JPH0569353A - Robot for use in space - Google Patents

Robot for use in space

Info

Publication number
JPH0569353A
JPH0569353A JP3226871A JP22687191A JPH0569353A JP H0569353 A JPH0569353 A JP H0569353A JP 3226871 A JP3226871 A JP 3226871A JP 22687191 A JP22687191 A JP 22687191A JP H0569353 A JPH0569353 A JP H0569353A
Authority
JP
Japan
Prior art keywords
robot arm
satellite
base
robot
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3226871A
Other languages
Japanese (ja)
Inventor
Hiroshi Endo
遠藤  洋
Kenjiro Kumamoto
健二郎 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3226871A priority Critical patent/JPH0569353A/en
Publication of JPH0569353A publication Critical patent/JPH0569353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PURPOSE:To provide an effective envelope to suit the object of works by forming the base of a robot arm rotatable, installing it around the corner of a satellite, and selecting its direction either perpendicular to the mounting surface or horizontal to the left and right. CONSTITUTION:A robot arm 1 is installed in the neighborhood of one corner of the side face of a satellite body 4 in the form of a rectangular parallelopiped, and a rotating mechanism 2 is furnished on the base of robot arm. When an ORU 5 is to be replaced, a robot arm 1a holds the robot arm base perpendicular to the satellite mounting surface 6, and operations are conducted for replacing 0RU 5 installed on the side faced. At the time of berthing another satellite, a robot arm 1b makes berthing while holding the robot arm base in the attitude perpendicular to the front face having a docking mechanism 3. At the time of accommodation, a robot arm 1c is kept in an attitude alongside the side face and retreats to the satellite side face in order to avoid interference with another apparatus or satellite.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、宇宙ステーションやプ
ラットフォームを利用する宇宙での生産活動や宇宙実
験、運用維持、メインテナンス、修理、物資補給、等の
各種のサービスを行う宇宙用ロボットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a space robot that performs various services such as production activities in space using space stations and platforms, space experiments, operation and maintenance, maintenance, repairs, and supply of materials.

【0002】[0002]

【従来の技術】現在、宇宙機に装着されて活動する宇宙
用ロボットは実用化されていないが、NASAではスペ
ースシャトルに装着したロボットアームをその近傍から
人間が目視で確認しながら操作し、物資の積降し等の作
業を行っているが、その機部はスペースシャトル本体に
リジッドに固定されている。また国内では、宇宙開発事
業団を中心に宇宙用ロボットの研究、開発が進められて
いるが、現在検討されているのは、宇宙ステーションJ
EMRMS用に開発中の子アーム系腕部の構成を基本と
した六自由度のロボットアームを衛星本体にリジッドに
固定したものである。
2. Description of the Related Art At present, a space robot mounted on a spacecraft and operating is not put into practical use. However, in NASA, a human being visually confirms the robot arm mounted on the space shuttle from its vicinity and operates it. The loading and unloading work is done, but the machine part is rigidly fixed to the space shuttle body. In Japan, research and development of space robots are being carried out mainly by the Space Development Agency, but currently, Space Station J is under consideration.
A robot arm with six degrees of freedom based on the structure of a child arm system arm part currently under development for EMRMS is rigidly fixed to the satellite body.

【0003】[0003]

