JPH0569415B2 - - Google Patents

Info

Publication number
JPH0569415B2
JPH0569415B2 JP86145684A JP14568486A JPH0569415B2 JP H0569415 B2 JPH0569415 B2 JP H0569415B2 JP 86145684 A JP86145684 A JP 86145684A JP 14568486 A JP14568486 A JP 14568486A JP H0569415 B2 JPH0569415 B2 JP H0569415B2
Authority
JP
Japan
Prior art keywords
resin
layer
lithographic printing
polyolefin
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP86145684A
Other languages
Japanese (ja)
Other versions
JPS62148945A (en
Inventor
Hiroshi Uno
Yasuhiro Aizawa
Akira Ninohira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP61145684A priority Critical patent/JPS62148945A/en
Publication of JPS62148945A publication Critical patent/JPS62148945A/en
Publication of JPH0569415B2 publication Critical patent/JPH0569415B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/91Photosensitive materials characterised by the base or auxiliary layers characterised by subbing layers or subbing means
    • G03C1/93Macromolecular substances therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は写真材料に関するものであり、詳しく
はプラスチツクフイルム面に樹脂被覆された後、
樹脂面に発生するピツトが極めて少ない写真材料
に関するものである。 写真材料、例えば平版印刷版の支持体として
は、アルミニウム、亜鉛などの金属板、プラスチ
ツクフイルム又は紙材などが使用されているが、
これらは耐刷強度上の問題、その他印刷特性の問
題、例えば印刷におけるインキ汚れ、或いは平版
印刷層と支持体間の接着力との関係、又、ある場
合には製造コスト、取扱い易さなどから必要に応
じて適当な支持体が選択されている。 近年、事務用軽印刷において自動製版、自動印
刷システムの普及は目覚ましく、耐刷枚数の優れ
たものや、各種の製版方式に合致した平版印刷版
が使用されている。平版印刷版は通常、反転ミラ
ーを有する製版カメラを用いて平版印刷版の表側
(支持体に対して画像形成層側)から像様露光を
与えて製版する(以下、表焼法と呼称することが
ある)。この場合には平版印刷版支持体は透明で
なくともよく、各種の金属板及び紙材なども使用
出来る。しかし、反転ミラーを有しない製版カメ
ラを用いて平版印刷版の裏側(支持体に対して画
像形成層と反対側)から像様露光を与えて製版す
る(以下、裏焼法と呼称することがある)場合に
は、平版印刷版支持体としては透明性が要求され
るため、各種の金属板及び紙材等は適用出来ず、
透明性の良いプラスチツクフイルムが用いられ
る。 本発明は、通常の表焼法による平版印刷版にも
適用し得ることは勿論のこと、特に裏焼法による
平版印刷版として好適である。反転ミラー等を内
蔵しない製版カメラを用い、平版印刷版の裏側か
ら像様露光するいわゆる裏焼製版方式は例えば特
開昭48−89007号公報に記載されている。 プラスチツクフイルムはその優れた透明性の故
に、各種写真材料に適用され、裏焼法による平版
印刷版支持体としても好適である。各種プラスチ
ツクフイルム、例えばトリアセテートフイルム、
ポリカーボネートフイルム、ポリスチレンフイル
ム、ポリプロピレンフイルム、ポリ塩化ビニルフ
イルム、ポリエステルフイルム等の中では、平版
印刷版の支持体として使用する場合は伸び性及び
剛度などの特性がきびしく要求されるため、これ
らの特性に合致したポリエステルフイルムが好適
である。 写真材料特に平版印刷版などはその用途上、高
印圧下で使用されるために、画像形成層(以下、
乳剤層と呼称することがある)側の支持体面と乳
剤とが充分接着していなければならない。しか
し、ポリエステルフイルムはそれ自体乏しい表面
活性の故に、その表面に直接乳剤を塗布すること
が困難であるばかりでなく、例えばコロナ放電処
理等の表面活性化処理を行つた後、乳剤塗布した
場合でもポリエステルフイルムと乳剤層との熱収
縮性の違いなどから、一連の写真処理工程中にお
いて乳剤層の剥離(膜はがれ)を起すなど、重大
な障害が発生する。 そこでポリエステルフイルムと乳剤層との接着
性を強める方法として、ポリエステルフイルムの
表面に他の樹脂層、例えば熱可塑性樹脂であるポ
リオレフイン等の樹脂層を設けることによつて行
うことが出来る。 一般にこの様な樹脂層を設けるには溶融押出塗
工法が用られている。又、押出塗工時の溶融樹脂
温度は、通常200〜350℃で行なわれる。 平版印刷版は勿論、乳剤層側にのみ樹脂層を設
けてもよいが、自動製版、自動印刷プロセスにお
いてトラブルの原因となり易いカール性を防ぐ意
味で、ポリエステルフイルムに樹脂加工する場合
には、通常ポリエステルフイルムの両面に樹脂加
工を行う。 裏焼法平版印刷版支持体としては、ポリエステ
ルフイルムの両面にポリオレフイン鏡面樹脂層を
設けるのが透明性の面から特に好ましいが、この
場合には、両面鏡面の故にリーラー部で巻き込ま
れた後、甚だしいブロツキング(表裏面のクツツ
キ)が発生するために、実用性は全くないものと
なつて了う。勿論、溶融押出塗工時、インライン
でバツクコート層を設ける場合には、両面とも鏡
面仕上であつても差支えない。そこで、この点を
改良するにはポリエステルフイルムの両面にポリ
オレフイン粗面樹脂層を設けることが考えられる
が、この場合には粗面加工による透明性の低下
や、ボケ(画像或いは画線部の不鮮明)が発生し
たりして、裏焼法には使用することが出来ない。
又、同様な理由から、乳剤塗布面を鏡面層、裏面
を粗面層とした場合にも裏焼法には使用不能であ
る。 従つて、裏焼法平版印刷版支持体としては、乳
剤塗布しない面、即ち、裏面には鏡面樹脂層を設
ける必要がある。この場合、前述の通り一般に溶
融塗工法が用いられ、該塗工法によつて例えば通
常の低密度ポリエチレン樹脂をポリエステルフイ
ルム面に塗設すると、往々にして溶融押出塗工さ
れた樹脂表面に微細な穴(本発明においてはこれ
をピツトと呼称する)が発生する。このピツトが
発生すると裏面の鏡面樹脂層のミクロ的な均一性
が損われるため裏焼法の場合、裏面から露光する
際に、光が均一に透過しなくなる結果、ボケ(画
像或いは画線部の不鮮明)のある平版印刷版しか
得られないことになる。 本発明者らはこの点を改良すべく鋭意研究した
結果、少なくとも混練回数1回以上のポリオレフ
イン樹脂50重量部以上含む樹脂組成物をプラスチ
ツクフイルムの少なくとも画像形成層を設ける側
とは反対の面に溶融押出塗工して透明な樹脂層を
設けてなる写真材料は、ピツトの発生が少なく、
特に裏焼法平版印刷版支持体として好適なものが
得られることが解つた。 更に、少なくとも混練回数1回以上のポリオレ
フイン50〜95重量部と高密度ポリエチレン5〜50
重量部とを含む樹脂組成物をプラスチツクフイル
ムの少なくとも画像形成層を設ける側とは反対の
面に溶融押出塗工して透明な樹脂層を設けてなる
写真材料はピツトの発生が極めて少なく、又更
に、高密度ポリエチレン10〜30重量部配合した樹
脂組成物はピツトの発生が尚一層少なく、特に裏
焼法平版印刷版支持体として好適なものが得られ
ることが解つた。 又、表面樹脂層を粗面に、裏面樹脂層を鏡面に
すると、工程中での走行性が改良される利点があ
る。通常、各種の写真材料は表面樹脂層は鏡面
に、裏面樹脂層は粗面にするが、この場合には走
行性に難点がある。即ち、各種写真材料において
は、カール微調整及び加筆性付与等から裏面にバ
ツクコート層を設けるのが普通であり、この際ま
ずバツクコート層を先に設け、次に乳剤層を設け
ることがよく行なわれるが、バツクコートする
際、鏡面層が下側になるためガイドロール面と鏡
面層とが接触し、その時、往々にして擦り傷が発
生したり、又、鏡面であるため、ガイドロールと
のスリツプが生じて蛇行するなどの問題点があつ
た。しかし乳剤塗布面を粗面樹脂層にすれば上記
の様な問題点はなく、良好な走行性が得られる。 本発明におけるポリオレフイン樹脂としては、
低密度ポリエチレン、中密度ポリエチレン、ポリ
プロピレン、ポリブテン、ポリペンテン等のホモ
ポリマー、又は、エチレン・プロピレン共重合体
等のオレフインの2つ以上からなる共重合体或い
はエチレンとαオレフインとの共重合体である直
線状低密度ポリエチレン及びこれらの混合物であ
り、各種の密度及び溶融粘度指数(メルトインデ
ツクス:以下、MIと略称することがある)のも
のを単独に、或いはそれらを混合して使用出来る
が、特に低密度ポリエチレン及び中密度ポリエチ
レンが好ましい。 本発明に用いられる高密度ポリエチレンは密度
0.94g/m2以上の所謂、高密度ポリエチレンであ
ればよく、又、各種MIのものも使用可能である
が、MI2〜10が好ましい。更に各種密度の高密度
ポリエチレン及び各種のMIのものを適宜組合せ
て使用してもよい。 1回以上の混練回数を受けたポリオレフイン樹
脂のみをプラスチツクフイルムの少なくとも画像
形成層を設ける側とは反対の面に溶融押出塗工す
るのがピツトの発生防止に対しては、効果的であ
るが、プラスチツクフイルムとポリオレフインと
の接着性や樹脂の表面かたさ等を考慮して数種の
ポリエチレン樹脂、例えば低密度ポリエチレンと
中密度ポリエチレン等を組合せてもよい。これら
の場合、混練回数1回以上の樹脂が50重量部以上
含有していないとピツト発生防止効果は得られな
い。樹脂組成物として、50重量部以下であれば他
の熱可塑性樹脂、例えばカルボキシ変性ポリエチ
レン、エチレン−エチルアクリレート共重合物及
びエチレン−ビニルアセテート共重合物等の樹脂
を適宜混合してもよい。 本発明における所定の混練回数を経たポリオレ
フインを製造するには、通常混練機として使用さ
れている例えばバンバリーミキサーで行つてもよ
いし、混練用押出機を用いてもよい。更にこれら
の混練機を併用してもよい。混練温度は樹脂の劣
化を防ぐために140〜230℃の樹脂温度、好ましく
は200℃以下の温度で行うことが望ましく、予め
熱安定剤を加えておいてもよい。熱安定剤として
は特に制限はないが、例えば3,5−ジ−tert−
ブチル−4−ヒドロキシトルエン、テトラキス
〔メチレン(3,5−ジ−tert−ブチル−4−ヒ
ドロキシ−ヒドロシンナメート〕メタン、2,6
−ジ−tert−ブチル−4−メチル−フエノール、
1,3,5−トリス(4−tert−ブチル−3−ヒ
ドロキシ−2,6−ジメチルベンジル)イソシア
ヌル酸等が挙げられる。混練回数は熱劣化を起さ
ない範囲で多い方が望ましいが、要求される品質
及びコスト面を考慮して混練回数を決める必要が
ある。 本発明におけるポリオレフインの混練回数と
は、メーカーが重合後、造粒(ペレツト化)する
ために行う押出機内での混練、及びユーザーが押
出塗工するために行う押出機内での混練は混練回
数には含めないものとする。従つて、例えば通常
市販されているポリオレフインペレツトをユーザ
ーが購入し、バンバリーミキサー中で混練後(第
1回混練)、押出機を通して(第2回混練)造粒
したものを本発明では混練回数2回のポリオレフ
インという。 勿論、例えば上記2回の混練をメーカーが行つ
た後、ユーザーへ供給する場合或いはメーカー及
びユーザーで夫々混練を行つた場合なども含まれ
る。 本発明における写真材料を例えば平版印刷版に
使用する場合には、通常高い耐刷枚数が要求され
るため、乳剤層を設ける側の樹脂層とプラスチツ
クフイルム例えばポリエステルとの接着性は充分
でなければならない。熱可塑性樹脂例えばポリオ
レフインを乳剤層側の樹脂層として使用した場合
には、樹脂層とポリエステルとの接着性は弱く、
往々にして層間剥離(樹脂層がポリエステル面か
ら剥離する現象)を生じるが、熱可塑性樹脂とし
てカルボキシ変性ポリエチレン、エチレン−エチ
ルアクリレート共重合物及びエチレン−ビニルア
セテート等を用いると層間剥離は生じない。更に
接着強度を高めるには、乳剤層を設ける側のポリ
エステル面を表面処理例えば軽度にコロナ放電処
理(接触角で42〜55°、好ましくは42〜50°)を施
すことにより達成される。勿論、乳剤層を設ける
側と反対側の面は左程接着強度を必要としない
が、本発明における樹脂組成物〔即ち、少なくと
も混練回数1回以上のポリオレフイン50重量部以
上を含む樹脂組成物、更には該ポリオレフイン50
〜95重量部と高密度ポリエチレン5〜50重量部と
を含む樹脂組成物〕をポリエステルの一方の面に
設ける際に、強い接着強度が要求される場合に
は、上述の如く、軽度のコロナ放電処理を施して
もよい。 尚、、本発明における接触角はFACE接触角計
(協和科学株式会社製)を使用し、蒸溜水を用い
て液滴法により求めた。即ち、ポリエステルフイ
ルムの表面を溶融押出塗工機のインラインに設置
されているコロナ放電装置を使用してコロナ放電
処理した後、恒温恒湿室内(20℃−65%RH)に
設置されているFACE接触角計にて測定した。 本発明におけるカルボキシ変性ポリエチレンと
は、ポリエチレン分子構造中に
The present invention relates to photographic materials, and more specifically, after the surface of a plastic film is coated with a resin,
This invention relates to a photographic material in which very few pits occur on the resin surface. As supports for photographic materials, such as lithographic printing plates, metal plates such as aluminum and zinc, plastic films, paper materials, etc. are used.
These problems include problems with printing durability, other printing characteristics, such as ink stains during printing, the relationship between the adhesion between the lithographic printing layer and the support, and in some cases, manufacturing costs and ease of handling. An appropriate support is selected according to need. BACKGROUND ART In recent years, automatic plate making and automatic printing systems have become widespread in light office printing, and lithographic printing plates with excellent printing durability and compatible with various plate making methods are being used. Lithographic printing plates are usually plate-made by applying imagewise exposure from the front side of the lithographic printing plate (image-forming layer side with respect to the support) using a plate-making camera with a reversing mirror (hereinafter referred to as the front-burning method). ). In this case, the lithographic printing plate support does not need to be transparent, and various metal plates and paper materials can be used. However, plate making is performed by applying imagewise exposure from the back side of the lithographic printing plate (the side opposite to the image forming layer with respect to the support) using a plate making camera that does not have a reversing mirror (hereinafter referred to as the back baking method). In some cases, transparency is required as a lithographic printing plate support, so various metal plates and paper materials cannot be used.
A plastic film with good transparency is used. The present invention can of course be applied to lithographic printing plates produced by the usual front-burning method, and is particularly suitable for lithographic printing plates produced by the back-burning method. A so-called back-baking plate-making method in which imagewise exposure is performed from the back side of a lithographic printing plate using a plate-making camera without a built-in reversing mirror or the like is described, for example, in Japanese Patent Application Laid-open No. 89007/1989. Because of its excellent transparency, plastic film is used in various photographic materials, and is also suitable as a lithographic printing plate support using a back-burning method. Various plastic films, such as triacetate films,
Among polycarbonate films, polystyrene films, polypropylene films, polyvinyl chloride films, polyester films, etc., properties such as elongation and stiffness are strictly required when used as supports for lithographic printing plates. A conformal polyester film is preferred. Because photographic materials, especially lithographic printing plates, are used under high printing pressure, the image forming layer (hereinafter referred to as
The surface of the support (sometimes referred to as the emulsion layer) and the emulsion must be sufficiently adhered to each other. However, since polyester film itself has poor surface activity, it is not only difficult to apply emulsion directly to its surface, but even if emulsion is applied after surface activation treatment such as corona discharge treatment. Due to the difference in heat shrinkability between the polyester film and the emulsion layer, serious problems such as peeling of the emulsion layer occur during a series of photographic processing steps. Therefore, as a method of strengthening the adhesion between the polyester film and the emulsion layer, it is possible to provide another resin layer on the surface of the polyester film, for example, a resin layer of polyolefin, which is a thermoplastic resin. Generally, a melt extrusion coating method is used to provide such a resin layer. Further, the temperature of the molten resin during extrusion coating is usually 200 to 350°C. Of course, a resin layer may be provided only on the emulsion layer side of the lithographic printing plate, but in order to prevent curling, which can easily cause problems in automatic plate making and automatic printing processes, it is usually necessary to apply a resin layer to polyester film. Resin processing is applied to both sides of the polyester film. As a back-burning lithographic printing plate support, it is particularly preferable to provide a polyolefin mirror resin layer on both sides of a polyester film from the viewpoint of transparency. Severe blocking (stickiness on the front and back surfaces) occurs, making it completely impractical. Of course, if a back coat layer is provided in-line during melt extrusion coating, both sides may have a mirror finish. Therefore, in order to improve this point, it is possible to provide a polyolefin roughened resin layer on both sides of the polyester film, but in this case, the roughening may reduce transparency and blur (unclear images or printed lines). ), so it cannot be used in the back firing method.
