量線Lが示してある。同一濃度(試料中の目的元
素の濃度)Cに対する二つの検量線の差ΔはBの
場合、迷光等の影響で見掛けの吸光度がΔだけ減
少していることを意味する。検量線Bでカーブが
寝ている部分では吸光度のわづかの差で大きな濃
度差が現れるから、雑音の影響が大きくなるので
ある。
(b) Prior art Flame atomic absorption spectrometry involves introducing a sample into a flame, atomizing it, transmitting light from a light source that emits the bright line of the element to be measured through the flame, and absorbing the bright line in the transmitted light. Measure. In addition, in flameless atomic absorption spectrometry, a sample is atomized using a sample atomization reactor such as a carbon cylinder, and the light from a light source that emits the emission line of the element to be measured is passed through the carbon cylinder, and the emission line in the passing light is Measure the absorption of In these analysis methods, a calibration curve is prepared in advance using a standard sample and the sample is quantitatively analyzed, but if the sample solution concentration is too high or the sensitivity of the analytical line (emission line) used is too high, Otherwise, the calibration curve will be curved. This is because in such cases, the absorption of the analysis line by the sample is large, so in areas where the percentage of the measured element in the sample is large, the amount of light incident on the detector is significantly reduced, resulting in stray light unrelated to the sample concentration and self-absorption of the lamp. This is because the influence of If a calibration curve with a large curvature is used, the influence of noise will be greater in the curved and flat portions of the calibration curve. In FIG. 1, the horizontal axis is the concentration, and the vertical axis is the absorbance, and a calibration curve B with a large curvature and a calibration curve L with a small curvature are shown. The difference Δ between the two calibration curves for the same concentration (concentration of the target element in the sample) C means that in the case of B, the apparent absorbance has decreased by Δ due to the influence of stray light or the like. In the portion of the calibration curve B where the curve is flat, a small difference in absorbance causes a large concentration difference, so the influence of noise becomes large.

このためなるべく直線性の良い検量線を作る必
要があり、従来は次のようにして良好な直線性を
有する検量線を作つていた。この操作の要点は迷
光を減少させ、感度を適当に低く設定し、試料原
子化部への試料の導入量を安定的に適当に少くす
ると云う所にあり、このような調整方向は他方で
はS/N比の低下を来すものが多いから、検量線
の直線性とS/N比との兼合いがむづかしく、調
整操作は煩雑で時間がかゝり、相当の熟練を要す
るものであつた。このため初心者にとつてこの調
整は至難の仕事であつた。直線性の良い検量線を
得るため調整個所及び調整の方向は、 (1) ホローカソードランプの電流値。これを下げ
ると輝線スペクトルの幅がせまくなり迷光が減
少する。
For this reason, it is necessary to create a calibration curve with as good linearity as possible, and conventionally, a calibration curve with good linearity has been created as follows. The key point of this operation is to reduce stray light, set the sensitivity appropriately low, and stably and appropriately reduce the amount of sample introduced into the sample atomization section. Since there are many things that cause a decrease in the /N ratio, it is difficult to balance the linearity of the calibration curve with the S/N ratio, and the adjustment operation is complicated and time-consuming, and requires considerable skill. It was hot. For this reason, this adjustment was an extremely difficult task for beginners. In order to obtain a calibration curve with good linearity, the adjustment points and direction are as follows: (1) Hollow cathode lamp current value. Lowering this value narrows the width of the emission line spectrum and reduces stray light.

(2) スリツト幅。これをせまくすると迷光が減少
する。
(2) Slit width. Making this narrower will reduce stray light.

(3) 分析線を変える。幾つかある輝線のうち感度
の低いものを分析線に選ぶ。
(3) Change the analysis line. Among several emission lines, the one with the lowest sensitivity is selected as the analysis line.

フレーム原子吸光分析に対して (4) 試料原子変用火炎を形成するバーナヘツドの
向き。透過光束に対し傾けると吸収に関与する
原子の量が減り、感度が下る。
(4) Orientation of the burner head that forms the sample atomic transformation flame for flame atomic absorption spectrometry. When tilted relative to the transmitted light flux, the amount of atoms involved in absorption decreases, resulting in lower sensitivity.

