JPH0568801A - Separation system for nonideal multicomponent liquid mixtures - Google Patents

Separation system for nonideal multicomponent liquid mixtures

Info

Publication number
JPH0568801A
JPH0568801A JP22992591A JP22992591A JPH0568801A JP H0568801 A JPH0568801 A JP H0568801A JP 22992591 A JP22992591 A JP 22992591A JP 22992591 A JP22992591 A JP 22992591A JP H0568801 A JPH0568801 A JP H0568801A
Authority
JP
Japan
Prior art keywords
separation
distillation
component
total reflux
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22992591A
Other languages
Japanese (ja)
Inventor
Kazuo Kojima
和夫 小島
Kiyobumi Kurihara
清文 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP22992591A priority Critical patent/JPH0568801A/en
Publication of JPH0568801A publication Critical patent/JPH0568801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To obtian a separation system for nonideal multicomponent mixtures by dividing components in a nonideal multicomponent liquid mixture into the prescribed groups of ternary systems and getting a total reflux elemental separation diagram for each system to confirm separation ability, etc. CONSTITUTION:For the combination of components, that of those with about <=2 deg.C difference in boiling pt., from each other, that of those forming azeotrope, and that of those consisting of isomers or compounds having a similar functional group are selected. A total reflux elemental separation diagram is obtained by 'ASOG and UNIFAC', a system for giving the vapor-liquid equilibrium relationship of nonideal three components. For example, total reflux distillation curves for the methanil-ethanol- water system are obtained by ASOG, changing the feed composition and the number of stages. Each diagram represents an elemental separation diagram indicating the ratio of components when they are in vapor-liquid equilibrium in total reflux distrillation for each number of stages. Namely, ethanol and water are hard to separate because of having an azeotropic point at 351.32 deg.K. It is concluded, however, that methanol and water can be separated by distillation. Thereby the behavior of each component on distillation is confirmed in advance and a separation system is synthesized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非理想多成分系から各
成分を分離するシステムに関する。詳しくは非理想多成
分系液体混合物に含まれる所定3成分系に係る各素分離
線図から得られる分離システムに関する。
FIELD OF THE INVENTION The present invention relates to a system for separating each component from a non-ideal multi-component system. Specifically, it relates to a separation system obtained from each elemental separation diagram relating to a predetermined three-component system contained in a non-ideal multi-component liquid mixture.

【0002】[0002]

【従来の技術】多成分を含む液体混合物から、各成分を
分離するため種々の方法が従来から行われている。例え
ば、多成分液体混合物を蒸留により分離することは、既
に古くから実施されている。多成分系液体混合物の分離
は主に精留塔での連続蒸留が中心であり、工業的な蒸留
分離システムは蒸留塔の設計から始まり、分離する液体
混合物の構成成分の種類や組成比により、還流比、段数
計算、原料仕込み段等の種々の蒸留条件を予め決定する
必要がある。いわゆる理想多成分系混合物に関しては、
従来から各種の分離システムが提案され、それらのシス
テムを用いて蒸留分離条件を決定することが容易になさ
れている。
2. Description of the Prior Art Various methods are conventionally used for separating each component from a liquid mixture containing multiple components. For example, the separation of multicomponent liquid mixtures by distillation has already been practiced for a long time. Separation of multi-component liquid mixture is mainly continuous distillation in a rectification column, an industrial distillation separation system starts from the design of the distillation column, depending on the type and composition ratio of the constituent components of the liquid mixture to be separated, It is necessary to determine various distillation conditions such as the reflux ratio, the number of stages calculation, the raw material charging stage and the like in advance. For so-called ideal multi-component mixtures,
Conventionally, various separation systems have been proposed, and it is easy to determine distillation separation conditions using these systems.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、非理想
多成分系混合物の蒸留分離においては、その混合物中の
成分に関し、既に確立された分離システムが存在し、更
に抽出媒体が指定されている様な条件の下で、それらを
参考にして蒸留分離システムの確立を図ることができる
程度である。従って、任意の非理想多成分系混合物の蒸
留分離は、トライアル・アンド・エラーで、且つ熟練技
術者の経験と勘とを頼りに、コンピューターで膨大な計
算を行いながら手探りで条件決定を行わねばならないの
が現状である。そのため、任意の非理想多成分系混合物
の成分分離について、予め分離システムを構築する手法
の開発は、各分離プロセスの設計において極めて有用で
あり、望まれているものである。本発明は、上記のよう
に未だ手法の確立されていない非理想多成分系混合物の
分離システムを提供することを目的とする。
However, in the distillative separation of a non-ideal multi-component mixture, there are already established separation systems for the components in the mixture, and it seems that an extraction medium is specified. Under the conditions, it is only possible to establish a distillation separation system with reference to them. Therefore, in the distillation separation of any non-ideal multi-component mixture, trial and error, and relying on the experience and intuition of a skilled technician, it is necessary to perform a flurry of condition determination while performing enormous calculations with a computer. The current situation is that it will not happen. Therefore, for the component separation of an arbitrary non-ideal multi-component mixture, the development of a method for constructing a separation system in advance is extremely useful and desired in the design of each separation process. An object of the present invention is to provide a separation system for a non-ideal multi-component mixture whose method has not yet been established as described above.