Furthermore, for the same reason, even if the emulsion-coated side is a mirror layer and the back side is a rough layer, it cannot be used in the back baking method. Therefore, as a back-burning lithographic printing plate support, it is necessary to provide a mirror-finished resin layer on the side to which the emulsion is not coated, that is, the back side. In this case, as mentioned above, the melt coating method is generally used, and when ordinary low-density polyethylene resin is coated on the surface of the polyester film using this coating method, fine particles often appear on the surface of the melt-extrusion coated resin. A hole (referred to as a pit in the present invention) is generated. When these pits occur, the microscopic uniformity of the mirror-like resin layer on the back side is impaired, so in the case of the back-burning method, when exposing from the back side, the light does not pass through uniformly, resulting in blurring (image or drawing area). This means that only a lithographic printing plate with a blurred appearance will be obtained. As a result of intensive research aimed at improving this point, the present inventors have found that a resin composition containing 50 parts by weight or more of a polyolefin resin that has been kneaded at least once is applied to at least the side of the plastic film opposite to the side on which the image forming layer is provided. Photographic materials that are coated with a transparent resin layer by melt extrusion have fewer pits.
It has been found that a support particularly suitable for a back-burning lithographic printing plate can be obtained. Further, 50 to 95 parts by weight of polyolefin and 5 to 50 parts by weight of high-density polyethylene which have been kneaded at least once.
A photographic material in which a transparent resin layer is provided by melt-extrusion coating a resin composition containing parts by weight on at least the side opposite to the side on which the image forming layer is provided of a plastic film has extremely little occurrence of pits. Furthermore, it has been found that a resin composition containing 10 to 30 parts by weight of high-density polyethylene produces even fewer pits and is particularly suitable as a support for a back-burning lithographic printing plate. Moreover, if the surface resin layer is made to have a rough surface and the back surface resin layer is made to have a mirror surface, there is an advantage that runnability during the process is improved. Usually, various photographic materials have a mirror surface on the surface resin layer and a rough surface on the back surface resin layer, but in this case there is a problem in runnability. That is, in various photographic materials, it is common to provide a back coat layer on the back side for fine curl adjustment and addability, and in this case, it is often done to first provide the back coat layer and then provide the emulsion layer. However, when back-coating, the mirror layer is on the lower side, so the guide roll surface and the mirror layer come into contact, which often causes scratches, and because the mirror surface is a mirror surface, slips with the guide roll may occur. There were problems such as meandering. However, if the emulsion-coated surface is made of a rough resin layer, the above-mentioned problems will not occur and good running properties will be obtained. The polyolefin resin in the present invention includes:
A homopolymer such as low-density polyethylene, medium-density polyethylene, polypropylene, polybutene, polypentene, etc., or a copolymer consisting of two or more olefins such as ethylene/propylene copolymer, or a copolymer of ethylene and α-olefin. Linear low-density polyethylene and mixtures thereof, with various densities and melt viscosity indexes (melt index: hereinafter sometimes abbreviated as MI) can be used singly or in combination. Particularly preferred are low density polyethylene and medium density polyethylene. The high density polyethylene used in the present invention has a density of
So-called high-density polyethylene of 0.94 g/m 2 or more may be used, and various MI can also be used, but MI 2 to 10 is preferable. Furthermore, high-density polyethylene of various densities and various types of MI may be used in appropriate combinations. Melt-extrusion coating of only the polyolefin resin that has been kneaded one or more times on at least the side opposite to the side on which the image forming layer is provided is effective in preventing the formation of pits. Several types of polyethylene resins, such as low-density polyethylene and medium-density polyethylene, may be combined in consideration of the adhesiveness between the plastic film and polyolefin, the surface hardness of the resin, and the like. In these cases, unless the resin contains 50 parts by weight or more of the resin that has been kneaded once or more, the pitting prevention effect cannot be obtained. Other thermoplastic resins, such as carboxy-modified polyethylene, ethylene-ethyl acrylate copolymer, and ethylene-vinyl acetate copolymer, may be mixed as appropriate in the resin composition, as long as the amount is 50 parts by weight or less. In the present invention, the polyolefin which has been kneaded a predetermined number of times may be produced by using a Banbury mixer, which is usually used as a kneader, or by using an extruder for kneading. Furthermore, these kneaders may be used in combination. The kneading temperature is preferably 140 to 230°C, preferably 200°C or lower in order to prevent resin deterioration, and a heat stabilizer may be added in advance. There are no particular restrictions on the heat stabilizer, but for example, 3,5-di-tert-
Butyl-4-hydroxytoluene, tetrakis[methylene(3,5-di-tert-butyl-4-hydroxy-hydrocinnamate]methane, 2,6
-di-tert-butyl-4-methyl-phenol,
Examples include 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanuric acid. The number of times of kneading is preferably as large as possible without causing thermal deterioration, but it is necessary to decide the number of times of kneading in consideration of the required quality and cost. In the present invention, the number of times polyolefin is kneaded refers to the number of kneading times that the manufacturer performs in an extruder for granulation (pelletization) after polymerization, and the number of times that the user performs kneading in an extruder for extrusion coating. shall not be included. Therefore, for example, in the present invention, if a user purchases polyolefin impellets that are usually commercially available, and after kneading them in a Banbury mixer (first kneading) and granulating them through an extruder (second kneading), the number of times of kneading is It is called double polyolefin. Of course, this also includes, for example, the case where the manufacturer performs the above-mentioned two kneading operations and then supplies the product to the user, or the case where the manufacturer and the user perform kneading separately. When the photographic material of the present invention is used, for example, in a lithographic printing plate, a high number of printing sheets is usually required, so the adhesiveness between the resin layer on the emulsion layer side and the plastic film, such as polyester, must be sufficient. It won't happen. When a thermoplastic resin such as polyolefin is used as the resin layer on the emulsion layer side, the adhesiveness between the resin layer and polyester is weak;
Although delamination (a phenomenon in which a resin layer peels off from a polyester surface) often occurs, delamination does not occur when carboxy-modified polyethylene, ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate, etc. are used as the thermoplastic resin. In order to further increase the adhesive strength, the surface of the polyester on which the emulsion layer is to be provided can be subjected to a surface treatment, such as a slight corona discharge treatment (contact angle of 42 to 55 degrees, preferably 42 to 50 degrees). Of course, the side opposite to the side on which the emulsion layer is provided does not require as much adhesive strength as the left side, but the resin composition of the present invention [i.e., the resin composition containing 50 parts by weight or more of polyolefin that has been kneaded at least once, Furthermore, the polyolefin 50
When applying a resin composition containing ~95 parts by weight and 5 to 50 parts by weight of high-density polyethylene on one side of polyester, if strong adhesive strength is required, a mild corona discharge as described above is recommended. Processing may be performed. The contact angle in the present invention was determined by a droplet method using distilled water using a FACE contact angle meter (manufactured by Kyowa Kagaku Co., Ltd.). That is, after the surface of the polyester film is subjected to corona discharge treatment using a corona discharge device installed in-line of the melt extrusion coating machine, the surface of the polyester film is treated with FACE, which is installed in a constant temperature and humidity room (20℃-65%RH). Measured using a contact angle meter. In the present invention, carboxy-modified polyethylene means that the polyethylene molecular structure contains