(5) バーナヘツドの高さ。炎中の高さにより原子
の濃度が異るから最高感度の高さからずらせる
ことにより感度を下げる。
(5) Burner head height. Since the concentration of atoms differs depending on the height of the flame, the sensitivity is lowered by shifting it from the highest sensitivity.

(6) 燃料ガス流量。最高感度からずらせる。(6) Fuel gas flow rate. Shift from maximum sensitivity.

(7) 助燃ガス流量。最高感度からずらせる。(7) Supplementary gas flow rate. Shift from maximum sensitivity.

(8) 試料は溶液にして霧化器(ネブライザ)で霧
化してバーナに供給するようになつており、ネ
ブライザは第2図に示すように試料溶液を吸上
げるキヤピラリKとこれを囲むノズルNよりな
つており、ノズルに空気を送つて溶液を吸上げ
霧化する。キヤピラリを前へ出すと吸上げ量が
減つて感度が下る。
(8) The sample is made into a solution, atomized by a nebulizer, and then supplied to the burner.The nebulizer consists of a capillary K that sucks up the sample solution and a nozzle N surrounding it, as shown in Figure 2. Air is sent through the nozzle to suck up the solution and atomize it. When the capillary is moved forward, the suction amount decreases and the sensitivity decreases.

次にフレームレス原子吸光分析に対して (9) 試料原子化炉に注入する試料の量。これを減
らせば感度が下る。
Next, for flameless atomic absorption spectrometry, (9) the amount of sample to be injected into the sample reactor. If you reduce this, the sensitivity will decrease.

(10) 炉温度は経時的に変化させるが、最高温度を
下げると感度が下る。
(10) Although the furnace temperature is changed over time, lowering the maximum temperature lowers the sensitivity.

(11) 炉内アルゴンガス流量。流量を増すと感度が
下る。
(11) Argon gas flow rate in the furnace. Sensitivity decreases as flow rate increases.

このように調整可能な調整個所は多数あり、
夫々の調整効果には特徴があるから、これらのう
ちの幾つかを適当に組合せて目的を達成するの
で、調整操作にはその分析装置について長い使用
経験が必要なのである。
There are many adjustment points that can be adjusted like this,
Since each adjustment effect has its own characteristics, some of these adjustment effects must be appropriately combined to achieve the purpose, and adjustment operations require long experience in using the analyzer.

このため従来次のような装置構成が提案されて
いる。それらは装置の一定の設定状態で予め検量
線を作つておき、同じ設定状態で試料の測定を行
つて吸光度が検量線の曲つている範囲に入つたと
きは、装置設定を変えて再度測定を行う構成と
か、予め適当な吸光度範囲を決めておいて、装置
の一つの設定状態で試料測定を行い、吸光度が上
記範囲を超えたときは装置の設定状態を変えて再
度測定を行う構成であつて、何れも個々の試料に
ついて試し測定を行うものであり、試料毎の測定
基準が異つて、多数試料の分析において、結果に
統一性がないものである。
For this reason, the following device configuration has been proposed in the past. For these, a calibration curve is created in advance with a certain setting of the device, and if a sample is measured with the same setting and the absorbance falls within the curved range of the calibration curve, change the device settings and take the measurement again. The configuration is such that an appropriate absorbance range is determined in advance, the sample is measured with one setting of the device, and when the absorbance exceeds the above range, the setting of the device is changed and the measurement is performed again. In both cases, trial measurements are performed on individual samples, and the measurement standards for each sample are different, resulting in inconsistent results when analyzing multiple samples.

(ハ) 目的 本発明は直線性が良くS/N比との兼合いも良
好の検量線を得るための調整操作の自動変を目的
とする。
(c) Purpose The purpose of the present invention is to automatically change the adjustment operation in order to obtain a calibration curve with good linearity and good balance with the S/N ratio.