【発明が解決しようとする課題】宇宙用ロボットは宇宙
機の本体に装着され、各種のサービス作業を行うが、サ
ービスの内容は、バッテリ、推薬等の消耗品を軌道上で
交換するためにユニット化した軌道上交換ユニット(以
下ORU)の交換、あるいは他の衛星、宇宙機をロボッ
トアームで把持しドッキング機構に誘導する衛星のバー
シング等に代表される。これらの作業をロボットアーム
が行うためにはロボットアームの先端は空間内で任意の
位置、姿勢をとる必要があり、一般には六自由度のロボ
ットアームが必要である。さらにロボットアームは宇宙
機本体上に固定され、かつその有効エンベロープ中に上
記のORU、ドッキング機構等の作業対象が設置されて
いる必要がある。また、ロボットアーム先端に装着され
たビデオカメラ等の視覚センサによる視覚情報も衛星の
外観検査を含め有効に得る必要がある。しかし一般に上
記の条件を満足させるにはロボットアームの長さを長く
しエンベロープをひろくするか、衛星の一面にロボット
アームの作業対象となる各種機器を設置するなどする必
要があり、機器配置上の問題や衛星の質量や最大外径が
増大したり、バーシングした衛星により、ORU交換な
どの他の作業が制約を受けるという問題があった。ま
た、ロボットアームを使用しないドッキング時などはか
えってロボットアームが他の衛星の障害になるという問
題もあった。
The space robot is mounted on the main body of the spacecraft and performs various service work. The service content is to replace consumables such as batteries and propellants in orbit. It is represented by the replacement of a unitized on-orbit exchange unit (hereinafter referred to as ORU), or the satellite versing in which another satellite or spacecraft is held by a robot arm and guided to a docking mechanism. In order for the robot arm to perform these operations, the tip of the robot arm needs to take an arbitrary position and posture in the space, and generally, a robot arm having six degrees of freedom is required. Further, the robot arm needs to be fixed on the body of the spacecraft, and the work target such as the above-mentioned ORU and docking mechanism must be installed in its effective envelope. It is also necessary to effectively obtain visual information from a visual sensor such as a video camera attached to the tip of the robot arm, including visual inspection of the satellite. However, in general, in order to satisfy the above conditions, it is necessary to lengthen the robot arm and expand the envelope, or to install various equipment to be worked by the robot arm on one side of the satellite. There was a problem, that the mass and maximum outer diameter of the satellite was increased, and the other satellites such as the ORU exchange were restricted by the satellite that was bursted. In addition, there is a problem that the robot arm may interfere with other satellites when docking without using the robot arm.

【0004】[0004]

【課題を解決するための手段】ロボットアーム基部の衛
星本体との接続部分を回転機構とし、ロボットアーム基
部の方向が取付け面に対して垂直、並行かをのみを選択
可能とし、簡単なラッチ機構とラッチアップ確認のため
のリミットスイッチ程度の機能をもつ。従ってこの回転
機構は一般のロボットアームの関節のような任意の角度
を先端座標の逆変換からの指令によってとるような制御
は行わない簡単なものである。
[Means for Solving the Problems] A simple latch mechanism is provided in which a connecting portion of a robot arm base to a satellite body is a rotation mechanism, and it is possible to select only whether the direction of the robot arm base is vertical or parallel to a mounting surface. And it has the function of a limit switch for confirming latch-up. Therefore, this rotating mechanism is a simple one that does not perform control such as taking an arbitrary angle like a joint of a general robot arm by a command from the inverse transformation of the tip coordinates.

【0005】[0005]

【作用】一般の衛星は推進系、通信系、電源系、実験系
等の各必要機能をモジュール化し衛星の各面に効率よく
搭載する構造がとられている。従って、一面だけでな
く、比較的アーム長の短い小型軽量のロボットアームで
二、三面に対して作業可能とすれば、ロボットアームの
機能を有効に活用することができる。この手段によれ
ば、ロボットアームの基部を回転可能とし、衛星のコー
ナ近傍に設置することで、その方向を取付け面に対して
垂直、あるいは左右の水平のいづれかに選択することに
より、作業目的に応じた有効エンベロープが得られる。
即ち、必要作業に応じて、まず、ロボットアーム基部の
方向を回転機構を動作させることにより選択する。その
後はこの回転機構を選択した一方向に固定したまま、ロ
ボットアームによる作業を行う。別の面の作業が必要な
場合は、同様に再度回転機構を動作させロボットアーム
による作業をすれば良い。また、この回転機構を利用す
ることにより、ロボットアーム基部を衛星本体面に並行
とし、ロボットアームをほぼ衛星本体面に沿わせた姿勢
で収納することが可能となる。この収納姿勢は打上げ環
境からロボットアームを保護する際にも、支持機構が簡
単、確実になる効果があり、軌道上でも、ロボットアー
ムを使用しない他のミッション実行時の干渉防止に有効
である。
The general satellite has a structure in which each required function such as a propulsion system, a communication system, a power supply system, and an experiment system is modularized and efficiently mounted on each surface of the satellite. Therefore, if not only one surface but also a small and lightweight robot arm having a relatively short arm length can work on two or three surfaces, the function of the robot arm can be effectively utilized. According to this means, the base of the robot arm can be rotated, and by installing it near the corner of the satellite, the direction can be selected to be either vertical to the mounting surface or horizontal to the left and right for the purpose of work. A corresponding effective envelope is obtained.
That is, depending on the required work, first, the direction of the robot arm base is selected by operating the rotating mechanism. After that, the work is performed by the robot arm while the rotating mechanism is fixed in the selected one direction. When the work on another surface is required, the rotation mechanism may be operated again to perform the work by the robot arm. Further, by utilizing this rotation mechanism, the robot arm base can be parallel to the satellite body surface, and the robot arm can be housed in a posture substantially along the satellite body surface. This storage posture has the effect of simplifying and ensuring the support mechanism even when protecting the robot arm from the launch environment, and is also effective in preventing interference when executing other missions that do not use the robot arm, even on orbit.