【式】基を含む ものであつて、例えばポリエチレンに不飽和カル
ボン酸類をグラフトして変性したポリエチレン類
等を指す。不飽和カルボン酸としては、マイレン
酸、アクリル酸、メタクリル酸等のα,β−不飽
和カルボン酸或いは環内に不飽和結合を持つ脂環
式多価カルボン酸等であり、これらの酸無水物、
アミド、エステル等が用いられる。 本発明におけるカルボキシ変性ポリエチレン樹
脂としては、上述の如く、各種不飽和カルボン酸
変性ポリエチレン等が用いられ、又、各種の密
度、溶融粘度指数のものを単独に或いはそれらを
混合して使用出来る。更に接着性を著しく損なわ
ない範囲で他の樹脂を適宜混合して用いられる。 本発明のエチレン−エチルアクリレート共重合
物におけるエチルアクリレート含有量は、特に規
制はないが、通常5〜20%、好ましくは7〜18%
のものが使用される。又、各種の密度、溶融粘度
指数のものを単独に或いはそれらを混合して使用
出来る。更に接着性を著しく損なわない範囲で他
の樹脂を適宜混合して用いられる。 本発明のエチレン−酢酸ビニル共重合物におけ
る酢酸ビニル含有量は、通常6〜40重量%、好ま
しくは6〜28重量%のものが使用される。又、各
種の密度、溶融粘度指数のものを単独に或いはそ
れらを混合して使用出来る。更に接着性を著しく
損なわない範囲で他の樹脂を適宜混合して用いら
れる。 更に必要に応じてカルボキシ変性ポリエチレ
ン、エチレン−エチルアクリレート共重合物及び
エチレン−酢酸ビニル共重合物及びこれらの混合
物、更にはこれらとポリオレフインとの混合物が
好適である。 本発明におけるプラスチツクフイルムとして
は、前述の通り、例えばトリアセテート、ポリカ
ーボネート、ポリスチレン、ポリプロピレン、ポ
リ塩化ビニル、ポリエステル等の各フイルムが使
用出来るが、本発明においては、ポリエステルフ
イルムが特に好ましい。 本発明におけるポリエステルフイルムとして
は、無延伸、一軸延伸及び二軸延伸等が用いられ
るが、延び性、剛度、熱安定性等の点から、二軸
延伸ポリエステルフイルムが好適である。又、フ
イルムの厚みは75〜350μ程度のものが用いられ
るが、性能及びコストの点から100〜188μ程度の
ものが好適である。ポリエステルフイルムにおけ
る表裏面の各樹脂層の厚さは特に規制はないが、
通常10〜70μ、好ましくは15〜40μである。 本発明における粗面樹脂層を設ける方法は、通
常、溶融押出塗工に用いられる冷却ロールの表面
に粗面加工を施したものであつて、粗面の程度と
しては裏面の鏡面樹脂層と重ね合せてもブロツキ
ングしない程度に、軽度に粗面加工したものか
ら、粗面樹脂層の上に乳剤層を設けた後、裏焼法
として使用した場合に透明性等に悪影響を及ぼさ
ない程度に、高度に粗面加工したものまでいずれ
も使用可能である。 また、裏面の鏡面樹脂層を設ける方法は、上記
と同様、通常、溶融押出塗工に用いられる冷却ロ
ールの表面に鏡面加工を施したものが用いられ
る。 裏面樹脂層にはカール微調整及び加筆性付与等
のためバツクコート層を設けてもよい。バツクコ
ート層はゼラチンを主成分とし、これに硬膜剤そ
の他各種無機顔料例えばシリカ、タルク等を含有
せしめることが出来る。(但し裏焼法の場合には
透明性の低下やボケが発生しない程度に)又、こ
の他、帯電防止剤、界面活性剤等を含有せしめて
もよい。 本発明における写真材料を例えば平版印刷版
(表焼法はもとより特に裏焼法)として使用する
場合の最良の態様は、プラスチツクフイルム例え
ばポリエステルの乳剤層側の面に軽度にコロナ放
電処理を施しつゝ(接触角で42〜55°)、カルボキ
シ変性ポリエチレン、エチレン−エチルアクリレ
ート共重合物及びエチレン−ビニルアセテート共
重合物(必要に応じてポリオレフイン)を単独に
或いはこれら樹脂を組合せて押出塗工機を用いて
粗面樹脂層を設けた上に画像形成層を設け、且つ
ポリエステルの反対側の面には本発明における樹
脂組成物を鏡面樹脂層として設けた平版印刷版
は、ピツトの発生が極めて少なく、且つ耐刷枚数
の優れたものが得られる。 画像形成層側の樹脂層中にポリオレフインを併
用する理由は、エチレン−エチルアクリレート共
重合物やエチレン−ビニルアセテート等を単独に
使用した場合には往々にして冷却ロールとの剥離
性が悪く、その点を改良するためと、左程耐刷枚
数が要求されない場合には、適宜ポリオレフイン
と併用してもよい。又、場合によつてはポリオレ
フイン単独であつてもよい。 更に上記実施態様を逆にした態様、つまり本発
明における樹脂組成物(但し、二酸化チタン等を
練込むことによつて不透明化する)をプラスチツ
クフイルム例えばポリエステルの片面に軽度のコ
ロナ放電処理を施しつゝ鏡面樹脂層を設けた上に
更に画像形成層を設け、且つ他面にカルボキシ変
性ポリエチレン、エチレン−エチルアクリレート
共重合物、エチレン−ビニルアセテート共重合物
及びポリオレフイン等を単独に或いは組合せたも
のを粗面樹脂層として設けた写真材料を例えば写
真印画フイルム等に用いた場合には、高平滑性の
故に鮮鋭度の優れたものが得られる。 本発明における写真材料の熱可塑性樹脂層に設
けられる画像形成層は、通常ハロゲン化銀乳剤層
或は銀錯塩拡散転写法による物理現像核層を有す
る受像層であり、各種写真材料として用い得る
が、本発明の写真材料はポリエステルフイルムと
熱可塑性樹脂との極めて高い接着性の故に、平版
印刷版等の印刷用感光材料として特に好適であ
る。この他、特殊な用途としては、高接着性が要
求される銀色素漂白法による写真材料等にも使用
可能である。又、本発明における写真材料のポリ
エステルフイルム及び/又は樹脂層を例えば二酸
化チタン等によつて半透明乃至は不透明にしたも
のは、写真印画フイルムやプリントフイルム(駅
などの広告表示用材料で、裏側に照明燈が内蔵さ
れいる)等にも用いることが出来る。 次に本発明を更に具体的に説明するために、実
施例を述べる。 尚、実施例中記載のピツト数の測定方法は次の
通りである。プラスチツクフイルムにポリオレフ
イン樹脂被覆した樹脂面をオリンパス製BH−2
型顕微鏡を用いて500倍に拡大してポラロイド版
に撮影した後、1cm2相当内の径1mm(実径2μ)
以上のピツトを数えた。ピツト数が50以上になる
と裏焼法の場合、ボケが発生する。 実施例 1 低密度ポリエチレン(MI6、密度0.92)を混練
用押出機を用いて190℃で表1記載の回数となる
様に繰返し混練した。 厚さ150μのポリエステルフイルムの一方の面
にコロナ放電処理を施しつつ、表1記載の各樹脂
を335℃で押出塗工機より押出しながら鏡面加工
冷却ロールを用いて30μの厚さになる様に溶融押
出塗工した。続いて他方の面には同様にコロナ放
電処理を施しながら粗面加工冷却ロールを用い
て、全て試料1と同じ樹脂を使用して30μの厚さ
になる様に樹脂温度335℃で溶融押出塗工した。
この様にして得られた4種の試料について明細書
中記載の方法によつてピツト数を求めた結果を表
1に示す。 次に、4種の粗面樹脂層にコロナ放電処理を施
しながら平版印刷版用乳剤を塗布し(固形分で約
6g/m2)、乾燥させた後、反転ミラー等を内蔵
しない製版カメラを用い、平版印刷版の裏側(支
持体に対して乳剤層と反対側)から像様露光し、
焼付後、一連の写真処理工程を経て平版印刷版を
得た。これらの平版印刷版をルーペで観察すると
試料2〜4はボケがなく良好であつたが、一方、
試料1はボケがみられた。更にこれらの平版印刷
版をオフセツト印刷機に装着し印刷を行つた結
果、試料2〜4の平版印刷版を使用した場合の刷
上り印刷紙はボケのない良好な仕上りであつた
が、一方、試料1の平版印刷版を使用した場合の
刷上り印刷紙はボケのある仕上りしか得られなか
つた。
[Formula] contains a group, and refers to, for example, polyethylene modified by grafting an unsaturated carboxylic acid to polyethylene. Examples of unsaturated carboxylic acids include α,β-unsaturated carboxylic acids such as maleic acid, acrylic acid, and methacrylic acid, and alicyclic polyhydric carboxylic acids having an unsaturated bond in the ring, and acid anhydrides of these acids. ,
Amides, esters, etc. are used. As the carboxy-modified polyethylene resin in the present invention, as mentioned above, various unsaturated carboxylic acid-modified polyethylenes and the like can be used, and those having various densities and melt viscosity indexes can be used alone or in combination. Furthermore, other resins may be mixed as appropriate within a range that does not significantly impair adhesiveness. The ethyl acrylate content in the ethylene-ethyl acrylate copolymer of the present invention is not particularly limited, but is usually 5 to 20%, preferably 7 to 18%.
are used. Further, materials having various densities and melt viscosity indexes can be used alone or in combination. Furthermore, other resins may be mixed as appropriate within a range that does not significantly impair adhesiveness. The vinyl acetate content in the ethylene-vinyl acetate copolymer of the present invention is usually 6 to 40% by weight, preferably 6 to 28% by weight. Further, materials having various densities and melt viscosity indexes can be used alone or in combination. Furthermore, other resins may be mixed as appropriate within a range that does not significantly impair adhesiveness. Further suitable are carboxy-modified polyethylene, ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, mixtures thereof, and mixtures of these with polyolefin, if necessary. As the plastic film in the present invention, as mentioned above, films of triacetate, polycarbonate, polystyrene, polypropylene, polyvinyl chloride, polyester, etc. can be used, but polyester films are particularly preferred in the present invention. The polyester film in the present invention may be unstretched, uniaxially stretched, biaxially stretched, etc., but biaxially stretched polyester film is preferred from the viewpoint of ductility, stiffness, thermal stability, etc. The thickness of the film used is approximately 75 to 350 .mu.m, but from the viewpoint of performance and cost, a film thickness of approximately 100 to 188 .mu.m is preferable. There are no particular regulations regarding the thickness of each resin layer on the front and back sides of polyester film, but
Usually 10-70μ, preferably 15-40μ. The method of providing a rough resin layer in the present invention is to roughen the surface of a cooling roll normally used for melt extrusion coating, and the degree of roughness is such that it overlaps with the mirror resin layer on the back side. From those with a lightly roughened surface to the extent that no blocking occurs when combined, to the extent that there is no adverse effect on transparency etc. when used as a back-burning method after providing an emulsion layer on the roughened resin layer. Any material with a highly roughened surface can be used. Further, as the method for providing the mirror-finished resin layer on the back surface, a mirror-finished surface of a cooling roll used for melt extrusion coating is usually used, as described above. A back coat layer may be provided on the back resin layer for fine curl adjustment and addition of additional writing. The back coat layer has gelatin as its main component, and may contain a hardening agent and various other inorganic pigments such as silica and talc. In addition, antistatic agents, surfactants, etc. may also be contained (in the case of the back-burning method, to the extent that no reduction in transparency or blurring occurs). When the photographic material of the present invention is used, for example, as a lithographic printing plate (not only by the front-burning method, but especially by the back-burning method), the best mode is to apply a slight corona discharge treatment to the emulsion layer side of the plastic film, such as polyester. (contact angle of 42 to 55°), carboxy-modified polyethylene, ethylene-ethyl acrylate copolymer, and ethylene-vinyl acetate copolymer (polyolefin if necessary) alone or in combination with these resins using an extrusion coating machine. A lithographic printing plate in which an image forming layer is provided on a rough resin layer using polyester, and a mirror resin layer of the resin composition of the present invention is provided on the opposite side of the polyester layer is extremely susceptible to pitting. It is possible to obtain a product with a small amount of printing and an excellent number of printing sheets. The reason for using polyolefin in the resin layer on the image forming layer side is that when ethylene-ethyl acrylate copolymer or ethylene-vinyl acetate is used alone, it often has poor peelability from the cooling roll. It may be used in combination with polyolefin as appropriate in order to improve the above-mentioned problems and when a high number of printing sheets is not required. In some cases, polyolefin may be used alone. Furthermore, an embodiment in which the above embodiment is reversed, that is, the resin composition of the present invention (however, it is made opaque by kneading titanium dioxide or the like) is applied to one side of a plastic film, for example, polyester, by subjecting it to a mild corona discharge treatment.ゝAn image forming layer is further provided on the mirror resin layer, and on the other side, carboxy-modified polyethylene, ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, polyolefin, etc. are used alone or in combination. When a photographic material provided as a rough surface resin layer is used, for example, in a photographic print film, a photographic material with excellent sharpness can be obtained because of its high smoothness. The image forming layer provided in the thermoplastic resin layer of the photographic material in the present invention is usually an image receiving layer having a silver halide emulsion layer or a physical development nucleus layer formed by a silver complex diffusion transfer method, and can be used as various photographic materials. The photographic material of the present invention is particularly suitable as a photosensitive material for printing such as lithographic printing plates because of the extremely high adhesiveness between the polyester film and the thermoplastic resin. In addition, as a special application, it can also be used in photographic materials produced by the silver dye bleaching method, which require high adhesion. Furthermore, the polyester film and/or resin layer of the photographic material of the present invention made semi-transparent or opaque by, for example, titanium dioxide, can be used as a photographic print film or print film (material for advertising display at stations, etc.) (with built-in lighting), etc. Next, examples will be described in order to explain the present invention more specifically. The method for measuring the number of pits described in Examples is as follows. The resin surface of plastic film coated with polyolefin resin is manufactured by Olympus BH-2.
After magnifying it 500 times using a microscope and photographing it on a Polaroid plate, a diameter of 1 mm within the equivalent of 1 cm 2 (actual diameter 2 μ) is obtained.
I counted more pits. When the number of pits exceeds 50, blurring occurs when using the back firing method. Example 1 Low density polyethylene (MI6, density 0.92) was kneaded repeatedly at 190°C using a kneading extruder as many times as shown in Table 1. While applying corona discharge treatment to one side of a 150μ thick polyester film, each resin listed in Table 1 was extruded from an extrusion coating machine at 335°C, using a mirror-finishing cooling roll to obtain a thickness of 30μ. Coated by melt extrusion. Next, the other side was similarly subjected to corona discharge treatment and melt-extrusion coated at a resin temperature of 335℃ using the same resin as sample 1 using a roughened cooling roll to a thickness of 30μ. I worked on it.
Table 1 shows the results of determining the number of pits for the four types of samples thus obtained by the method described in the specification. Next, emulsion for planographic printing plates was applied to the four types of rough resin layers while subjecting them to corona discharge treatment (about 6 g/m 2 in solid content), and after drying, a plate-making camera without a built-in reversing mirror was installed. imagewise exposed from the back side of the lithographic printing plate (the side opposite to the emulsion layer with respect to the support),
After baking, a lithographic printing plate was obtained through a series of photographic processing steps. When these planographic printing plates were observed with a magnifying glass, samples 2 to 4 were in good condition with no blur, but on the other hand,
Sample 1 showed blur. Furthermore, when these lithographic printing plates were mounted on an offset printing machine and printed, it was found that when the lithographic printing plates of Samples 2 to 4 were used, the finished printed paper had a good finish without blurring, but on the other hand, When the lithographic printing plate of Sample 1 was used, the finished printed paper could only have a blurred finish.