【0004】[0004]

【課題を解決するための手段】本発明によれば、非理想
多成分系液体混合物に含まれる所定の3成分系群を複数
選択し、該各3成分系の全還流素分離線図に基づき合成
されることを特徴とする非理想多成分系液体混合物の分
離システムが提供される。本発明において、全還流素分
離線とは、蒸留曲線であって、任意の液組成、段数にお
けるタイラインの軌跡をいい、また、素分離系とは、全
還流素分離線が同一パターンの領域をいう。
According to the present invention, a plurality of predetermined three-component system groups contained in a non-ideal multi-component liquid mixture are selected, and based on the total reflux element separation diagram of each three-component system. A non-ideal multi-component liquid mixture separation system characterized by being synthesized is provided. In the present invention, the total reflux elemental separation line is a distillation curve and refers to a tie line locus at any liquid composition and number of stages, and the elemental separation system is a region where the total reflux elemental separation line has the same pattern. Say.

【0005】[0005]

【作用】本発明は、上記のように構成され、非理想多成
分系液体混合物中の成分を所定の3成分系群に分けるこ
とにより、それらの挙動を図面上で表現可能とし、群を
構成する各3成分系の全還流素分離線図を得ることによ
り、3成分系における成分分離能等を確認し、所定の簡
単なシュミレーションを経由して成分の分離システムを
合成することができる。
The present invention is configured as described above, and by dividing the components in the non-ideal multi-component liquid mixture into predetermined three-component system groups, their behaviors can be expressed on the drawing, and the groups are configured. By obtaining the total reflux element separation diagram of each of the three-component system, the component separation ability and the like in the three-component system can be confirmed, and the component separation system can be synthesized through a predetermined simple simulation.