【0006】[0006]

【実施例】以下、本発明の実施例を図1、2により説明
する。図1は直方体の衛星本体4の側面の一つのコーナ
近傍にロボットアーム1を設置した場合の機能説明用の
概念図である。回転機構2を持つロボットアーム基部に
より、ORU交換時1aはロボットアーム基部を衛星取
付け面6(側面)に垂直に保ち側面上に設置されたOR
U交換作業を行う、また他の衛星のバーシング時1bは
ロボットアーム基部をドッキング機構3をもつ前面に垂
直にしバーシングを行う、また、収納時1cは側面に沿
った姿勢を保ち、衛星側面に他の機器、衛星との干渉を
防止するため退避する。図2は衛星本体の側面の装着す
るロボットモジュールの平面図で、ロボットモジュール
上の機器配置の一例を示す。本図はロボットアーム収納
時1cをしめしており、ロボットアームは回転機構2を
介して衛星本体に装着され、またORU5やロボットの
制御に必要なエレクトロニクス機器7もこの平面内に設
置される。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a conceptual diagram for explaining the function when the robot arm 1 is installed in the vicinity of one corner on the side surface of the rectangular parallelepiped satellite body 4. With the robot arm base having the rotation mechanism 2, when the ORU is exchanged 1a, the robot arm base is kept perpendicular to the satellite mounting surface 6 (side surface) and the OR is installed on the side surface.
U exchange work is performed, and at the time of verse of another satellite 1b, the robot arm base is made vertical to the front surface having the docking mechanism 3 to perform verse, and at the time of storage 1c keeps the posture along the side surface and the other side of the satellite. Evacuate to prevent interference with other equipment and satellites. FIG. 2 is a plan view of the robot module mounted on the side surface of the satellite body, and shows an example of equipment arrangement on the robot module. This figure shows 1c when the robot arm is stored, the robot arm is mounted on the satellite body via the rotation mechanism 2, and the ORU 5 and the electronic equipment 7 necessary for controlling the robot are also installed in this plane.

【0007】[0007]

【発明の効果】本発明によれば、ロボットアームの基部
を回転可能とし、各作業に対応して予めその方向を選択
して保持するという比較的簡単な方法により、比較的小
型軽量ででアーム長の短いロボットアームでも、各種作
業に対して有効な作業エンベロープを確保することがで
きる。また、収納姿勢も衛星本体に沿ったものとできる
ため、打上げ時の支持機構も簡単、信頼性の高いものと
でき、さらに衛星全体のエンベロープを小さく抑えるこ
とができる。要約すれば、回転可能なロボットアーム基
部の導入により、ロボットアーム自体の自由度、アーム
長さ、制御方法等に影響を与えずに、ロボットアームの
有効作業範囲を格段に増大することができ、また収納姿
勢もより合理的なものにすることができる。
According to the present invention, the base portion of the robot arm can be rotated, and a relatively simple method of preliminarily selecting and holding the direction corresponding to each work makes it possible to make the arm relatively small and lightweight. Even with a short robot arm, a work envelope effective for various works can be secured. Further, since the storage attitude can be set along the satellite body, the support mechanism at the time of launch can be simple and highly reliable, and the envelope of the entire satellite can be suppressed small. In summary, by introducing a rotatable robot arm base, the effective working range of the robot arm can be significantly increased without affecting the degree of freedom of the robot arm, arm length, control method, etc. Also, the storage posture can be made more rational.

【図面の簡単な説明】[Brief description of drawings]

【図1】ロボットアームを有する衛星において、ロボッ
トアーム基部の回転機構の説明図、
FIG. 1 is an explanatory view of a rotating mechanism of a robot arm base in a satellite having a robot arm,

【図2】ロボットモジュール上の機器配置の一例を示す
説明図。
FIG. 2 is an explanatory diagram showing an example of equipment arrangement on a robot module.