【表】 実施例 2 中密度ポリエチレン(MI3、密度0.93)に樹脂
に対し200ppmの3,5−ジ−tert−ブチル−4
−ヒドロキシトルエンを添加したものをバンバリ
ーミキサー中で140℃で混練した後、更に混練用
押出機を用いて160℃で混練した。 上記2回混練した樹脂とバンバリーミキサー以
降の処理を施さない混練回数0回樹脂とを表2記
載の配合比となる様に乾式混合した。 厚さ100μのポリエステルフイルムの一方の面
にコロナ放電処理を施しつつ、表2記載の各樹脂
を350℃で溶融押出塗工機より押出しながら鏡面
加工冷却ロールを用いて20μの厚さになる様に溶
融押出塗工した。続いて他方の面には同様にコロ
ナ放電処理を施しながら粗面加工冷却ロールを用
いて、全て試料9と同じ樹脂を使用して20μの厚
さになる様に樹脂温度350℃で溶融押出塗工した。
この様にして得られた5種の試料について明細書
中記載の方法によつてピツト数を求めた結果を表
2に示す。 次に5種の試料について、鏡面樹脂層にコロナ
放電処理を施しながら、ゼラチン及び少量の硬膜
剤とからなるバツクコート層を設ける(固形分で
約4g/m2)ほかは実施例1と同様な手順によつ
て平版印刷版を作成し、印刷した。その結果、試
料5〜7はボケのない平版印刷版及び仕上り印刷
紙が得られたが、一方、試料8及び9はボケのあ
る平版印刷版及び仕上り印刷紙しか得られなかつ
た。
[Table] Example 2 200 ppm of 3,5-di-tert-butyl-4 based on the resin was added to medium density polyethylene (MI3, density 0.93).
The mixture to which -hydroxytoluene was added was kneaded at 140°C in a Banbury mixer, and then further kneaded at 160°C using a kneading extruder. The above-mentioned resin kneaded twice and the resin kneaded 0 times, which was not subjected to any treatment after the Banbury mixer, were dry-mixed so as to have the compounding ratios shown in Table 2. While applying corona discharge treatment to one side of a 100μ thick polyester film, each resin listed in Table 2 was extruded from a melt extrusion coating machine at 350℃, using a mirror finishing cooling roll to obtain a thickness of 20μ. Coated by melt extrusion. Next, the other side was similarly subjected to corona discharge treatment and melt extrusion coated at a resin temperature of 350°C using the same resin as Sample 9 using a roughened cooling roll to a thickness of 20μ. I worked on it.
Table 2 shows the results of determining the number of pits for the five types of samples thus obtained by the method described in the specification. Next, for five types of samples, the mirror resin layer was subjected to corona discharge treatment, and a back coat layer consisting of gelatin and a small amount of hardening agent was provided (about 4 g/m 2 in solid content), but the same as in Example 1. A lithographic printing plate was prepared and printed using the same procedure. As a result, samples 5 to 7 yielded lithographic printing plates and finished printed paper without blur, while samples 8 and 9 yielded only lithographic printing plates and finished printed paper with blur.