【0006】即ち、非理想多成分系液体混合物から選択
された3成分系群の全還流素分離線図から、分離が困難
な2成分を含む複数の3成分系のうち比較的容易に分離
可能な3成分系を選択し、その選択された3成分系にお
ける分離すべき成分の目的組成が、全還流蒸留の定常状
態で塔頂留出物または缶出物として得られるものとして
物質収支式の解を求める。その結果、得られる仕込み組
成物及び塔頂留出物または缶出物から、分離すべき他の
成分の目的組成が、その塔頂留出物または缶出物となる
ように同様に順次解を求め、分離すべき成分数に応じて
原料である多成分系液体混合物を仕込む蒸留塔に至るま
での所要数の各蒸留工程における仕込み組成、塔頂流出
組成、缶出組成及び段数を適宜選択し、それぞれ全還流
下の定常状態の物質収支を原料非理想多成分系液体混合
物の組成比に合致させるようにシュミレートして、分離
システムを合成することができる。
That is, from the total reflux element separation diagram of the three-component system group selected from the non-ideal multi-component liquid mixture, it is possible to separate relatively easily from a plurality of three-component systems including two components which are difficult to separate. A three-component system is selected, and the target composition of the components to be separated in the selected three-component system is obtained as an overhead distillate or bottom product in the steady state of total reflux distillation. Find a solution. As a result, from the obtained charge composition and overhead distillate or bottom product, the target composition of other components to be separated is similarly sequentially solved so as to become the top distillate or bottom product. Obtained, according to the number of components to be separated, appropriately select the charge composition, the top outflow composition, the bottom composition and the number of stages in each distillation step of the required number of up to the distillation column charging the multi-component liquid mixture as a raw material. The separation system can be synthesized by simulating the material balance in the steady state under total reflux so as to match the composition ratio of the raw material non-ideal multi-component liquid mixture.

【0007】以下、本発明について更に詳しく説明す
る。本発明においては、非理想多成分系液体混合物に含
まれる4成分以上の各成分を所定の3成分系に組合わせ
て複数の3成分系群に分割する。この場合、n成分系混
合物における3成分系の組合わせは(但し、n≧4であ
って)、一般に、n!/〔(n−3)!・3!〕個、例
えば、n=5の場合、5!/(2!・3!)=10個だ
けの組合わせが考えられる。しかし、本発明は、3成分
系群を構成する3成分系の数をできる限り減少させるの
が好ましい。この3成分系を構成する成分組合わせは、
下記の基準等により3成分系群を選択することができ
る。
The present invention will be described in more detail below. In the present invention, four or more components contained in the non-ideal multi-component liquid mixture are combined into a predetermined three-component system and divided into a plurality of three-component system groups. In this case, the ternary combination in the n-component mixture (provided n ≧ 4) is generally n! / [(N-3)!・ 3! ], For example, if n = 5, 5! / (2! ・ 3!) = Only 10 combinations are possible. However, in the present invention, it is preferable to reduce the number of ternary systems constituting the ternary system group as much as possible. The combination of components that make up this three-component system is
The three-component system group can be selected based on the following criteria.

【0008】即ち、(1)沸点が近似し、通常、約2℃
以下の沸点差である組合わせ、(2)共沸系を形成する
組合わせ、及び(3)異性体または類似の官能基を有す
る化合物の組合わせを3成分系群から選択する。これら
の成分組合わせは、いずれも本発明の技術分野の通常の
知識に基づき容易に選択でき、上記(1)及び(2)の
組合わせの3成分系はいずれも分離が一般に困難である
ことが明らかであり、上記(3)の異性体等は、蒸留で
分離困難なため、いずれの方式においても2成分になり
残留するものであり、最終的にスーパーフラクショネー
トする必要があるためである。また、(4)沸点差が他
成分と著しく異なり、分離が確実である成分や成分系は
予め3成分系群の選択から除外することができる。上記
(1)〜(4)の選択基準により、多成分系から選択さ
れる3成分系群を構成する3成分系の数は、膨大な数と
ならず自ずと限定された数となる。そのため、後記する
蒸留シュミレーションも膨大なものでなく、比較的簡単
な演算で実施することができる。
That is, (1) Boiling point is similar, usually about 2 ° C.
The following combinations of boiling point differences, (2) combinations that form an azeotropic system, and (3) combinations of isomers or compounds having similar functional groups are selected from the ternary system group. Any of these combinations of components can be easily selected based on ordinary knowledge in the technical field of the present invention, and the three-component system of the combination of (1) and (2) described above is generally difficult to separate. It is clear that the isomers (3) and the like above are difficult to separate by distillation, and thus remain as two components in any of the methods, and it is necessary to finally superfractionate. is there. In addition, (4) a component or a component system whose boiling point difference is remarkably different from other components and can be reliably separated can be excluded in advance from the selection of the three-component system group. According to the above selection criteria (1) to (4), the number of three-component systems forming the three-component system group selected from the multi-component system does not become an enormous number but is naturally limited. Therefore, the distillation simulation, which will be described later, is not enormous and can be performed by a relatively simple calculation.