(ニ) 構成 本発明は適宜試料を用いて各調整個所を適当に
定めた初期状態例えば感度最大に調整し、これを
出発点として、標準試料を測定して検量線を作成
し、得られた検量線の曲りとS/Nが予め定めて
ある評価基準を満足するか否か判別し、満足しな
ければ上述したような調整点を所定の方向に一定
量調整して再度検量線を作つて評価基準と比較す
ると云う動作を検量線が評価基準内に入る迄繰返
すようにした調整装置を提供する。この本発明の
構成によれば、検量線の作成に用いた標準試料の
濃度範囲では検量線が曲りが少いように装置調整
が終つているから、試料毎に試し測定、装置調
整、再測定と云つた手順を繰返す必要がない。
(D) Structure The present invention uses an appropriate sample to adjust each adjustment point to an appropriately determined initial state, for example, maximum sensitivity, and using this as a starting point, measures a standard sample to create a calibration curve. Determine whether the curvature of the calibration curve and S/N satisfy predetermined evaluation criteria, and if not, adjust the adjustment points described above by a certain amount in the predetermined direction and create a calibration curve again. To provide an adjustment device that repeats an operation of comparing with an evaluation standard until a calibration curve falls within the evaluation standard. According to this configuration of the present invention, since the equipment has been adjusted so that the calibration curve has less curvature within the concentration range of the standard sample used to create the calibration curve, trial measurement, equipment adjustment, and re-measurement are performed for each sample. There is no need to repeat the above steps.

(ホ) 実施例 第3図は本発明をフレーム原子吸光分析装置に
適用した実施例を示す。1は測定しようとする元
素の輝線を発光するホローカソードランプ、2は
バーナヘツドでFは試料原子化用の炎、3はモノ
クロメータで、S1,S2は入射スリツト及び出
射スリツト、4は光検出器、5は光検出信号を吸
光度信号に変換する信号処理回路で、6は装置全
体を制御するコンピユータ(CPU)である。8
はネプライザ、9はパーナ2への燃料供給管、1
0は同じく空気供給管で、11はランプ電流制御
装置、12はバーナヘツドの垂直軸周りの角位置
及び上下位置調節装置、13はネブライザのキヤ
ピラリ位置調節装置、14,15はガス流量制御
装置、16はスリツトS1,S2の幅調節装置、
17はモノクロメータ3の波長駆動装置でこれら
の各部はCPU6によつて制御される。調整個所
には順位が決めてあつて、検量線作成の際の条件
決定は順位一番の調整個所から純に調整して行
く。
(E) Embodiment FIG. 3 shows an embodiment in which the present invention is applied to a flame atomic absorption spectrometer. 1 is a hollow cathode lamp that emits the bright line of the element to be measured, 2 is a burner head, F is a flame for sample atomization, 3 is a monochromator, S1 and S2 are an entrance slit and an exit slit, and 4 is a photodetector. , 5 is a signal processing circuit that converts a photodetection signal into an absorbance signal, and 6 is a computer (CPU) that controls the entire device. 8
is the nepurizer, 9 is the fuel supply pipe to Parna 2, 1
0 is also an air supply pipe, 11 is a lamp current control device, 12 is an angular position and vertical position adjustment device around the vertical axis of the burner head, 13 is a nebulizer capillary position adjustment device, 14 and 15 are gas flow rate control devices, 16 is a width adjustment device for slits S1 and S2,
17 is a wavelength driving device for the monochromator 3, and each of these parts is controlled by the CPU 6. The adjustment points are ranked in order, and when determining the conditions for creating a calibration curve, adjustments are made purely from the adjustment point with the highest ranking.

第4図はCPU6の検量線作成時の動作のフロ
ーチヤートである。調整動作をスタートさせる
と、まず初期化動作(イ)で調整個所11,12,1
3,14,15,16を感度最大位置に設定し、
第1回の検量線作成動作(ロ)を行い、次にステツプ
(ハ)で上に求まつた検量線が評価基準に入るか否か
判定し、NOのときは順位n=1の調整個所を所
定量、所定方向に調節し(ニ)、感度が基準以上か否
かチエツク(ホ)し、基準以下(NO)のときは響告
を行つて動作終り、YESのときはnに1を加え
て動作は(ロ)に戻り、再度検量線を作り、ステツプ
(ハ)の判定を行い、ステツプ(ニ)で順位n=2の調整
個所を調整し、以下感度が基準以下にならない限
り、検量線等が基準に入るまで調整動作を繰返
す。
FIG. 4 is a flowchart of the operation of the CPU 6 when creating a calibration curve. When the adjustment operation is started, the adjustment points 11, 12, 1 are first set in the initialization operation (a).
Set 3, 14, 15, 16 to the maximum sensitivity position,
Perform the first calibration curve creation operation (b), then proceed to step
Determine whether or not the calibration curve obtained above falls within the evaluation criteria in (c). If NO, adjust the adjustment point of rank n = 1 by a predetermined amount and in a predetermined direction (d), so that the sensitivity is higher than the standard. If it is below the standard (NO), a warning is given and the operation ends; if YES, 1 is added to n and the operation returns to (B), a calibration curve is created again, and the step is repeated.
After making the determination in (c), adjust the adjustment point of rank n=2 in step (d), and repeat the adjustment operation until the calibration curve etc. falls within the standard unless the sensitivity falls below the standard.