【表】 実施例 3 低密度ポリエチレン樹脂(MI5、密度0.92)に
樹脂に対し50ppmのテトラキス〔メチレン3,5
−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシ
ンナート〕メタンを添加したものを混練用押出機
を用いて200℃で混練した。 上記1回混練した樹脂と表3記載の各種樹脂を
表3記載の配合比となる様に乾式混合した。 厚さ188μのポリエステルフイルムの一方の面
にコロナ放電処理を施しつつ、表3記載の各樹脂
を320℃で溶融押出機より押出しながら鏡面加工
冷却ロールを用いて40μの厚さになる様に溶融押
出塗工した。続いて他方の面には同様にコロナ放
電処理を施しながら粗面加工冷却ロールを用い
て、全て試料14で使用したカルボキシ変性ポリエ
チレンのみを用いて40μの厚さになる様に樹脂温
度320℃で溶融押出塗工した。この様にして得ら
れた5種の試料について、明細書中記載の方法に
よつてピツト数を求めた結果を表3に示す。 次に5種の試料について、実施例1と同様な手
順によつて平版印刷版を作成し、印刷した。その
結果、試料10〜14の全ての試料についてボケのな
い平版印刷版及び仕上り印刷紙が得られた。
[Table] Example 3 Tetrakis [methylene 3,5
-di-tert-butyl-4-hydroxy-hydrocinnate] to which methane had been added was kneaded at 200°C using a kneading extruder. The resin kneaded once above and the various resins listed in Table 3 were dry mixed so as to have the blending ratios listed in Table 3. While applying corona discharge treatment to one side of a polyester film with a thickness of 188μ, each resin listed in Table 3 was extruded from a melt extruder at 320℃ and melted using a mirror-finished cooling roll to a thickness of 40μ. Extrusion coated. Next, the other side was similarly subjected to corona discharge treatment, using a roughened cooling roll, and using only the carboxy-modified polyethylene used in sample 14, the resin temperature was 320℃ to a thickness of 40μ. Coated by melt extrusion. Table 3 shows the results of determining the number of pits for the five types of samples thus obtained by the method described in the specification. Next, lithographic printing plates were prepared and printed using the same procedure as in Example 1 for the five samples. As a result, lithographic printing plates and finished printing papers without blur were obtained for all samples 10 to 14.