【0009】次いで、本発明は、上記のようにして選択
された3成分系群を構成する各3成分系について、全還
流素分離線図を求める。本発明の全還流素分離線図は、
発明者等により開発された非理想3成分系の気液平衡関
係を求めるシステム“ASOGおよびUNIFAC”
(小島、栃木著「ASOGおよびUNIFAC」198
6年化学工業社発行)を用いて得ることができる。例え
ば、メタノール・エタノール・水系の全還流蒸留線を、
原料組成と段数を変化させてASOGにより求めると図
1に示したようになる。図1において表示される各線図
は、各段数の全還流蒸留における気液平衡となる3成分
系の成分比を表示した素分離線図を表す。図1の素分離
線図からは、エタノールと水は351.32Kで共沸点
を有し分離が困難であるが、メタノールと水は蒸留によ
り分離可能であることが判断できる。本発明において
は、非理想多成分系をグラフに表示可能な3成分系群と
し、選択した3成分系に関し、上記のような全還流素分
離線図を得ることにより各成分の蒸留時の挙動を予め確
認し、分離システムを合成するものである。
Next, according to the present invention, a total reflux element separation diagram is obtained for each of the three-component systems constituting the three-component system group selected as described above. The total reflux element separation diagram of the present invention is
System "ASOG and UNIFAC" developed by the inventors for determining the gas-liquid equilibrium relationship of a non-ideal three-component system
(Kojima, Tochigi, "ASOG and UNIFAC" 198
6-year Chemical Industry Co., Ltd.). For example, a total reflux distillation line of methanol / ethanol / water
When the raw material composition and the number of stages are changed to obtain by ASOG, it becomes as shown in FIG. The respective diagrams displayed in FIG. 1 represent elementary separation diagrams showing the component ratios of the three-component system in vapor-liquid equilibrium in the total reflux distillation of each number of stages. From the elementary separation diagram of FIG. 1, it can be determined that ethanol and water have an azeotropic point of 351.32 K and separation is difficult, but methanol and water can be separated by distillation. In the present invention, a non-ideal multi-component system is a group of three-component systems that can be displayed in a graph, and regarding the selected three-component system, the behavior of each component at the time of distillation is obtained by obtaining the total reflux element separation diagram as described above. Is confirmed in advance and the separation system is synthesized.