検量線作成動作(ロ)は標準試料の切換え、各標準
試料に対する吸光度データの取込み、このデータ
から数式化された検量線の各係数を最小2乗法で
算出、求まつた係数のメモリの各動作よりなつて
いる。検量線を作成するための標準試料の濃度範
囲は一群の被測定試料の定量目的原素の濃度範囲
に合せて調整すればよい。ステツプ(ハ)の判定動作
は、求まつた検量線の下端側2点から求めた傾斜
と上端側2点から求めた傾斜の差が基準以内かの
判定である。
The calibration curve creation operation (b) involves switching the standard sample, importing the absorbance data for each standard sample, calculating each coefficient of the mathematically expressed calibration curve from this data using the least squares method, and storing the calculated coefficients in memory. It's getting more familiar. The concentration range of the standard sample for creating the calibration curve may be adjusted according to the concentration range of the target element to be quantified in the group of samples to be measured. The judgment operation in step (c) is to judge whether the difference between the slope obtained from the two points on the lower end of the obtained calibration curve and the slope obtained from the two points on the upper end of the obtained calibration curve is within the standard.

一つの調整順位には複数の調整個所を含ませる
ことができる。調整順位の設定は自由で、全調整
個所を同時に調整してもよいが、検量線を真直に
する効果の強いものを先にするのが一般的であ
る。初期状態は上例では感度最大の状態である
が、各調整個所の調整位置を中央に設定するもの
でもよい。
One adjustment order can include a plurality of adjustment points. The adjustment order can be set freely, and all adjustment points may be adjusted at the same time, but it is common to prioritize the adjustment that has the strongest effect on straightening the calibration curve. Although the initial state is the maximum sensitivity state in the above example, the adjustment position of each adjustment point may be set to the center.

(ヘ) 効果 本発明によれば、検量線作成の段階で検量線の
曲りがない(少い)ように装置調整がなされてい
るので、検量線作成の際の濃度範囲の一群の試料
に対しては、試料毎に一々装置調整をやり直す必
要なしに、同一測定条件で一貫して分析ができる
ので、分析作業が能率的で、分析結果に統一性が
あり、測定出力に補正演算等施す必要なしに直ち
に濃度が求まつて、データ処理が簡単である。し
かもS/Nをできるだけそこなわないで検量線の
曲りが基準内に納まる分析装置の条件設定が自動
的に行われ、初心者でも熟練者以上の調整が可能
となる。
(f) Effect According to the present invention, since the equipment is adjusted so that there is no (small) bend in the calibration curve at the stage of creating the calibration curve, it is possible to With this method, analysis can be performed consistently under the same measurement conditions without having to re-adjust the equipment for each sample, making analysis work more efficient, providing uniform analysis results, and eliminating the need to perform correction calculations on measurement output. Concentration can be determined immediately without any need for data processing, and data processing is simple. Moreover, the conditions of the analyzer are automatically set so that the curvature of the calibration curve falls within the standard without deteriorating the S/N as much as possible, and even a beginner can make adjustments better than an expert.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は検量線のグラフ、第2図はネブライザ
の要部側断面図、第3図は本発明の一実施例装置
のブロツク図、第4図は同実施例における検量線
作成動作のフローチヤートである。 1……光源、2……バーナヘツド、S1,S2
……スリツト、8……ネブライザ、9……燃料供
給管、10……空気供給管、13……キヤピラリ
調整装置、14,15……流量制御装置。
Fig. 1 is a graph of the calibration curve, Fig. 2 is a sectional side view of the main part of the nebulizer, Fig. 3 is a block diagram of an apparatus according to an embodiment of the present invention, and Fig. 4 is a flowchart of the calibration curve creation operation in the same embodiment. It's a chat. 1...Light source, 2...Burner head, S1, S2
... Slit, 8 ... Nebulizer, 9 ... Fuel supply pipe, 10 ... Air supply pipe, 13 ... Capillary adjustment device, 14, 15 ... Flow rate control device.