【表】 実施例 4 低密度ポリエチレン(MI6、密度0.92g/cm3
を混練用押出機を用いて190℃で混練した。 上記1回混練した樹脂と高密度ポリエチレン及
び混練回数0回樹脂と高密度ポリエチレンとを表
4記載の配合比となる様に乾式混合した。 厚さ100μのポリエステルフイルムの一方の面
にコロナ放電処理を施しつつ、表4記載の各樹脂
を320℃で溶融押出機より押出しながら鏡面加工
冷却ロールを用いて30μの厚さになる様に溶融押
出塗工した。続いて他方の面には同様にコロナ放
電処理を施しながら粗面加工冷却ロールを用い
て、全て試料1と同じ樹脂を使用して30μの厚さ
になる様に樹脂温度320℃で溶融押出塗工した。
この様にして得られた10種の試料について明細書
中記載の方法によつてピツト数を求めた結果を表
4に示す。 次に、10種の試料について実施例1と同様な手
順によつて平版印刷版を得た。これらの平版印刷
版をルーペで観察すると試料4〜10はボケがなく
良好であつたが、一方、試料1〜3はボケがみら
れた。更にこれらの平版印刷版をオフセツト印刷
機に装着し印刷を行つた結果、試料4〜10の平版
印刷版を使用した場合の刷上り印刷紙はボケのな
い良好な仕上りであつたが、一方、試料1〜3の
平版印刷版を使用した場合の刷上り印刷紙はボケ
のある仕上りしか得られなかつた。尚、試料4は
乳剤塗布後一連の写真処理工程を経た後、、若干
カール性が認められ作業性にやゝ問題のあること
が解つた。
[Table] Example 4 Low density polyethylene (MI6, density 0.92g/cm 3 )
were kneaded at 190°C using a kneading extruder. The above-mentioned resin kneaded once and high-density polyethylene and the resin kneaded 0 times and high-density polyethylene were dry-mixed so as to have the blending ratios shown in Table 4. While applying corona discharge treatment to one side of a 100μ thick polyester film, each resin listed in Table 4 was extruded from a melt extruder at 320°C and melted using a mirror-finished cooling roll to a thickness of 30μ. Extrusion coated. Next, the other side was similarly subjected to corona discharge treatment and melt-extrusion coated at a resin temperature of 320℃ using the same resin as sample 1 using a roughened cooling roll to a thickness of 30μ. I worked on it.
Table 4 shows the results of determining the number of pits for the 10 types of samples thus obtained by the method described in the specification. Next, lithographic printing plates were obtained using the same procedure as in Example 1 for 10 types of samples. When these planographic printing plates were observed with a magnifying glass, Samples 4 to 10 were in good condition with no blur, while Samples 1 to 3 had blur. Furthermore, when these lithographic printing plates were mounted on an offset printing machine and printed, the finished printed paper when using the lithographic printing plates of Samples 4 to 10 had a good finish without blurring, but on the other hand, When the lithographic printing plates of Samples 1 to 3 were used, the finished printed paper could only have a blurred finish. It should be noted that Sample 4 had some curling after being subjected to a series of photographic processing steps after coating the emulsion, and it was found that there were some problems in workability.