【0010】分離システムの合成の始めは、選択された
3成分系群を構成する各3成分に関して得られた全還流
素分離線図を比較検討し、その結果、最も分離が困難で
蒸留の最終段階で分離されるべき組合わせ成分からなる
3成分系を選択する。次いで、その選択された3成分系
における分離すべき成分が所定濃度で、段数を適宜選択
した全還流蒸留の定常状態における塔頂留出物または缶
出物として得られるものとして物質収支を演算する。そ
の結果、得られた蒸留塔の仕込み組成物を、同様に前工
程の蒸留塔の全還流蒸留の定常状態で塔頂留出物または
缶出物となるようにして順次物質収支式での解を求め
る。所要数の蒸留工程について同様に物質収支を演算
し、所要の蒸留工程を経た後に得られた仕込み組成に、
始めに選択した3成分系以外の残りの成分の中から次い
で分離すべき成分を僅少量添加した組成が、同様に全還
流蒸留の定常状態において塔頂留出物または缶出物とし
て得られるものとして、上記と同様に物質収支の演算を
行い、次に分離すべき成分を僅少量添加する仕込み組成
を求める。上記のようにして、各蒸留工程における仕込
み組成、塔頂流出組成、缶出組成及び段数を適宜選択し
て、それぞれ、全還流下の定常状態の物質収支の演算を
分離すべき成分数に応じて順次繰り返し、原料である多
成分系液体混合物を仕込む蒸留塔に至るまで行い、最終
的な仕込み組成が、原料非理想多成分系液体混合物の組
成比に合致するようにシュミレートする。
At the beginning of the synthesis of the separation system, the total reflux element separation diagrams obtained for each of the three components constituting the selected three-component system group were compared and examined. As a result, the separation was most difficult and the final distillation was completed. Select a ternary system consisting of the combined components to be separated in stages. Then, the material balance is calculated as the overhead distillate or bottom product in the steady state of the total reflux distillation in which the components to be separated in the selected three-component system have a predetermined concentration and the number of plates is appropriately selected. .. As a result, the charge composition of the obtained distillation column is similarly solved by the mass balance equation so that it becomes a top distillate or bottom product in the steady state of the total reflux distillation of the distillation column of the previous step. Ask for. Similarly calculate the material balance for the required number of distillation steps, and to the composition obtained after the required distillation steps,
A composition obtained by adding a small amount of components to be separated from the remaining components other than the initially selected three-component system in the same manner as overhead distillate or bottom product in the steady state of total reflux distillation As the above, the material balance is calculated in the same manner as above, and then the charged composition in which a small amount of the component to be separated is added is determined. As described above, the charge composition, the overhead outflow composition, the bottom composition and the number of plates in each distillation step are appropriately selected, and the calculation of the steady state mass balance under total reflux is performed according to the number of components to be separated. The process is repeated until the distillation column is charged with the raw material multi-component liquid mixture, and the final composition is simulated so that the composition ratio of the raw material non-ideal multi-component liquid mixture matches.

【0011】上記のように順次、全還流下の定常状態の
物質収支をシュミレートし缶出組成、塔頂留出組成を算
出して、原料仕込み蒸留塔から次工程蒸留への多成分混
合物の抜き出し段を定めることができる。本発明の非理
想多成分系液体混合物の分離システムは、最終的には上
記のようにして得られたシュミレーション結果に基づ
き、運転条件、物質収支等必要条件に合わせ多成分系液
体混合物仕込み蒸留塔から次工程蒸留へと順次逆に再シ
ュミレートし直して、合成確立される。上記の全還流下
の定常状態の物質収支に関しては、下記の数式1〜数式
2により行うことができる。これらの解は、例えば、ニ
ュートン−ラプソン(Newton−Raphson)
法を用いて、数式3及び数式4によって示される目的関
数が1×10-8以下になるまで繰り返し計算して得るこ
とができる。
As described above, the material balance in the steady state under total reflux is sequentially simulated to calculate the bottom composition and the overhead distillation composition, and the multi-component mixture is withdrawn from the raw material charging distillation column to the next step distillation. You can define the steps. The separation system of the non-ideal multi-component liquid mixture of the present invention is based on the simulation result finally obtained as described above, and the multi-component liquid mixture-prepared distillation column is adapted to the operating conditions, material balance and other necessary conditions. Then, it is resimulated in the reverse order from the first step to the next step distillation to establish the synthesis. Regarding the above-mentioned steady state material balance under total reflux, it can be performed by the following mathematical formulas 1 and 2. These solutions can be found, for example, in Newton-Raphson.
It can be obtained by iteratively calculating by using the method until the objective functions represented by the formulas 3 and 4 become 1 × 10 −8 or less.

【0012】[0012]

【数1】 [Equation 1]

【0013】[0013]

【数2】 [Equation 2]

【0014】[0014]

【数3】 [Equation 3]

【0015】[0015]

【数4】 [Equation 4]

【0016】[0016]