Claims (1)

【特許請求の範囲】[Claims] 1 分析装置を初期状態に設定し、標準試料を測
定して検量線を決定し、決定された検量線の曲り
が基準以内か判定し、感度が基準以上か判定し、
曲りが基準より大なるとき、分析装置の調整個所
を検量線の曲り減少の方向に調節して再度検量線
を作成して曲りが基準以内か判定する動作を感度
が基準以下にならない限り、曲りが基準に入るま
で繰返す検量線作成動作制御手段を備えた分光分
析装置。
1 Set the analyzer to the initial state, measure the standard sample to determine the calibration curve, determine whether the curve of the determined calibration curve is within the standard, determine whether the sensitivity is above the standard,
When the curvature is greater than the standard, adjust the adjustment points of the analyzer in the direction of decreasing the curvature of the calibration curve, create a calibration curve again, and determine whether the curvature is within the standard. A spectroscopic analyzer equipped with a calibration curve creation operation control means that repeats the calibration curve until it falls within the standard.
JP17884783A 1983-09-26 1983-09-26 Spectrochemical analyzing apparatus Granted JPS6069535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17884783A JPS6069535A (en) 1983-09-26 1983-09-26 Spectrochemical analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17884783A JPS6069535A (en) 1983-09-26 1983-09-26 Spectrochemical analyzing apparatus

Publications (2)

Publication Number Publication Date
JPS6069535A JPS6069535A (en) 1985-04-20
JPH0570097B2 true JPH0570097B2 (en) 1993-10-04

Family

ID=16055709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17884783A Granted JPS6069535A (en) 1983-09-26 1983-09-26 Spectrochemical analyzing apparatus

Country Status (1)

Country Link
JP (1) JPS6069535A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4393886B2 (en) * 2004-02-17 2010-01-06 株式会社日立ハイテクマニファクチャ&サービス Atomic absorption photometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693033A (en) * 1979-12-27 1981-07-28 Toshiba Corp Automatic atomic absorption analysis apparatus
JPS58124931A (en) * 1982-01-19 1983-07-25 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Atomic absorption spectrophotometer and analysis method using said spectrophotometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693033A (en) * 1979-12-27 1981-07-28 Toshiba Corp Automatic atomic absorption analysis apparatus
JPS58124931A (en) * 1982-01-19 1983-07-25 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Atomic absorption spectrophotometer and analysis method using said spectrophotometer

Also Published As

Publication number Publication date
JPS6069535A (en) 1985-04-20

Similar Documents

Publication Publication Date Title
Boumans Detection limits and spectral interferences in atomic emission spectrometry
JP3209543U (en) Flame atomic absorption photometer
JP3098241B2 (en) Drift compensation method and device
US5042946A (en) Atomic absorption spectrophotometric method and apparatus
JPH0251031A (en) Standardization of spectral line intensity
JPH0570097B2 (en)
US4689754A (en) Optimization apparatus and procedure
US4634277A (en) Atomic absorption spectrophotometer and method of analysis by atomic absorption spectrophotometry
US5315528A (en) Method of, and apparatus for, absorbance correction in atomic absorption spectroscopy
US5080485A (en) Method for determining the concentration by means of atomic absorption spectroscopy
JP7026117B2 (en) Atomic absorption spectrophotometer and atomic absorption measurement method
JPH0197842A (en) Atomic absorption spectroanalyzer
JPS6296847A (en) Atomic absorption photometer and method of compensating variation of light source detector in atomic absorption spectro photometry
US6020958A (en) Atomic absorption spectrophotometer
JPS622258B2 (en)
Belarra et al. Rapid determination of lead by analysis of solid samples using graphite furnace atomic absorption spectrometry
AU715185B2 (en) Atomic absorption spectrophotometer
JP2663532B2 (en) ICP emission spectrometry
JP4192386B2 (en) Furnace atomic absorption spectrophotometer
JPH07119689B2 (en) Flame atomic absorption spectrometer
CN102087142A (en) Spectral measurement method
JP2002071558A (en) Furnace-type atomic absorption spectrophotometer and its adjusting method
JPH02176447A (en) Atomic absorption spectro photometer
JP2659398B2 (en) Atomic absorption photometer
JP2722852B2 (en) Emission spectral analysis method and emission spectral analyzer