【表】 実施例 5 中密度ポリエチレン(MI3、密度0.93)に樹脂
に対し100ppmの1,3,5−トリス(4−tert
−ブチル−3−ヒドロキシ−2,6−ジメチルベ
ンジル)イソシアヌル酸を添加したものをバンバ
リーミキサー中で140℃で混練した後、更に混練
用押出機を用いて160℃で混練した。 上記2回混練した樹脂と高密度ポリエチレン
(MI5、密度0.96)とを表5記載の配合比となる
様に乾式混合した。 厚さ150μのポリエスエルフイルムの一方の面
にコロナ放電処理を施しつつ、表5記載の各樹脂
を335℃で溶融押出機より押出しながら鏡面加工
冷却ロールを用いて15μの厚さになる様に溶融押
出塗工した。続いて他方の面には同様にコロナ放
電処理を施しながら粗面加工冷却ロールを用いて
全てカルボキシ変性ポリエチレン(MI4、密度
0.91)を使用して15μの厚さになる様に樹脂温度
320℃で溶融押出塗工した。この様にして得られ
た6種の試料について、明細書中記載の方法によ
つてピツト数を求めた結果を表5に示す。 次に6種の試料について鏡面樹脂層にコロナ放
電処理を施しながら、ゼラチン及び少量の硬膜剤
並に若干のシリカよりなるバツクコート層を設け
る(固形分で約5g/m2)ほかは実施例1と同様
な手順によつて平版印刷版を作成し、印刷した。
その結果、試料11〜16共ボケのない良好な平版刷
版及び仕上り印刷紙が得られた。
[Table] Example 5 100 ppm of 1,3,5-tris (4-tert) was added to medium density polyethylene (MI3, density 0.93) based on the resin.
-Butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanuric acid was kneaded in a Banbury mixer at 140°C, and then further kneaded at 160°C using a kneading extruder. The twice-kneaded resin and high-density polyethylene (MI5, density 0.96) were dry-mixed at the blending ratio shown in Table 5. While applying corona discharge treatment to one side of a 150μ thick polyester film, each resin listed in Table 5 was extruded from a melt extruder at 335°C, using a mirror-finishing cooling roll to obtain a thickness of 15μ. Coated by melt extrusion. Next, the other side was treated with corona discharge in the same way, and a roughened cooling roll was used to coat the other side with carboxy-modified polyethylene (MI4, density
0.91) and adjust the resin temperature to a thickness of 15μ.
Melt extrusion coating was performed at 320°C. Table 5 shows the results of determining the number of pits for the six types of samples thus obtained by the method described in the specification. Next, while applying corona discharge treatment to the specular resin layer of six types of samples, a back coat layer consisting of gelatin, a small amount of hardening agent, and some silica was provided (about 5 g/m 2 in solid content). A lithographic printing plate was prepared and printed using the same procedure as in 1.
As a result, good lithographic printing plates and finished printing papers without blur were obtained for Samples 11 to 16.

【表】 実施例 6 表6に示す各種樹脂を使用して、厚さ100μの
ポリエステルフイルムの一方の面に表6に示す所
望の接触角となる様に夫々コロナ放電処理を施し
つつ320℃で溶融押出機ダイより押出しながら、
粗面加工冷却ロールを用いて表6に示す通りの樹
脂厚さになる様に押出塗工した。その際、粗面樹
脂層上にも一定強度でコロナ放電処理を施した。 続いてポリエステルフイルムの他方の面にも同
様に一定強度でコロナ放電処理を施しながら鏡面
加工冷却ロールを用いて表面樹脂層と同じ樹脂厚
となる様に実施例5における試料No.14と同じ樹脂
配合を用いて押出塗工した。 この様にして得られた25種の試料について実施
例1と同様な手順によつて平版印刷版を得た。 この平版印刷版をルーペで観察するとボケがな
く良好であつたが、更にこの平版印刷版をオフセ
ツト印刷機に装着し印刷を行つた結果、刷上り印
刷紙はボケのない良好な仕上りであつた。又、ポ
リエステルフイルム表面の接触角が40°及び60°の
ものは耐刷枚数が5千〜8千枚であつた。 一方、接触角が42〜55°のものは、いずれも耐
刷枚数は1万枚以上であり、特に接触角42〜50°
のものは2万〜5万枚以上であつた。
[Table] Example 6 Using the various resins shown in Table 6, one side of a 100μ thick polyester film was subjected to corona discharge treatment at 320°C so as to obtain the desired contact angle shown in Table 6. While extruding from the melt extruder die,
Extrusion coating was performed using a roughened cooling roll so that the resin thickness was as shown in Table 6. At that time, corona discharge treatment was also applied to the rough surface resin layer at a constant intensity. Next, the other side of the polyester film was also treated with the same resin as Sample No. 14 in Example 5 using a mirror-finished cooling roll while applying corona discharge treatment at a constant intensity so that the resin thickness was the same as that of the surface resin layer. The formulation was extrusion coated. Lithographic printing plates were obtained using the same procedure as in Example 1 for the 25 types of samples thus obtained. When this lithographic printing plate was observed with a magnifying glass, it was in good condition with no blurring, and when this lithographic printing plate was mounted on an offset printing machine and printing was performed, the printed paper had a good finish without blurring. . Furthermore, polyester films with contact angles of 40° and 60° had a printing durability of 5,000 to 8,000 sheets. On the other hand, those with a contact angle of 42 to 55° have a printing durability of more than 10,000 sheets, especially those with a contact angle of 42 to 55°.
The number of items was 20,000 to 50,000 or more.