【実施例】以下、本発明を実施例により詳細に説明す
る。但し、本発明は下記実施例により制限されるもので
ない。アセトン:エタノール:n- プロパノール:t-
ブタノール:水=7.9:9.9:36.6:31.
6:14.0である非理想5成分系液体混合物のアセト
ン−エタノール−n- プロパノール−t- ブタノール−
水(A−E−Pr−B−W)混合物についての分離シス
テムの合成について説明する。上記非理想5成分系にお
いて、3成分系群は前記のように本来10種の組合わせ
が存在するが、上記の原則(4)からアセトン(A)は
沸点が56.5℃と他の成分と異なり先ず分離可能であ
ることは自明であることから、3成分系群の選択から除
外する。従って、残り4成分のエタノール(E)、n-
プロパノール(Pr)、t-ブタノール(B)及び水
(W)から3成分の組合わせ選択する。これら4成分か
ら3成分系は、E−Pr−B、E−Pr−W、Pr−B
−W及びB−W−Eの4種類の組合わせがあるが、E−
Pr−Bの3成分系は、上記(4)の原則から除外し、
3成分系群(i) E−Pr−W、(ii)Pr−B−W及び(i
ii) B−W−Eの3種の3成分系についてそれぞれ全還
流素分離線図を求める。
EXAMPLES The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples. Acetone: Ethanol: n-Propanol: t-
Butanol: water = 7.9: 9.9: 36.6: 31.
Acetone-ethanol-n-propanol-t-butanol-of a non-ideal five-component liquid mixture with a ratio of 6: 14.0
The synthesis of a separation system for a water (AE-Pr-B-W) mixture is described. In the non-ideal five-component system, the three-component system group originally has 10 combinations as described above, but from the above principle (4), acetone (A) has a boiling point of 56.5 ° C. and other components. However, since it is obvious that it is separable first, it is excluded from the selection of the ternary system group. Therefore, the remaining four components ethanol (E), n-
A combination of three components is selected from propanol (Pr), t-butanol (B) and water (W). These four to three component systems are E-Pr-B, E-Pr-W, Pr-B.
There are four types of combinations of -W and B-W-E, but E-
Pr-B ternary system is excluded from the principle of (4) above,
Three-component system group (i) E-Pr-W, (ii) Pr-B-W and (i
ii) A total reflux element separation diagram is obtained for each of the three kinds of three-component systems B-W-E.

【0017】図2〜図4は、それぞれ3成分系群(i) E
−Pr−W、(ii)Pr−B−W及び(iii) B−W−Eの
全還流素分離線図である。図2〜図4において、各素分
離線a〜fは、それぞれ各図の下部に記載した仕込み原
料組成及び段数での“ASOG”システムにより求めた
全還流蒸留したときの気液平衡関係を表示したものであ
る。この図2〜4に示される各線図を検討すれば、図4
の(iii) B−W−Eの3成分系の組合わせが、蒸留にお
いて最も分離が困難であり、システムの合成の始めの系
として適当であり、また、t- ブタノールとエタノール
との分離能がよいことが分かる。図5は、図4の(iii)
B−W−Eの3成分系における分離線図dの原料組成で
段数を200段としたときの分離線図で、t- ブタノー
ルとエタノールの分離がより明白に表示される。上記の
ように、A−E−Pr−B−W液体混合物の5成分系か
らアセトンを除いた4成分系においては、先ず最終段階
でt- ブタノール−エタノール−水の3成分からt- ブ
タノールとエタノールとが分離できることが明らかにな
った。この結果に基づき、次に5成分系液体混合物の分
離システムを合成する。
2 to 4 are each a three-component system group (i) E
It is a total reflux element separation diagram of -Pr-W, (ii) Pr-B-W, and (iii) B-W-E. In FIGS. 2 to 4, each separation line a to f represents the gas-liquid equilibrium relationship at the time of total reflux distillation obtained by the “ASOG” system with the composition of the charged raw materials and the number of stages described at the bottom of each drawing. It was done. Considering each of the diagrams shown in FIGS.
(Iii) The combination of the three-component system B-W-E, which is the most difficult to separate in distillation, is suitable as the starting system for the synthesis of the system, and the separation ability between t-butanol and ethanol. It turns out that is good. FIG. 5 shows (iii) of FIG.
Separation of t-butanol and ethanol is more clearly displayed in the separation diagram when the number of stages is 200 in the raw material composition in the separation diagram d of B-WE. As described above, in the four-component system in which acetone is removed from the five-component system of the A-E-Pr-B-W liquid mixture, first, in the final step, the three components of t-butanol-ethanol-water are changed to t-butanol. It became clear that it could be separated from ethanol. Based on this result, a five-component liquid mixture separation system is then synthesized.