【符号の説明】[Explanation of symbols]

1a…ロボットアーム、 1b…ロボットアーム、 1c…ロボットアーム、 2…回転機構、 3…ドッキング機構、 4…衛星本体、 5…ORU、 6…衛星側面、 7…エレクトロニクス機器。 1a ... robot arm, 1b ... robot arm, 1c ... robot arm, 2 ... rotation mechanism, 3 ... docking mechanism, 4 ... satellite body, 5 ... ORU, 6 ... satellite side, 7 ... electronics equipment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の関節とブームからなり、その基部を
宇宙機の本体に装着して使用するアーム型の宇宙用ロボ
ットにおいて、前記基部を回転可能としたことを特徴と
する宇宙用ロボット。
1. An arm type space robot comprising a plurality of joints and a boom, the base of which is mounted on a main body of a spacecraft for use, wherein the base is rotatable.
JP3226871A 1991-09-06 1991-09-06 Robot for use in space Pending JPH0569353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3226871A JPH0569353A (en) 1991-09-06 1991-09-06 Robot for use in space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3226871A JPH0569353A (en) 1991-09-06 1991-09-06 Robot for use in space

Publications (1)

Publication Number Publication Date
JPH0569353A true JPH0569353A (en) 1993-03-23

Family

ID=16851883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3226871A Pending JPH0569353A (en) 1991-09-06 1991-09-06 Robot for use in space

Country Status (1)

Country Link
JP (1) JPH0569353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016520479A (en) * 2013-06-07 2016-07-14 エアバス ディフェンス アンド スペース エスエーエス Apparatus for detecting a space object comprising a pressure element on the space object and at least two reclosable elements
CN106891335A (en) * 2017-03-23 2017-06-27 北京空间飞行器总体设计部 A kind of submissive and control method for coordinating of the in-orbit capture process of robot for space

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016520479A (en) * 2013-06-07 2016-07-14 エアバス ディフェンス アンド スペース エスエーエス Apparatus for detecting a space object comprising a pressure element on the space object and at least two reclosable elements
CN106891335A (en) * 2017-03-23 2017-06-27 北京空间飞行器总体设计部 A kind of submissive and control method for coordinating of the in-orbit capture process of robot for space
CN106891335B (en) * 2017-03-23 2019-08-09 北京空间飞行器总体设计部 A kind of submissive and control method for coordinating of the in-orbit capture process of robot for space

Similar Documents

Publication Publication Date Title
Oda et al. ETS-VII, space robot in-orbit experiment satellite
EP0541052B1 (en) Spacecraft system
Inaba et al. Autonomous satellite capture by a space robot: world first on-orbit experiment on a Japanese robot satellite ETS-VII
US6330987B1 (en) Apparatus and methods for in-space satellite operations
Kasai et al. Results of the ETS-7 Mission-Rendezvous docking and space robotics experiments
US5806802A (en) Apparatus and methods for in-space satellite operations
US20060145024A1 (en) Service vehicle for performing in-space operations on a target spacecraft, servicing system and method for using a service vehicle
Carignan et al. The reaction stabilization of on-orbit robots
US20040026571A1 (en) Apparatus and methods for in-space satellite operations
US20050258311A1 (en) Apparatus and methods for in-space satellite operations
JPH11157497A (en) Spacecraft and orbital service system therewith
Xu et al. A space robotic system used for on-orbit servicing in the geostationary orbit
JPH0569353A (en) Robot for use in space
Ohkami et al. NASDA's activities in space robotics
Oda et al. Space robot technology experiments on NASDA's ETS-VII satellite
JP2001253400A (en) Method of providing operation to space equipment
Whittaker et al. Space robotics in Japan
Deremetz et al. Demonstrator design of a modular multi-arm robot for on-orbit large telescope assembly
JP3355669B2 (en) Spacecraft system
Nishida et al. Space telerobot experiment system based on NASDA ETS-VII satellite
Matsumoto et al. Truss structure tele-manipulation experiment using ETS-7
Oda Space Robot Experiments on NASDA’s ETS-VII Satellite-An Overview of the Project and Experiment Results
Malone et al. Human factors issues in telerobotic systems for Space Station Freedom servicing
HUGHES et al. The Special Purpose Dexterous Manipulator (SPDM)-A Canadian focus for automation and robotics on the Space Station
Parrish Ground controlled robotic assembly operations for Space Station Freedom