【表】【table】

【表】 実施例 7 厚さ150μのポリエステルフイルムの一方の面
に軽度にコロナ放電処理を施しつつ(接触角で
50°)カルボキシ変性ポリエチレン(MI4、密度
0.91g/cm3)を樹脂温度325℃で押出塗工機より
押出しながら粗面加工冷却ロールを用いて15μの
厚さになる様に溶融押出塗工した。続いて他方の
面には一定強度でコロナ放電処理を施しながら鏡
面加工冷却ロールを用いて実施例1における試料
No.2と同じ樹脂を使用して15μの厚さになる様に
樹脂温度325℃で溶融押出塗工した。更に粗面及
び鏡面樹脂層に夫々一定強度でコロナ放電処理を
施しつつ実施例5と同様に粗面樹脂層には平版印
刷用乳剤層を、鏡面樹脂層にはバツクコート層を
夫々設けた後、反転ミラー等を内蔵する製版カメ
ラを用い、平版印刷版の表側(支持体に対して乳
剤層側)から像様露光し、焼付後、一連の写真処
理工程を経て平版印刷版を得た。この平版印刷版
をルーペで観察するとボケがなく良好であつた。
更に、この平版印刷版をオフセツト印刷機に装着
し、印刷を行つた結果、刷上り印刷紙はボケのな
い良好な仕上りであり、50000枚以上の耐刷枚数
が得られた。
[Table] Example 7 One side of a 150μ thick polyester film was lightly corona discharge treated (contact angle
50°) carboxy-modified polyethylene (MI4, density
0.91 g/cm 3 ) was extruded from an extrusion coating machine at a resin temperature of 325°C and melt-extrusion coated using a roughened cooling roll to a thickness of 15 μm. Next, the other surface was subjected to corona discharge treatment with a constant intensity, and the sample in Example 1 was prepared using a mirror-finished cooling roll.
Using the same resin as No. 2, melt extrusion coating was performed at a resin temperature of 325°C to a thickness of 15μ. Further, the rough surface resin layer and the mirror surface resin layer were respectively subjected to corona discharge treatment at a constant intensity, and the rough surface resin layer was provided with a lithographic printing emulsion layer, and the mirror surface resin layer was provided with a back coat layer, respectively, in the same manner as in Example 5. Using a plate-making camera with a built-in reversing mirror, the lithographic printing plate was imagewise exposed from the front side (emulsion layer side with respect to the support), and after baking, a lithographic printing plate was obtained through a series of photographic processing steps. When this lithographic printing plate was observed with a magnifying glass, it was in good condition with no blur.
Furthermore, when this lithographic printing plate was installed in an offset printing machine and printing was performed, the finished printed paper had a good finish without blurring, and a printing life of more than 50,000 sheets was obtained.

Claims (1)

【特許請求の範囲】 1 プラスチツクフイルムの両面を樹脂被覆した
写真材料において、少なくとも混練回数1回以上
のポリオレフイン50重量部以上を含む樹脂組成物
を、少なくとも画像形成層を設ける側とは反対側
の面に押出塗工して透明な樹脂層を設けてなる写
真材料。 2 該ポリオレフイン50〜95重量部と高密度ポリ
エチレン5〜50重量部とを含む特許請求の範囲第
1項記載の写真材料。 3 プラスチツクフイルムがポリエステルフイル
ムである特許請求の範囲第1項記載の写真材料。 4 片面に該ポリオレフイン層を設けたプラスチ
ツクフイルムの他面に熱可塑性樹脂層を設けた特
許請求の範囲第1項記載の写真材料。 5 該熱可塑性樹脂層がカルボキシ変性ポリエチ
レン、エチレン−エチルアクリレート共重合物、
エチレン−ビニルアセテート共重合物、及びポリ
オレフインの少なくとも一種よりなる特許請求の
範囲4記載の写真材料。
[Scope of Claims] 1. In a photographic material in which both sides of a plastic film are coated with resin, a resin composition containing 50 parts by weight or more of a polyolefin that has been kneaded at least once is applied to at least the side opposite to the side on which the image forming layer is provided. A photographic material with a transparent resin layer coated on the surface by extrusion. 2. The photographic material according to claim 1, comprising 50 to 95 parts by weight of the polyolefin and 5 to 50 parts by weight of high density polyethylene. 3. The photographic material according to claim 1, wherein the plastic film is a polyester film. 4. The photographic material according to claim 1, comprising a plastic film having the polyolefin layer on one side and a thermoplastic resin layer on the other side. 5 The thermoplastic resin layer is made of carboxy-modified polyethylene, ethylene-ethyl acrylate copolymer,
The photographic material according to claim 4, comprising at least one of an ethylene-vinyl acetate copolymer and a polyolefin.
JP61145684A 1985-09-02 1986-06-20 Photographic material Granted JPS62148945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61145684A JPS62148945A (en) 1985-09-02 1986-06-20 Photographic material

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP60-194566 1985-09-02
JP19456685 1985-09-02
JP20262585 1985-09-12
JP60-202625 1985-09-12
JP61145684A JPS62148945A (en) 1985-09-02 1986-06-20 Photographic material

Publications (2)

Publication Number Publication Date
JPS62148945A JPS62148945A (en) 1987-07-02
JPH0569415B2 true JPH0569415B2 (en) 1993-10-01

Family

ID=27319038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61145684A Granted JPS62148945A (en) 1985-09-02 1986-06-20 Photographic material

Country Status (1)

Country Link
JP (1) JPS62148945A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636092B2 (en) * 1987-08-18 1994-05-11 新王子製紙株式会社 Method for producing support for photographic paper

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913327A (en) * 1972-05-22 1974-02-05
JPS59164550A (en) * 1983-03-09 1984-09-17 Mitsubishi Paper Mills Ltd Manufacture of thermoplastic resin composition for photography

Also Published As

Publication number Publication date
JPS62148945A (en) 1987-07-02

Similar Documents

Publication Publication Date Title
EP0688266B1 (en) Improved ink-receptive sheet
JPH0411852B2 (en)
JP2001188318A (en) Reflective printing material with extruded antistatic layer
US4255516A (en) Photographic support containing different polyester layers
JPS6139658B2 (en)
US4614681A (en) Photographic support
JPS5933894B2 (en) photo film
US4737440A (en) Photographic materials
JPH0569415B2 (en)
JPH0554926B2 (en)
JPH10329413A (en) Recording sheet
US5236886A (en) Thermal transfer image-receiving element
JPS62288831A (en) Photographic material
US4770986A (en) Photographic silver halide element containing a carboxylated polyethylene layer
JPH0629948B2 (en) Manufacturing method of photographic material
JPH11138979A (en) Recording sheet
JPH11202107A (en) Light diffusion plate
JPH0336675B2 (en)
JPS61193891A (en) Planographic plate
WO2006088151A1 (en) Light-diffusing optical member
JP3837922B2 (en) Recording sheet
JPH06313945A (en) Supporting body for photographic printing paper
US3873321A (en) Process for producing support for use in photographic material
JPS59166949A (en) Photographic support
JP2000105555A (en) Transmission type image formation element with biaxial oriented polyolefin sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees