JPH0569141A - Gas shielded arc welding method for pipes - Google Patents

Gas shielded arc welding method for pipes

Info

Publication number
JPH0569141A
JPH0569141A JP21995591A JP21995591A JPH0569141A JP H0569141 A JPH0569141 A JP H0569141A JP 21995591 A JP21995591 A JP 21995591A JP 21995591 A JP21995591 A JP 21995591A JP H0569141 A JPH0569141 A JP H0569141A
Authority
JP
Japan
Prior art keywords
welding
weld metal
toughness
chemical composition
selective corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21995591A
Other languages
Japanese (ja)
Other versions
JP2534942B2 (en
Inventor
Shigeru Endo
茂 遠藤
Moriyasu Nagae
守康 長江
Motokiyo Itou
元清 伊藤
Toshihiko Nakano
利彦 中野
Masato Konishi
正人 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
JFE Engineering Corp
Original Assignee
Kobe Steel Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Kobe Steel Ltd
Priority to JP21995591A priority Critical patent/JP2534942B2/en
Priority to GB9217614A priority patent/GB2259881B/en
Priority to CA002076435A priority patent/CA2076435A1/en
Priority to DE4228249A priority patent/DE4228249A1/en
Priority to US07/935,523 priority patent/US5300751A/en
Priority to NO923354A priority patent/NO305689B1/en
Publication of JPH0569141A publication Critical patent/JPH0569141A/en
Application granted granted Critical
Publication of JP2534942B2 publication Critical patent/JP2534942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To improve the selective corrosion resistance, toughness and cracking resistance of a welded metal in the circumferential welding of pipes exposed to a corrosive environment incorporating CO2. CONSTITUTION:This method is a gas shielded arc welding method where the chemical composition of a base metal and a welding material (a gas shielded arc welding wire) and the chemical composition range of the welded metal obtained thereby, the difference DELTA (Cu+Ni) and DELTAMo in Cu, Ni and Mo between the welded metal and the base metals, especially and welding conditions are regulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CO2 を含んだ石油及
び天然ガス、またはCO2 を輸送するラインパイプの円
周溶接方法、特に溶接金属の耐選択腐食性や低温靭性、
耐割れ性に優れた円周溶接方法に関するものである。
The present invention relates to oil and gas containing CO 2 or circumferential welding method for line pipe for transporting CO 2, especially resistance to preferential corrosion resistance and low-temperature toughness of the weld metal,
The present invention relates to a circumferential welding method having excellent crack resistance.

【0002】[0002]

【従来の技術】従来、低合金鋼の溶接部選択腐食に関す
る公表文献には次のようなものがある 。1)氷海での溶接継手部局部腐食に対して、母材と溶
接金属のNi添加量の差が 影響を及ぼすとするもの
(阿部隆ほか;鉄と鋼Vol.72,s1266,1988年)。 2)同じく氷海域鋼の溶接部局部腐食で、NiとCuが
影響を及ぼし、 3.8 ΔCu+1.1 ΔNi+0.3 が選択腐食性を左右するとするもの(伊藤亀太郎ほか;
鉄と鋼Vol.72,s1265,1989年)。 3)炭素鋼配管円周溶接部の選択腐食防止に、Cu及び
Niを含む低合金溶接棒の使用が有効であるとするもの
(幸英明;材料Vol.38,No.424,p62-p68,1989年)。 4)溶接鋼管縦シーム溶接部の選択腐食防止に、Ni及
びMoの添加が有効であるとするもの(須賀ほか;特願
平1-260271号)。
2. Description of the Related Art Conventionally, there are the following publications regarding selective corrosion of welded parts of low alloy steel. 1) It is said that the difference in the amount of Ni added between the base metal and the weld metal affects local corrosion of welded joints in the ice sea (Takashi Abe et al., Iron and Steel Vol.72, s1266, 1988). 2) Similarly, localized corrosion of welded steel in ice-sea steels, where Ni and Cu influence and 3.8 ΔCu + 1.1 ΔNi + 0.3 influences selective corrosion (Kametaro Ito et al .;
Iron and Steel Vol.72, s1265, 1989). 3) Use of low alloy welding rods containing Cu and Ni is effective for preventing selective corrosion of carbon steel pipe circumferential welds (Yuki Hideaki; Material Vol.38, No.424, p62-p68, 1989). 4) Addition of Ni and Mo is effective for preventing selective corrosion of welded steel pipe vertical seam welds (Suga et al .; Japanese Patent Application No. 1-260271).

【0003】以上のように氷海等の酸素を含む海水など
の腐食環境中で溶接金属の選択腐食を改善する方法とし
て、Ni及びCuを添加する方法や、溶接鋼管縦シーム
の選択腐食特性の改善にNi及びMoを添加する方法が
見いだされているが、CO2 を含む腐食環境で使用され
るラインパイプの円周溶接部の選択腐食抑制に、Ni及
びMo添加が有効であるとの知見や、溶接金属の硬さや
耐割れ性などの実用性を考慮したガスシールドアーク溶
接方法は得られていない。また、母材成分との関係にお
いて具体的にこの問題を解決する方法は見いだされてい
ない。
As described above, as a method for improving the selective corrosion of the weld metal in a corrosive environment such as seawater containing oxygen such as ice sea, a method of adding Ni and Cu and an improvement of the selective corrosion characteristic of the welded steel pipe vertical seam. A method of adding Ni and Mo has been found, but it has been found that addition of Ni and Mo is effective in suppressing selective corrosion of the circumferential welded portion of a line pipe used in a corrosive environment containing CO 2. , A gas shielded arc welding method considering practicality such as hardness and crack resistance of weld metal has not been obtained. Further, no specific method for solving this problem has been found in relation to the base material component.

【0004】[0004]

【発明が解決しようとする課題】溶接鋼管あるいはシー
ムレス鋼管を、CO2 を含んだ石油及び天然ガスまたは
CO2 の輸送に使用すると、円周溶接金属が選択的に腐
食する、いわゆる溶接部選択腐食を起こす場合がある。
これは、溶接金属と母材との化学成分や組織が異なり溶
接金属部が電気化学的に卑になり、溶接金属部が選択的
に腐食するものである。前述のような環境で使用される
ラインパイプの場合、従来、この選択腐食を考慮した円
周溶接方法は検討されていなかった。しかしながら、実
環境では、この種の選択腐食が問題となることがしばし
ばあり、この検討が待たれている。
The welded steel pipe or seamless steel pipe INVENTION SUMMARY is], using the inclusive of oil and natural gas or CO 2 transport CO 2, circumferential weld metal is selectively corroded, so-called weld-alloying May occur.
This is because the chemical composition and structure of the weld metal and the base material are different and the weld metal part becomes electrochemically base, and the weld metal part is selectively corroded. In the case of the line pipe used in the environment as described above, the circumferential welding method considering the selective corrosion has not been studied so far. However, in a real environment, this type of selective corrosion often poses a problem, and this examination is awaited.

【0005】そこで、本発明者らは円周溶接金属の化学
成分及びその成分値を各種に変化させて、CO2 と海水
を含む腐食環境中で溶接部の選択腐食特性とその機械的
性質耐割れ性等について、綿密な調査を重ねた。本発明
は、この調査の結果得られた知見に基づくものであり、
溶接金属部の化学成分を調整するため、母材と溶接材料
及び溶接方法を調整することにより、円周溶接金属部の
選択腐食を防止するとともに、十分な強度と靭性及び耐
割れ性を備えた円周溶接金属を得るためのパイプのガス
シールドアーク溶接方法を提供することを目的とする。
Therefore, the inventors of the present invention have variously changed the chemical composition of the circumferential weld metal and the composition values thereof, so that the selective corrosion characteristic of the welded portion and its mechanical property resistance in a corrosive environment containing CO 2 and seawater. Thorough investigations were conducted on crackability. The present invention is based on the findings obtained as a result of this investigation,
By adjusting the base metal, welding material and welding method to adjust the chemical composition of the weld metal part, while preventing selective corrosion of the circumferential weld metal part, it has sufficient strength, toughness and crack resistance. An object of the present invention is to provide a gas shielded arc welding method for pipes to obtain a circumferential weld metal.

【0006】[0006]

【課題を解決するための手段】本発明の第1は、溶接金
属の化学成分組成(重量%)が、 C ;0.01〜0.15% Si;0.20〜1.00% Mn;0.40〜2.00% Cu;≦2.50% Ni;0.50〜2.50% ΔCu+ΔNi;≧0.50%(Δ:溶接金属含有量−
母材含有量) PCM;≦0.25%(PCM=C+Si/30+Mn/20+Cu/20+Ni/60+
Cr/20+Mo/15+V/10+5B (1)) 残部はFe及び不可避不純物からなり、不可避不純物は
下記の範囲を満足するパイプのガスシールドアーク溶接
方法である。 P ;≦0.030% S ;≦0.030% Al;
≦0.05% N ;≦0.050% Nb;≦0.10% V ;
≦0.10% Cr;≦1.00% Ca;≦0.0025% O;
≦0.10% Zr;≦0.05% B ;≦0.002%
The first aspect of the present invention is that the chemical composition of the weld metal (% by weight) is C: 0.01 to 0.15% Si; 0.20 to 1.00% Mn; 0.40 to 2.00% Cu; ≤ 2.50% Ni; 0.50 to 2.50% ΔCu + ΔNi; ≥ 0.50% (Δ: weld metal content-
Base material content) P CM ; ≤0.25% (P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 +
Cr / 20 + Mo / 15 + V / 10 + 5B (1)) The balance consists of Fe and unavoidable impurities, and the unavoidable impurities are the gas shield arc welding method for pipes satisfying the following range. P; ≤0.030% S; ≤0.030% Al;
≤0.05% N; ≤0.050% Nb; ≤0.10% V;
≤0.10% Cr; ≤1.00% Ca; ≤0.0025% O;
≤0.10% Zr; ≤0.05% B; ≤0.002%

【0007】本発明の第2は、溶接金属の化学成分組成
(重量%)が、上記化学成分に加えて、MoまたはTi
のいずれか一方あるいは両方を含有することをを特徴と
するパイプのガスシールドアーク溶接方法である。 Mo ;≦1.05% ΔMo;≧0.03% Ti ;≦0.25%
A second aspect of the present invention is that the chemical composition (% by weight) of the weld metal is in addition to the above chemical composition, Mo or Ti.
The gas shielded arc welding method for pipes is characterized by containing either one or both of the above. Mo; ≤1.05% ΔMo; ≥0.03% Ti; ≤0.25%

【0008】また、第1及び第2発明に適用されるパイ
プ母材及び溶接ワイヤの各化学成分と溶接条件を
下記のとおりとしたものである。 母材の化学成分(重量%) C ;0.03〜0.15% Si;0.05〜0.50% Mn;0.50〜2.00% Al;0.005〜0.10% を含有し、または上記化学成分に加え、さらに下記の成
分の中から1種または2種以上を含有し、 Cu;0.05〜2.0% Ni;0.05〜2.0% Cr;0.05〜2.0% Mo;0.05〜1.0% Nb;0.005〜0.20% V ;0.005〜0.20% Ti;0.005〜0.20% B ;0.0005〜0.0020% Ca;0.0005〜0.0050% 残部がFe及び不可避不純物を含むものとする。 溶接ワイヤの化学成分(重量%) C ;0.01〜0.15% Si;0.20〜1.20% Mn;0.60〜2.50% Cu;≦3.00% Ni;0.50〜3.00% を含有し、または上記化学成分に加えて、下記成分を1
種または2種以上含有し 、Mo;≦1.10% Ti;≦0.30% 残部がFe及び不可避不純物からなり、不可避不純物の
含有量としては下記範囲を満足するものとする。 P ;≦0.030% S ;≦0.030% Al;
≦0.05% N ;≦0.01% Nb;≦0.02% V ;
≦0.02% Cr;≦0.05% Zr;≦0.05% O ;
≦0.02% B ;≦0.002% 溶接条件 シールドガス:100%CO2 あるいはAr+(5〜4
0%)CO2 ワイヤ径 :0.8〜1.6mm 溶接電流 :100〜500A アーク電圧 :15〜45V 溶接速度 :5〜150cm/min. 溶接姿勢 :全姿勢
The chemical components and welding conditions of the pipe base material and the welding wire applied to the first and second inventions are as follows. Chemical composition (% by weight) of base material C; 0.03 to 0.15% Si; 0.05 to 0.50% Mn; 0.50 to 2.00% Al; 0.005 to 0.10% Contained, or in addition to the above chemical components, further contains one or more of the following components: Cu; 0.05 to 2.0% Ni; 0.05 to 2.0% Cr; 0 .05 to 2.0% Mo; 0.05 to 1.0% Nb; 0.005 to 0.20% V; 0.005 to 0.20% Ti; 0.005 to 0.20% B; 0.0005 to 0.0020% Ca; 0.0005 to 0.0050% The balance contains Fe and unavoidable impurities. Chemical composition of welding wire (% by weight) C; 0.01 to 0.15% Si; 0.20 to 1.20% Mn; 0.60 to 2.50% Cu; ≤ 3.00% Ni; 50 to 3.00%, or in addition to the above chemical components, 1
One or two or more kinds are contained, Mo; ≤ 1.10% Ti; ≤ 0.30% The balance consists of Fe and unavoidable impurities, and the content of the unavoidable impurities should satisfy the following range. P; ≤0.030% S; ≤0.030% Al;
≤0.05% N; ≤0.01% Nb; ≤0.02% V;
≤0.02% Cr; ≤0.05% Zr; ≤0.05% O 2;
≤0.02% B; ≤0.002% Welding conditions Shield gas: 100% CO 2 or Ar + (5-4
0%) CO 2 wire diameter: 0.8 to 1.6 mm Welding current: 100 to 500 A Arc voltage: 15 to 45 V Welding speed: 5 to 150 cm / min. Welding posture: All postures

【0009】[0009]

【作用】本発明は、以上のごとく、溶接金属の化学成分
を母材と溶接ワイヤの化学成分及び溶接条件の範囲を限
定することにより限定し、耐選択腐食性に富む十分な強
度と高靭性を備え、耐割れ性に優れた円周溶接方法であ
る。
As described above, the present invention limits the chemical composition of the weld metal by limiting the chemical composition of the base metal and the welding wire and the range of welding conditions, and provides sufficient strength and high toughness with rich selective corrosion resistance. It is a circumferential welding method that has excellent crack resistance.

【0010】次に、溶接金属中の各々の化学成分を限定
した理由について述べる。 C;0.01〜0.15% Cは良好な作業性及び溶接金属の機械的性質を得るため
に溶接金属中で0.01〜0.15%とする。0.01
%未満では、溶接金属中のフェライト粒が粗大化するた
め強度及び靭性が低下し、機械的性能が母材に対して不
十分となる。0.15%を超えると、溶接金属の強度が
母材に対して過大となり、それによる靭性不足が生じ
る。さらに硬さが上昇するため溶接割れや応力腐食割れ
感受性が増大する。 Si;0.20〜1.00% Siは良好な作業性及び溶接金属の機械的性質を得るた
めに溶接金属中で0.20〜1.00%とする。0.2
0%未満では、母材に対する溶融金属のなじみが低下す
るためにビード形状が不良となり、融合不良等の欠陥の
原因となる。特に含有量が極端に少ない場合には、脱酸
不足となりブローホールが発生する。また、機械的性能
では、溶接金属の強度が母材に対して不足する。1.0
0%を超えて溶接金属に添加すると溶接金属の強度が母
材に対して過大となり、それによる靭性不足が生じる。
また、硬さが上昇するため溶接割れや応力腐食割れ感受
性が増大する。 Mn;0.40〜2.00% Mnも良好な溶接作業性と機械的性質を得るために溶接
金属中で0.40〜2.00%とする。0.40%未満
では、Mn/Siの値が1に近づくほど、あるいは1を
下回るほどスラグ量が増加し、スラグ巻き込み等の原因
となる。特に含有量が極端に少ない場合には、脱酸不足
によるブローホールが発生する。また、機械的性能に関
しては、溶接金属の強度が母材に対して不足したり、焼
入れ性が低下するために靭性が劣化する。2.00%を
超えて溶接金属に添加すると、溶接金属の強度が母材に
対して過大となり、それによる靭性不足が生じる。ま
た、硬さが上昇するため溶接割れや応力腐食割れ感受性
が増大する。 Cu;≦2.50% Ni;0.50〜2.50% Cu及びNiは溶接金属の靭性改善と選択腐食特性を向
上させるため(図1参照)に、溶接金属中に2.50%
以下(Cu),0.50〜2.50%(Ni)添加す
る。Cuは溶接金属の選択腐食特性を向上させる効果を
有するが、2.50%を超えると高温割れに対する感受
性が増大する。Niも選択腐食特性向上に効果を有す
る。Cu無添加の場合、Ni添加で良好な選択腐食特性
を得るためには0.50%以上添加する必要がある。
2.50%を超えて添加すると溶接金属の強度が母材に
対して過大となり、それによる靭性不足が生じる。ま
た、硬さが上昇するため溶接割れや応力腐食割れ感受性
が増大する。また、特に応力腐食割れの発生を抑制する
場合には、Ni量を1.00%未満とする。なお、ワイ
ヤへのCu及びNiの添加方法としては、メッキ、溶融
のいずれでもよい。さらに、より良好な選択腐食特性を
得るためには、図1に示すようにCuとNiの溶接金属
と母材との含有量の差Δ(Cu+Ni)が0.5%以上
であることが望ましい。なお、図1は選択腐食特性に及
ぼすΔ(Cu+Ni)の影響をあらわしたグラフであ
り、縦軸に母材と溶接金属との間に流れた選択腐食電流
(μA)を、横軸にΔ(Cu+Ni)(%)をとって示
したものである。選択腐食電流がプラスのとき、溶接金
属の選択腐食は起こらない。Δ(Cu+Ni)が0.5
%以上になると選択腐食電流はプラスに転じている。 PCM;≦0.25% 式(1)で示されるPCM値が0.25%を超えると、溶
接金属の強度が母材に対して過大となり、それによる靭
性不足が生じる。また、硬さが上昇するため溶接割れや
応力腐食割れ感受性が増大する。
Next, the reason why each chemical component in the weld metal is limited will be described. C: 0.01 to 0.15% C is 0.01 to 0.15% in the weld metal in order to obtain good workability and mechanical properties of the weld metal. 0.01
If it is less than%, the ferrite grains in the weld metal become coarse, so that the strength and toughness decrease, and the mechanical performance becomes insufficient with respect to the base metal. If it exceeds 0.15%, the strength of the weld metal becomes excessive with respect to the base metal, resulting in insufficient toughness. Furthermore, since the hardness increases, the susceptibility to welding cracks and stress corrosion cracking increases. Si; 0.20 to 1.00% Si is 0.20 to 1.00% in the weld metal in order to obtain good workability and mechanical properties of the weld metal. 0.2
If it is less than 0%, the familiarity of the molten metal with respect to the base material is lowered, so that the bead shape becomes defective, causing defects such as fusion failure. Especially when the content is extremely low, deoxidation becomes insufficient and blowholes occur. Further, in terms of mechanical performance, the strength of the weld metal is insufficient with respect to the base metal. 1.0
If it is added to the weld metal in an amount of more than 0%, the strength of the weld metal becomes excessive with respect to the base metal, resulting in insufficient toughness.
Further, since hardness increases, susceptibility to welding cracks and stress corrosion cracking increases. Mn: 0.40 to 2.00% Mn is also set to 0.40 to 2.00% in the weld metal in order to obtain good welding workability and mechanical properties. If it is less than 0.40%, the amount of slag increases as the value of Mn / Si approaches 1 or falls below 1, causing slag entrainment and the like. Particularly when the content is extremely low, blowholes are generated due to insufficient deoxidation. Regarding the mechanical performance, the strength of the weld metal is insufficient with respect to the base metal, and the hardenability deteriorates, so that the toughness deteriorates. If it exceeds 2.00% and is added to the weld metal, the strength of the weld metal becomes excessive with respect to the base metal, resulting in insufficient toughness. Further, since hardness increases, susceptibility to welding cracks and stress corrosion cracking increases. Cu; ≤ 2.50% Ni; 0.50 to 2.50% Cu and Ni are 2.50% in the weld metal in order to improve the toughness and selective corrosion characteristics of the weld metal (see Fig. 1).
Hereinafter, (Cu) and 0.50 to 2.50% (Ni) are added. Cu has the effect of improving the selective corrosion characteristics of the weld metal, but if it exceeds 2.50%, the susceptibility to hot cracking increases. Ni is also effective in improving the selective corrosion property. When Cu is not added, it is necessary to add 0.50% or more in order to obtain good selective corrosion characteristics by adding Ni.
If it is added in excess of 2.50%, the strength of the weld metal becomes excessive with respect to the base metal, resulting in insufficient toughness. Further, since hardness increases, susceptibility to welding cracks and stress corrosion cracking increases. Moreover, especially in order to suppress the occurrence of stress corrosion cracking, the Ni content is set to less than 1.00%. The method of adding Cu and Ni to the wire may be either plating or melting. Further, in order to obtain better selective corrosion characteristics, it is desirable that the difference Δ (Cu + Ni) in the content between the weld metal of Cu and Ni and the base metal is 0.5% or more as shown in FIG. .. FIG. 1 is a graph showing the effect of Δ (Cu + Ni) on the selective corrosion characteristics, where the vertical axis represents the selective corrosion current (μA) flowing between the base metal and the weld metal, and the horizontal axis represents Δ ( It is shown by taking Cu + Ni) (%). When the selective corrosion current is positive, the selective corrosion of the weld metal does not occur. Δ (Cu + Ni) is 0.5
%, The selective corrosion current turned positive. P CM ; ≦ 0.25% When the P CM value represented by the formula (1) exceeds 0.25%, the strength of the weld metal becomes excessive with respect to the base metal, resulting in insufficient toughness. Further, since hardness increases, susceptibility to welding cracks and stress corrosion cracking increases.

【0011】次に、本発明の第2発明においては、上記
成分のほか、さらに前述のような選択成分及びその組成
を限定する。 Mo;0.03〜1.05% Moは溶接金属の選択腐食を防止するためにΔMoが
0.03%以上となるように溶接金属中に0.03〜
1.05%添加する。図2に示すように溶接金属と母材
とのMo含有量の差ΔMoを0.03%以上とすれば、
CO2 を含む腐食環境中において溶接金属の選択腐食は
防止できる。しかし、1.05%を超えて添加すると溶
接金属の硬さが増加し溶接低温割れや応力腐食割れ感受
性を増大させる。なお、図2は選択腐食特性に及ぼすΔ
Moの影響をあらわしたグラフであり、縦軸に母材と溶
接金属との間に流れた選択腐食電流(μA)を、横軸に
ΔMo(%)をとって示したものである。選択腐食電流
がプラスのとき、溶接金属の選択腐食は起こらない。Δ
Moが0.03%以上になると選択腐食電流はプラスに
転じている。 Ti;≦0.25% Tiは初析フェライトの微細化による溶接金属の靭性を
目的として必要に応じて0.25%以下の範囲で溶接金
属に添加してもよい。0.25%を超えるとスラグ量が
増加するため、スラグ巻込み等の欠陥の原因となる。ま
た、溶接金属の強度が母材に対して過大となり、それに
よる靭性不足が生じる。また、硬さが上昇するため溶接
割れや応力腐食割れ感受性が増大する。不可避不純物;
不可避不純物の含有量が前記範囲内であれば、溶接金属
の耐選択腐食特性及び機械的性能を阻害しない。各成分
の含有量が前記範囲を超える場合には、溶接作業性の低
下(Al),溶接欠陥の発生(P,S,B,N),機械
的性能の劣化(Al,Cr,Nb,V,O,N)等の不
具合が生じる。
Next, in the second aspect of the present invention, in addition to the above-mentioned components, the above-mentioned optional components and their compositions are limited. Mo: 0.03 to 1.05% Mo is 0.03 to 1.03% in the weld metal so that ΔMo is 0.03% or more in order to prevent selective corrosion of the weld metal.
Add 1.05%. As shown in FIG. 2, if the difference ΔMo in Mo content between the weld metal and the base metal is 0.03% or more,
Selective corrosion of the weld metal can be prevented in a corrosive environment containing CO 2 . However, if added in excess of 1.05%, the hardness of the weld metal increases and the susceptibility to cold cracking and stress corrosion cracking increases. Note that FIG. 2 shows Δ that affects the selective corrosion characteristics.
6 is a graph showing the effect of Mo, in which the vertical axis represents the selective corrosion current (μA) flowing between the base metal and the weld metal, and the horizontal axis represents ΔMo (%). When the selective corrosion current is positive, the selective corrosion of the weld metal does not occur. Δ
When Mo becomes 0.03% or more, the selective corrosion current turns to a plus. Ti; ≤0.25% Ti may be added to the weld metal in a range of 0.25% or less as needed for the purpose of toughness of the weld metal due to the refinement of proeutectoid ferrite. If it exceeds 0.25%, the amount of slag increases, which causes defects such as slag inclusion. In addition, the strength of the weld metal becomes excessive with respect to the base metal, resulting in insufficient toughness. Further, since hardness increases, susceptibility to welding cracks and stress corrosion cracking increases. Inevitable impurities;
When the content of unavoidable impurities is within the above range, the selective corrosion resistance and mechanical performance of the weld metal are not impaired. When the content of each component exceeds the above range, welding workability is deteriorated (Al), welding defects are generated (P, S, B, N), mechanical performance is deteriorated (Al, Cr, Nb, V). , O, N) and the like occur.

【0012】次に、鋼管母材の化学成分を限定した理由
について述べる。 C;0.03〜0.15% 鋼中の炭素は、鋼の強度を上昇させる上で有効な元素で
あるが、過度の添加は靭性の劣化を招く。したがって、
強度並びに靭性とも良好な鋼管を製造するために炭素量
の上限は0.15%とする。炭素量の低減は靭性を向上
させるが、0.03%以下になると靭性は劣化する。ま
た、安定したNb,V,Tiなどの析出硬化を有効に利
用するためにも0.03%の炭素は必要となるので、炭
素量の下限は0.03%とする。他の成分の限定理由は
以下のとおりである。 Si;0.05〜0.50% Siは脱酸のため必要であるが、過多に添加すると靭性
を劣化させるので下限を0.05%,上限を0.5%と
する。 Mn;0.50〜2.00% Mnは脱酸のため0.50%以上必要であるが、2.0
0%を超えると溶接性を劣化させるので上限を2.00
%とする。 Al;0.005〜0.10% Alは脱酸のため必要であるが、0.005%未満では
脱酸が不十分となるので下限を0.005%とする。一
方0.10%を超えると鋼の清浄度並びにHAZ靭性を
劣化させるので上限を0.10%とする。 Cu;0.05〜2.0% Ni;0.05〜2.0% Cu並びにNiはHAZ靭性に悪影響を及ぼすことなく
母材の強度、靭性を改善させるが、2.0%を超えると
HAZの硬化性並びに靭性に悪影響を及ぼすので上限を
2.0%とする。 Cr;0.05〜2.0% Crは母材及び溶接部の強度を高めるが、2.0%を超
えるとHAZの硬化性並びに靭性を劣化させるので上限
を2.0%とする。 Mo;0.05〜1.0% Moは母材の強度並びに靭性を向上させるが、1.0%
を超えるとHAZの焼き入れ性を増して溶接性を劣化さ
せるので上限を1.0%とする。これら元素添加量の下
限は材質上の効果が得られる最小必要量とし、0.05
%とする。 Nb;0.005〜0.20% V;0.005〜0.20% Nb並びにVは強度・靭性に効果が認められるが、0.
20%を超えると母材並びに溶接部の靭性を劣化させる
ので上限は0.20%とする。下限は材質上の向上の認
められる0.005%とする。 Ti;0.005〜0.20% Tiは0.005%以上の添加によりスラブ加熱時のオ
ーステナイトの粗大化を防止する効果を有するので下限
を0.005%とし、過度に添加すると溶接部の靭性を
劣化させるので上限を0.10%とする。 B;0.0005〜0.0020% Bは母材の強度上昇に有効であるが、過度の添加は溶接
性並びにHAZ靭性の劣化を招くので上限は0.002
0%とし、下限は強度上昇に効果が認められる0.00
05%とする。 Ca;0.0005〜0.0050% Caの添加は、耐水素誘起割れ性を改善し、下限はその
効果の認められる0.0005%とする。過度の添加は
酸化物を形成して有害であるので上限を0.005%と
する。
Next, the reasons for limiting the chemical composition of the steel pipe base material will be described. C: 0.03 to 0.15% Carbon in steel is an element effective in increasing the strength of steel, but excessive addition causes deterioration of toughness. Therefore,
The upper limit of the carbon content is 0.15% in order to manufacture a steel pipe having both good strength and toughness. The reduction of the carbon amount improves the toughness, but if it is 0.03% or less, the toughness deteriorates. Further, 0.03% of carbon is required to effectively utilize stable precipitation hardening of Nb, V, Ti, etc., so the lower limit of the amount of carbon is set to 0.03%. The reasons for limiting the other components are as follows. Si: 0.05 to 0.50% Si is necessary for deoxidation, but if added in excess, it deteriorates toughness, so the lower limit is made 0.05% and the upper limit is made 0.5%. Mn: 0.50 to 2.00% Mn is required to be 0.50% or more for deoxidation, but 2.0
If it exceeds 0%, the weldability deteriorates, so the upper limit is 2.00.
%. Al: 0.005-0.10% Al is necessary for deoxidation, but if it is less than 0.005%, deoxidation is insufficient, so the lower limit is made 0.005%. On the other hand, if it exceeds 0.10%, the cleanliness of the steel and the HAZ toughness deteriorate, so the upper limit is made 0.10%. Cu; 0.05 to 2.0% Ni; 0.05 to 2.0% Cu and Ni improve the strength and toughness of the base material without adversely affecting the HAZ toughness, but when it exceeds 2.0%. Since the HAZ hardenability and toughness are adversely affected, the upper limit is 2.0%. Cr: 0.05 to 2.0% Cr increases the strength of the base material and the welded portion, but if it exceeds 2.0%, the hardenability and toughness of the HAZ are deteriorated, so the upper limit is made 2.0%. Mo: 0.05-1.0% Mo improves the strength and toughness of the base material, but 1.0%
If it exceeds 0.1%, the hardenability of the HAZ increases and the weldability deteriorates, so the upper limit is made 1.0%. The lower limit of the amount of addition of these elements is the minimum required amount to obtain the effect on the material, and 0.05
%. Nb; 0.005 to 0.20% V; 0.005 to 0.20% Nb and V are found to have an effect on strength and toughness.
If it exceeds 20%, the toughness of the base material and the welded part deteriorates, so the upper limit is made 0.20%. The lower limit is set to 0.005% at which improvement in material is recognized. Ti: 0.005 to 0.20% Ti has the effect of preventing coarsening of austenite during slab heating by adding 0.005% or more, so the lower limit is made 0.005%, and if added excessively, the weld zone Since the toughness is deteriorated, the upper limit is made 0.10%. B: 0.0005 to 0.0020% B is effective in increasing the strength of the base material, but excessive addition causes deterioration of weldability and HAZ toughness, so the upper limit is 0.002.
0%, the lower limit is 0.00, which is effective in increasing strength.
05%. Ca: 0.0005 to 0.0050% Addition of Ca improves hydrogen-induced cracking resistance, and the lower limit is made 0.0005% at which the effect is recognized. Excessive addition forms an oxide and is harmful, so the upper limit is made 0.005%.

【0013】本発明における溶接ワイヤの化学成分(重
量%)の限定理由は次のとおりである。 C;良好な溶接作業性を確保し、かつ母材に対して適切
な強度、靭性及び硬さを得るために0.01〜0.15
%添加する。 Si;脱酸作用によってブローホールの発生を抑制する
とともに、良好な溶接作業性及び適切な溶接金属の機械
的性質を得るために0.20〜1.20%添加する。 Mn;Siと同様の理由により、0.60〜2.50%
添加する。 Cu;溶接割れの発生を抑制しつつ、溶接金属の耐選択
腐食特性を向上させるために3.00%を上限として添
加する。 Ni;母材に対して適切な靭性、強度及び硬さを確保し
つつ、溶接金属の耐選択腐食特性を向上させるために
0.50〜3.00%添加する。 Mo;Niと同様の理由により、1.10%を上限とし
て添加する。 Ti;溶接作業性を阻害しない範囲で溶接金属の靭性を
向上させるために0.30%を上限として添加する。 不可避不純物;各成分の含有量が前記範囲を超える場合
には、溶接欠陥の発生(P,S,B,N),溶接作業性
の低下(Al,Cr,Nb,V,O,N)等の不具合が
生じる。
The reasons for limiting the chemical composition (% by weight) of the welding wire in the present invention are as follows. C: 0.01 to 0.15 in order to secure good welding workability and to obtain appropriate strength, toughness and hardness for the base material.
%Added. Si: Add 0.20 to 1.20% in order to suppress the generation of blowholes by a deoxidizing action and to obtain good welding workability and appropriate mechanical properties of the weld metal. Mn; 0.60 to 2.50% for the same reason as Si
Added. Cu: 3.00% is added as an upper limit in order to improve the selective corrosion resistance of the weld metal while suppressing the occurrence of welding cracks. Ni: 0.50 to 3.00% is added to improve the selective corrosion resistance of the weld metal while ensuring appropriate toughness, strength and hardness with respect to the base material. For the same reason as for Mo; Ni, 1.10% is added as the upper limit. Ti: 0.30% is added as an upper limit in order to improve the toughness of the weld metal within a range that does not impair the welding workability. Inevitable impurities; when the content of each component exceeds the above range, welding defects occur (P, S, B, N), welding workability decreases (Al, Cr, Nb, V, O, N), etc. The problem occurs.

【0014】本発明における溶接条件の限定の理由は次
のとおりである。 シールドガス:CO2 溶接用あるいはマグ溶接用として
一般に使用されているシールドガスの組成とする。 ワイヤ径:開先形状及び溶接姿勢に応じて一般に使用さ
れている溶接用ワイヤ径とする。 溶接電流、アーク電圧、溶接速度:開先形状、溶接姿
勢、及びワイヤ径に応じて一般に使用される溶接電流、
アーク電圧、溶接速度とする。 溶接姿勢:全姿勢 パイプの円周溶接を考慮して全姿勢とする。
The reason for limiting the welding conditions in the present invention is as follows. Shielding gas: The composition of the shielding gas generally used for CO 2 welding or MAG welding. Wire diameter: Welding wire diameter generally used according to the groove shape and welding position. Welding current, arc voltage, welding speed: welding current generally used according to groove shape, welding position, and wire diameter,
Arc voltage and welding speed. Welding position: All positions All positions should be set considering the circumferential welding of the pipe.

【0015】[0015]

【実施例】本発明の実施例について述べる。表1に供試
母材の化学成分(重量%)を示す。表1に示すA〜D鋼
を用いて外径38インチ×全長12mの溶接鋼管を製造
した後、ガスシールドアーク溶接により円周溶接を行
い、溶接金属の強度、靭性、海水環境(CO2 バブリン
グ)での選択腐食速度をそれぞれ測定した。表2,表3
に溶接金属の選択腐食速度、強度、靭性、割れ発生の有
無を示す。強度YSはJIS Z2201 3号(6mm
φ)試験片、靭性はJIS Z3128 4号試験片を
用いて、0℃での吸収エネルギーで評価した。溶接割れ
発生の有無は溶接後5断面の観察により判定し、選択腐
食速度は円周溶接部を含む全長50cm鋼管の内部に、人
工海水を入れ、これにCO2 ガスを吹き込んで、母材と
溶接金属部の板厚の差を求めることにより、測定した値
である。
EXAMPLES Examples of the present invention will be described. Table 1 shows the chemical composition (% by weight) of the test base metal. After manufacturing a welded steel pipe having an outer diameter of 38 inches and a total length of 12 m using the steels A to D shown in Table 1, circumferential welding is performed by gas shield arc welding to obtain the strength, toughness, seawater environment (CO 2 bubbling) of the weld metal. ), The selective corrosion rate was measured. Table 2 and Table 3
Shows the selective corrosion rate of weld metal, strength, toughness, and the presence of cracks. Strength YS is JIS Z2201 No. 3 (6 mm
φ) test piece and toughness were evaluated by the absorbed energy at 0 ° C. using a JIS Z3128 No. 4 test piece. The presence or absence of weld cracking is determined by observing 5 cross-sections after welding, and the selective corrosion rate is 50 cm long steel pipe including circumferential welds, artificial seawater is put inside, and CO 2 gas is blown into it to form a base metal. It is a value measured by obtaining the difference in plate thickness of the weld metal part.

【0016】表2,表3に示すように、溶接金属の化学
成分が特許請求の範囲を満足する円周溶接部では、降伏
強度(350N/mm2 以上),靭性(50J以上),選
択腐食性(溶接金属部が選択的に腐食しない、表2中0
で表示)に優れ、硬さが低く(Hv300以下),耐割
れ性にも優れた円周溶接部であることが確認された。
As shown in Tables 2 and 3, the yield strength (350 N / mm 2 or more), toughness (50 J or more), and selective corrosion are found in the circumferential welded portion where the chemical composition of the weld metal satisfies the claims. Property (welded metal part does not selectively corrode, 0 in Table 2)
It was confirmed that the circumferential welded portion has excellent hardness, low hardness (Hv 300 or less), and excellent crack resistance.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0017】[0017]

【発明の効果】以上のように本発明によれば、溶接金属
部の化学成分を母材と溶接材料及び溶接方法により調整
するものであるから、CO2 を含む海水環境など腐食環
境にさらされた円周溶接部の選択腐食において、溶接金
属部と母材とのCu,Ni,Mo差を前述のように特定
することにより、十分な強度及び高靭性を有し、かつ耐
溶接割れ性と耐選択腐食性に優れた円周溶接金属部を得
ることができる。
As described above, according to the present invention, since the chemical composition of the weld metal portion is adjusted by the base material, the welding material and the welding method, it is exposed to a corrosive environment such as a seawater environment containing CO 2. In the selective corrosion of the circumferential welded portion, by specifying the Cu, Ni, Mo difference between the weld metal portion and the base metal as described above, it has sufficient strength and high toughness, and has weld crack resistance. It is possible to obtain a circumferential weld metal part having excellent selective corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】母材と溶接金属との間に流れた選択腐食電流
(μA)とΔ(Cu+Ni)との関係を示すグラフであ
る。
FIG. 1 is a graph showing a relationship between a selective corrosion current (μA) flowing between a base material and a weld metal and Δ (Cu + Ni).

【図2】母材と溶接金属との間に流れた選択腐食電流
(μA)とΔMoとの関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the selective corrosion current (μA) flowing between the base metal and the weld metal and ΔMo.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年9月22日[Submission date] September 22, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】従来、低合金鋼の溶接部選択腐食に関す
る公表文献には次のようなものがある 。1)氷海での溶接継手部局部腐食に対して、母材と溶
接金属のNi添加量の差が影響を及ぼすとするもの(阿
部隆ほか;「鉄と鋼」Vol.72,No.12,s1266, 19 86
)。 2)同じく氷海域鋼の溶接部局部腐食で、NiとCuが
影響を及ぼし、 3.8 ΔCu+1.1 ΔNi+0.3 が選択腐食性を左右するとするもの(伊藤亀太郎ほか;
「鉄と鋼」Vol.72,No. 12,s1265,1986 年)。 3)炭素鋼配管円周溶接部の選択腐食防止に、Cu及び
Niを含む低合金溶接棒の使用が有効であるとするもの
(幸英明;「材料」Vol.38,No.424,p62-p68,1989
年)。 4)溶接鋼管縦シーム溶接部の選択腐食防止に、Ni及
びMoの添加が有効であるとするもの(須賀ほか;特開
平3-170641号)。
2. Description of the Related Art Conventionally, there are the following publications regarding selective corrosion of welded parts of low alloy steel. 1) Local corrosion of welded joints in ice seas is affected by the difference in the amount of Ni added to the base metal and weld metal (Abe et al .; “Iron and Steel” Vol.72, No.12 , s1266, 19 86
Year ). 2) Similarly, localized corrosion of welded steel in ice-sea steels, where Ni and Cu influence and 3.8 ΔCu + 1.1 ΔNi + 0.3 influences selective corrosion (Kametaro Ito et al .;
"Iron and Steel," Vol.72, No. 12 , s1265 , 1986 ). 3) Use of low alloy welding rods containing Cu and Ni is effective for preventing selective corrosion of carbon steel pipe circumferential welds (Yuki Hideaki; “Materials” Vol.38, No.424, p62- p68,1989
Year). 4) to select corrosion of welded steel pipe longitudinal seam weld, which addition of Ni and Mo is assumed to be effective (Suga addition, JP
(Head 3-170641 ).

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】次に、本発明の第2発明においては、上記
成分のほか、さらに前述のような選択成分及びその組成
を限定する。Mo;≦1.05% ΔMo≧0.03% Moは溶接金属の選択腐食を防止するためにΔMoが
0.03%以上となるように溶接金属中に1.05%以
下で添加する。図2に示すように溶接金属と母材とのM
o含有量の差ΔMoを0.03%以上とすれば、CO2
を含む腐食環境中において溶接金属の選択腐食は防止で
きる。しかし、1.05%を超えて添加すると溶接金属
の硬さが増加し溶接低温割れや応力腐食割れ感受性を増
大させる。なお、図2は選択腐食特性に及ぼすΔMoの
影響をあらわしたグラフであり、縦軸に母材と溶接金属
との間に流れた選択腐食電流(μA)を、横軸にΔMo
(%)をとって示したものである。選択腐食電流がプラ
スのとき、溶接金属の選択腐食は起こらない。ΔMoが
0.03%以上になると選択腐食電流はプラスに転じて
いる。 Ti;≦0.25% Tiは初析フェライトの微細化による溶接金属の靭性を
目的として必要に応じて0.25%以下の範囲で溶接金
属に添加してもよい。0.25%を超えるとスラグ量が
増加するため、スラグ巻込み等の欠陥の原因となる。ま
た、溶接金属の強度が母材に対して過大となり、それに
よる靭性不足が生じる。また、硬さが上昇するため溶接
割れや応力腐食割れ感受性が増大する。 不可避不純物;不可避不純物の含有量が前記範囲内であ
れば、溶接金属の耐選択腐食特性及び機械的性能を阻害
しない。各成分の含有量が前記範囲を超える場合には、
溶接作業性の低下(Al,Zr,Ca),溶接欠陥の発
生(P,S,B,N),機械的性能の劣化(Al,C
r,Nb,V,O,N)等の不具合が生じる。
Next, in the second aspect of the present invention, in addition to the above-mentioned components, the above-mentioned optional components and their compositions are limited. Mo; ≦ 1.05% ΔMo ≧ 0.03 % Mo 1.05% or the weld metal as DerutaMo to prevent preferential corrosion of the weld metal is 0.03% or more
It is added at the bottom. As shown in FIG. 2, M of the weld metal and the base metal
o If the difference in content ΔMo is 0.03% or more, CO 2
Selective corrosion of the weld metal can be prevented in a corrosive environment including. However, if added in excess of 1.05%, the hardness of the weld metal increases and the susceptibility to cold cracking and stress corrosion cracking increases. Note that FIG. 2 is a graph showing the effect of ΔMo on the selective corrosion characteristics. The vertical axis represents the selective corrosion current (μA) flowing between the base metal and the weld metal, and the horizontal axis represents ΔMo.
(%) Is shown. When the selective corrosion current is positive, the selective corrosion of the weld metal does not occur. When ΔMo is 0.03% or more, the selective corrosion current turns to a plus. Ti; ≤0.25% Ti may be added to the weld metal in a range of 0.25% or less as needed for the purpose of toughness of the weld metal due to the refinement of proeutectoid ferrite. If it exceeds 0.25%, the amount of slag increases, which causes defects such as slag inclusion. In addition, the strength of the weld metal becomes excessive with respect to the base metal, resulting in insufficient toughness. Further, since hardness increases, susceptibility to welding cracks and stress corrosion cracking increases. Inevitable impurities; When the content of unavoidable impurities is within the above range, the selective corrosion resistance and mechanical performance of the weld metal are not impaired. When the content of each component exceeds the above range,
Welding workability deterioration (Al, Zr, Ca ), Welding defect occurrence (P, S, B, N), Mechanical performance deterioration (Al, C)
Problems such as r, Nb, V, O, N) occur.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】次に、鋼管母材の化学成分を限定した理由
について述べる。 C;0.03〜0.15% 鋼中の炭素は、鋼の強度を上昇させる上で有効な元素で
あるが、過度の添加は靭性の劣化を招く。したがって、
強度並びに靭性とも良好な鋼管を製造するために炭素量
の上限は0.15%とする。炭素量の低減は靭性を向上
させるが、0.03%以下になると靭性は劣化する。ま
た、安定したNb,V,Tiなどの析出硬化を有効に利
用するためにも0.03%の炭素は必要となるので、炭
素量の下限は0.03%とする。他の成分の限定理由は
以下のとおりである。 Si;0.05〜0.50% Siは脱酸のため必要であるが、過多に添加すると靭性
を劣化させるので下限を0.05%,上限を0.50
とする。 Mn;0.50〜2.00% Mnは脱酸のため0.50%以上必要であるが、2.0
0%を超えると溶接性を劣化させるので上限を2.00
%とする。 Al;0.005〜0.10% Alは脱酸のため必要であるが、0.005%未満では
脱酸が不十分となるので下限を0.005%とする。一
方0.10%を超えると鋼の清浄度並びにHAZ靭性を
劣化させるので上限を0.10%とする。 Cu;0.05〜2.0% Ni;0.05〜2.0% Cu並びにNiはHAZ靭性に悪影響を及ぼすことなく
母材の強度、靭性を改善させるが、2.0%を超えると
HAZの硬化性並びに靭性に悪影響を及ぼすので上限を
2.0%とする。 Cr;0.05〜2.0% Crは母材及び溶接部の強度を高めるが、2.0%を超
えるとHAZの硬化性並びに靭性を劣化させるので上限
を2.0%とする。 Mo;0.05〜1.0% Moは母材の強度並びに靭性を向上させるが、1.0%
を超えるとHAZの焼き入れ性を増して溶接性を劣化さ
せるので上限を1.0%とする。これら元素添加量の下
限は材質上の効果が得られる最小必要量とし、0.05
%とする。 Nb;0.005〜0.20% V;0.005〜0.20% Nb並びにVは強度・靭性に効果が認められるが、0.
20%を超えると母材並びに溶接部の靭性を劣化させる
ので上限は0.20%とする。下限は材質上の向上の認
められる0.005%とする。 Ti;0.005〜0.20% Tiは0.005%以上の添加によりスラブ加熱時のオ
ーステナイトの粗大化を防止する効果を有するので下限
を0.005%とし、過度に添加すると溶接部の靭性を
劣化させるので上限を0.20%とする。 B;0.0005〜0.0020% Bは母材の強度上昇に有効であるが、過度の添加は溶接
性並びにHAZ靭性の劣化を招くので上限は0.002
0%とし、下限は強度上昇に効果が認められる0.00
05%とする。 Ca;0.0005〜0.0050% Caの添加は、耐水素誘起割れ性を改善し、下限はその
効果の認められる0.0005%とする。過度の添加は
酸化物を形成して有害であるので上限を0.0050
とする。
Next, the reasons for limiting the chemical composition of the steel pipe base material will be described. C: 0.03 to 0.15% Carbon in steel is an element effective in increasing the strength of steel, but excessive addition causes deterioration of toughness. Therefore,
The upper limit of the carbon content is 0.15% in order to manufacture a steel pipe having both good strength and toughness. The reduction of the carbon amount improves the toughness, but if it is 0.03% or less, the toughness deteriorates. Further, 0.03% of carbon is required to effectively utilize stable precipitation hardening of Nb, V, Ti, etc., so the lower limit of the amount of carbon is set to 0.03%. The reasons for limiting the other components are as follows. Si: 0.05 to 0.50 % Si is necessary for deoxidation, but if added in excess, it deteriorates toughness, so the lower limit is 0.05% and the upper limit is 0.50 %.
And Mn: 0.50 to 2.00% Mn is required to be 0.50% or more for deoxidation, but 2.0
If it exceeds 0%, the weldability deteriorates, so the upper limit is 2.00.
%. Al: 0.005-0.10% Al is necessary for deoxidation, but if it is less than 0.005%, deoxidation is insufficient, so the lower limit is made 0.005%. On the other hand, if it exceeds 0.10%, the cleanliness of the steel and the HAZ toughness deteriorate, so the upper limit is made 0.10%. Cu; 0.05 to 2.0% Ni; 0.05 to 2.0% Cu and Ni improve the strength and toughness of the base material without adversely affecting the HAZ toughness, but when it exceeds 2.0%. Since the HAZ hardenability and toughness are adversely affected, the upper limit is 2.0%. Cr: 0.05 to 2.0% Cr increases the strength of the base material and the welded portion, but if it exceeds 2.0%, the hardenability and toughness of the HAZ are deteriorated, so the upper limit is made 2.0%. Mo: 0.05-1.0% Mo improves the strength and toughness of the base material, but 1.0%
If it exceeds 0.1%, the hardenability of the HAZ increases and the weldability deteriorates, so the upper limit is made 1.0%. The lower limit of the amount of addition of these elements is the minimum required amount to obtain the effect on the material, and 0.05
%. Nb; 0.005 to 0.20% V; 0.005 to 0.20% Nb and V are found to have an effect on strength and toughness.
If it exceeds 20%, the toughness of the base material and the welded part deteriorates, so the upper limit is made 0.20%. The lower limit is set to 0.005% at which improvement in material is recognized. Ti: 0.005 to 0.20% Ti has the effect of preventing coarsening of austenite during slab heating by adding 0.005% or more, so the lower limit is made 0.005%, and if added excessively, the weld zone The toughness deteriorates, so the upper limit is made 0.20 %. B: 0.0005 to 0.0020% B is effective in increasing the strength of the base material, but excessive addition causes deterioration of weldability and HAZ toughness, so the upper limit is 0.002.
0%, the lower limit is 0.00, which is effective in increasing strength.
05%. Ca: 0.0005 to 0.0050% Addition of Ca improves hydrogen-induced cracking resistance, and the lower limit is made 0.0005% at which the effect is recognized. Excessive addition forms an oxide and is harmful, so the upper limit is 0.0050 %.
And

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】本発明における溶接ワイヤの化学成分(重
量%)の限定理由は次のとおりである。 C;良好な溶接作業性を確保し、かつ母材に対して適切
な強度、靭性及び硬さを得るために0.01〜0.15
%添加する。 Si;脱酸作用によってブローホールの発生を抑制する
とともに、良好な溶接作業性及び適切な溶接金属の機械
的性質を得るために0.20〜1.20%添加する。 Mn;Siと同様の理由により、0.60〜2.50%
添加する。 Cu;溶接割れの発生を抑制しつつ、溶接金属の耐選択
腐食特性を向上させるために3.00%を上限として添
加する。 Ni;母材に対して適切な靭性、強度及び硬さを確保し
つつ、溶接金属の耐選択腐食特性を向上させるために
0.50〜3.00%添加する。 Mo;Niと同様の理由により、1.10%を上限とし
て添加する。 Ti;溶接作業性を阻害しない範囲で溶接金属の靭性を
向上させるために0.30%を上限として添加する。 不可避不純物;各成分の含有量が前記範囲を超える場合
には、溶接欠陥の発生(P,S,B,N),溶接作業性
の低下(Al,Zr),機械的性能の劣化(Al,C
r,Nb,V,O,N)等の不具合が生じる。
The reasons for limiting the chemical composition (% by weight) of the welding wire in the present invention are as follows. C: 0.01 to 0.15 in order to secure good welding workability and to obtain appropriate strength, toughness and hardness for the base material.
%Added. Si: Add 0.20 to 1.20% in order to suppress the generation of blowholes by a deoxidizing action and to obtain good welding workability and appropriate mechanical properties of the weld metal. Mn; 0.60 to 2.50% for the same reason as Si
Added. Cu: 3.00% is added as an upper limit in order to improve the selective corrosion resistance of the weld metal while suppressing the occurrence of welding cracks. Ni: 0.50 to 3.00% is added to improve the selective corrosion resistance of the weld metal while ensuring appropriate toughness, strength and hardness with respect to the base material. For the same reason as for Mo; Ni, 1.10% is added as the upper limit. Ti: 0.30% is added as an upper limit in order to improve the toughness of the weld metal within a range that does not impair the welding workability. Inevitable impurities; When the content of each component exceeds the above range, welding defects (P, S, B, N), deterioration of welding workability (Al, Zr ), deterioration of mechanical performance (Al, C
Problems such as r, Nb, V, O, N) occur.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】表2,表3に示すように、溶接金属の化学
成分が特許請求の範囲を満足する円周溶接部では、降伏
強度(350N/mm2 以上),靭性(50J以上),選
択腐食性(溶接金属部が選択的に腐食しない、表2中0
で表示)に優れ、硬さが低く(Hv300以下),耐割
れ性にも優れた円周溶接部であることが確認された。
As shown in Tables 2 and 3, the yield strength (350 N / mm 2 or more), toughness (50 J or more), and selective corrosion are found in the circumferential welded portion where the chemical composition of the weld metal satisfies the claims. Property (welded metal part does not selectively corrode, 0 in Table 2)
It was confirmed that the circumferential welded portion has excellent hardness, low hardness (Hv 300 or less), and excellent crack resistance.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 元清 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 中野 利彦 神奈川県藤沢市宮前字裏河内100−1 株 式会社神戸製鋼所藤沢事業所内 (72)発明者 小西 正人 神奈川県藤沢市宮前字裏河内100−1 株 式会社神戸製鋼所藤沢事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motosei Ito 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Toshihiko Nakano 100-1 Urakawachi, Fujisawa City, Kanagawa Prefecture Incorporated company Kobe Steel, Fujisawa Works (72) Inventor Masato Konishi 100-1 Urakawachi, Miyamae, Fujisawa City, Kanagawa Incorporated, Fujisawa Works, Kobe Steel

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 パイプの円周溶接において、下記化学成
分(重量%)の溶接金属が得られるような、パイプ母材
と溶接ワイヤと溶接条件との組合せによるパイプ
のガスシールドアーク溶接方法。 C ;0.01〜0.15% Si;0.20〜1.00% Mn;0.40〜2.00% Cu;≦2.50% Ni;0.50〜2.50% ΔCu+ΔNi;≧0.50%(Δ:溶接金属含有量−
母材含有量) PCM;≦0.25% (PCM=C+Si/30+Mn/20+Cu/20+Ni/60
+Cr/20+Mo/15+V/10+5B) 残部はFe及び不可避不純物からなり、不可避不純物は
下記の範囲を満足するものとする。 P ;≦0.030% S ;≦0.030% Al;
≦0.05% N ;≦0.050% Nb;≦0.10% V ;
≦0.10% Cr;≦1.00% Ca;≦0.0025% O;
≦0.10% Zr;≦0.05% B ;≦0.002% 母材の化学成分(重量%) C ;0.03〜0.15% Si;0.05〜0.50% Mn;0.50〜2.00% Al;0.005〜0.10% を含有し、または上記化学成分に加え、さらに下記の成
分の中から1種または2種以上を含有し、 Cu;0.05〜2.0% Ni;0.05〜2.0% Cr;0.05〜2.0% Mo;0.05〜1.0% Nb;0.005〜0.20% V ;0.005〜0.20% Ti;0.005〜0.20% B ;0.0005〜0.0020% Ca;0.0005〜0.0050% 残部がFe及び不可避不純物を含むものとする。 溶接ワイヤの化学成分(重量%) C ;0.01〜0.15% Si;0.20〜1.20% Mn;0.60〜2.50% Cu;≦3.00% Ni;0.50〜3.00% を含有し、または上記化学成分に加えて、下記成分を1
種または2種以上含有し 、Mo;≦1.10% Ti;≦0.30% 残部がFe及び不可避不純物からなり、不可避不純物の
含有量としては下記範囲を満足するものとする。 P ;≦0.030% S ;≦0.030% Al;
≦0.05% N ;≦0.01% Nb;≦0.02% V ;
≦0.02% Cr;≦0.05% Zr;≦0.05% O ;
≦0.02% B ;≦0.002% 溶接条件 シールドガス:100%CO2 あるいはAr+(5〜4
0%)CO2 ワイヤ径 :0.8〜1.6mm 溶接電流 :100〜500A アーク電圧 :15〜45V 溶接速度 :5〜150cm/min. 溶接姿勢 :全姿勢
1. A gas shielded arc welding method for a pipe by combining a pipe base material, a welding wire and welding conditions so that a weld metal having the following chemical composition (wt%) can be obtained in circumferential welding of the pipe. C; 0.01 to 0.15% Si; 0.20 to 1.00% Mn; 0.40 to 2.00% Cu; ≤ 2.50% Ni; 0.50 to 2.50% ΔCu + ΔNi; ≥ 0.50% (Δ: weld metal content-
Base material content) P CM ; ≤0.25% (P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60
+ Cr / 20 + Mo / 15 + V / 10 + 5B) The balance consists of Fe and inevitable impurities, and the inevitable impurities satisfy the following range. P; ≤0.030% S; ≤0.030% Al;
≤0.05% N; ≤0.050% Nb; ≤0.10% V;
≤0.10% Cr; ≤1.00% Ca; ≤0.0025% O;
≤0.10% Zr; ≤0.05% B; ≤0.002% Chemical composition of base material (% by weight) C; 0.03 to 0.15% Si; 0.05 to 0.50% Mn; 0.50 to 2.00% Al; 0.005 to 0.10%, or one or more of the following components in addition to the above chemical components: Cu; 0.05 to 2.0% Ni; 0.05 to 2.0% Cr; 0.05 to 2.0% Mo; 0.05 to 1.0% Nb; 0.005 to 0.20% V; 005 to 0.20% Ti; 0.005 to 0.20% B; 0.0005 to 0.0020% Ca; 0.0005 to 0.0050% The balance contains Fe and unavoidable impurities. Chemical composition of welding wire (% by weight) C; 0.01 to 0.15% Si; 0.20 to 1.20% Mn; 0.60 to 2.50% Cu; ≤ 3.00% Ni; 50 to 3.00%, or in addition to the above chemical components, 1
One or two or more kinds are contained, Mo; ≤ 1.10% Ti; ≤ 0.30% The balance consists of Fe and unavoidable impurities, and the content of the unavoidable impurities should satisfy the following range. P; ≤0.030% S; ≤0.030% Al;
≤0.05% N; ≤0.01% Nb; ≤0.02% V;
≤0.02% Cr; ≤0.05% Zr; ≤0.05% O 2;
≤0.02% B; ≤0.002% Welding conditions Shield gas: 100% CO 2 or Ar + (5-4
0%) CO 2 wire diameter: 0.8 to 1.6 mm Welding current: 100 to 500 A Arc voltage: 15 to 45 V Welding speed: 5 to 150 cm / min. Welding posture: All postures
【請求項2】 上記溶接金属が上記化学成分に加えて、
MoまたはTiのいずれか一方あるいは両方を含有する
ことを特徴とする請求項1記載のパイプのガスシールド
アーク溶接方法。 Mo ;≦1.05% ΔMo;≧0.03% Ti ;≦0.25%
2. The weld metal, in addition to the chemical composition,
2. The gas shielded arc welding method for a pipe according to claim 1, wherein one or both of Mo and Ti are contained. Mo; ≤1.05% ΔMo; ≥0.03% Ti; ≤0.25%
JP21995591A 1991-08-30 1991-08-30 Gas shield arc welding method for pipes Expired - Lifetime JP2534942B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP21995591A JP2534942B2 (en) 1991-08-30 1991-08-30 Gas shield arc welding method for pipes
GB9217614A GB2259881B (en) 1991-08-30 1992-08-19 Method for gas-shield arc welding of a pipe and weld wire for use in the welding method
CA002076435A CA2076435A1 (en) 1991-08-30 1992-08-19 Method for gas-shield arc welding of a pipe and weld wire for use in the welding method
DE4228249A DE4228249A1 (en) 1991-08-30 1992-08-25 METHOD FOR ELECTROSURGING UNDER PROTECTIVE GAS OF A TUBE AND WELDING WIRE FOR USE IN THE WELDING PROCESS
US07/935,523 US5300751A (en) 1991-08-30 1992-08-25 Method for gas-shield arc welding of a pipe and weld wire for use in the welding method
NO923354A NO305689B1 (en) 1991-08-30 1992-08-27 Method for gas covered arc welding of tubes and welding thread for use in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21995591A JP2534942B2 (en) 1991-08-30 1991-08-30 Gas shield arc welding method for pipes

Publications (2)

Publication Number Publication Date
JPH0569141A true JPH0569141A (en) 1993-03-23
JP2534942B2 JP2534942B2 (en) 1996-09-18

Family

ID=16743657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21995591A Expired - Lifetime JP2534942B2 (en) 1991-08-30 1991-08-30 Gas shield arc welding method for pipes

Country Status (1)

Country Link
JP (1) JP2534942B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018591A (en) * 2000-07-06 2002-01-22 Nkk Corp Solid wire for circumferential weld of carbon steel pipe and welding method using the same
JP2004148389A (en) * 2002-10-31 2004-05-27 Jfe Engineering Kk Solid wire for circumferential weld of steel pipe
CN1329545C (en) * 2003-02-26 2007-08-01 新日本制铁株式会社 Crude oil tank with welding seam having excellent anti-corrosivity
CN116137872A (en) * 2020-08-03 2023-05-19 杰富意钢铁株式会社 Solid wire for gas metal arc welding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018591A (en) * 2000-07-06 2002-01-22 Nkk Corp Solid wire for circumferential weld of carbon steel pipe and welding method using the same
JP2004148389A (en) * 2002-10-31 2004-05-27 Jfe Engineering Kk Solid wire for circumferential weld of steel pipe
CN1329545C (en) * 2003-02-26 2007-08-01 新日本制铁株式会社 Crude oil tank with welding seam having excellent anti-corrosivity
CN116137872A (en) * 2020-08-03 2023-05-19 杰富意钢铁株式会社 Solid wire for gas metal arc welding

Also Published As

Publication number Publication date
JP2534942B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
JP5387192B2 (en) Flux-cored wire for gas shield welding
JP2006289395A (en) Solid wire for gas shielded arc welding
WO1998010888A1 (en) Welding material for stainless steels
JP3850764B2 (en) Welding wire for high Cr ferritic heat resistant steel
CN112512742B (en) Solid welding wire and method for manufacturing welded joint
JPH10324950A (en) High-strength welded steel structure, and its manufacture
JP4082464B2 (en) Manufacturing method of high strength and high toughness large diameter welded steel pipe
US5300751A (en) Method for gas-shield arc welding of a pipe and weld wire for use in the welding method
JP4745900B2 (en) High strength weld metal with good low temperature toughness, low temperature cracking resistance and bead shape during all position welding
JP2534942B2 (en) Gas shield arc welding method for pipes
JP2003266194A (en) Wire for mig welding of martensitic stainless steel tube and method of welding martensitic stainless steel tube
JP2022089304A (en) Welded joint of austenitic stainless steel, welded structure, and mother steel, and method for producing welded joint of austenitic stainless steel
JP2004261858A (en) Wire for welding martensitic stainless steel pipe
JPS5961590A (en) Welding method
JP2754438B2 (en) Pipe arc welding method
JP2584919B2 (en) Gas shielded arc welding wire for pipe
JP2005272900A (en) High-strength uoe steel pipe having excellent low-temperature toughness of seam weld metal
JP2004230392A (en) Welding material for martensitic stainless steel pipe and welding method therefor
JP7485594B2 (en) Flux-cored wire and gas-shielded arc welding method
JP2004181527A (en) Wire for mig welding of martensitic stainless steel pipe and welding method for the same pipe
JP2002137058A (en) Production method for corrosion-resistant, high-strength oil well steel pipe joint and high-strength oil well steel pipe joint
JP2000218391A (en) Gas shield arc welding wire for line pipe, and gas shield arc welding method of line pipe perimeter
WO2023248656A1 (en) Wire with metallic flux core
JPH0698500B2 (en) Method for manufacturing large diameter steel pipe with excellent sour gas resistance
JPH0814014B2 (en) Welded steel pipe