【0018】分離システム合成を図6のブロックフロー
シートに沿って、更に説明する。図6において、蒸留塔
1〜5の各蒸留塔において理論段数N=30、全仕込量
T=32モル、缶液量S=1モル、留出量P=1モ
ル、液ホールドアップHj =1モルの条件に設定した。
先ず、蒸留塔5で分離すべきt-ブタノールを得るため、
缶出組成(モル%、以下同様)としてA:E:Pr:
B:W=0.0:0.1:0.0:99.8:0.1を
設定して、それぞれ上記条件と共に数式1〜数式2に算
入して全還流蒸留下の定常状態の物質収支計算を行い、
塔頂留出組成としてA:E:Pr:B:W=0.0:
1.8:0.0:63.2:35.6及び仕込み組成を
算出し、得られた各仕込み組成が前工程の蒸留塔の缶出
組成にそれぞれ一致するまで順次繰り返し計算させた。
この場合、順次蒸留塔3まで同様に計算させ、約5蒸留
工程を経てt-ブタノールとエタノールとの分離開始工程
となる蒸留塔3に到達した。
Separation system synthesis will be further described with reference to the block flow sheet of FIG. In FIG. 6, in each of the distillation columns 1 to 5, the theoretical plate number N = 30, the total charge amount S T = 32 mol, the bottom liquid amount S = 1 mol, the distillation amount P = 1 mol, and the liquid holdup H j = 1 mol was set.
First, in order to obtain t-butanol to be separated in the distillation column 5,
A: E: Pr: as a bottom composition (mol%, the same applies below)
B: W = 0.0: 0.1: 0.0: 99.8: 0.1 is set, and the substances in the steady state under total reflux distillation are included in the formulas 1 and 2 together with the above conditions. Make a balance calculation,
As the overhead distillation composition, A: E: Pr: B: W = 0.0:
1.8: 0.0: 63.2: 35.6 and the charged composition were calculated, and the calculation was repeated until each of the obtained charged compositions corresponded to the bottom composition of the distillation column in the previous step.
In this case, the same calculation was sequentially performed up to the distillation column 3, and after reaching about 5 distillation steps, it reached the distillation column 3 which is the step of starting the separation of t-butanol and ethanol.

【0019】この所定の蒸留塔3への所要工程数は、蒸
留塔3及び以下順に、前工程の塔頂留出組成を仕込み組
成とする蒸留工程における全還流下の定常状態の物質収
支計算を順次行い、所要工程数の後に蒸留塔4において
t-ブタノールと分離されるエタノール濃度が所定の8
9.7モル%となるように、蒸留塔3の塔頂留出組成と
缶出組成を有するようにシュミレートした。この場合、
分離すべきエタノールとt-ブタノールのそれぞれの組成
濃度を設定し、両者の値から同様に計算しシュミレート
してもよい。次いで、上記のように設定された蒸留塔3
の仕込み組成を算出し、得られた仕込み組成が前段の蒸
留塔2の塔頂留出組成とほぼ一致するものとし、n-プロ
パノールのPr分を僅少量(約1×10-7モル%)添加
した組成として蒸留塔2における缶出組成と仕込み組成
を同様に求め、得られた仕込み組成に同様にアセトンの
A分を僅少量(約1×10-7モル%)添加した組成が前
段の蒸留塔1の中間段組成として得られると共に、塔頂
留出組成がAを主成分とし、缶出組成がPrを主成分と
し、更に仕込み組成が所定の原料組成に一致するか確認
した。
The number of steps required for this predetermined distillation column 3 is calculated by the mass balance calculation in the steady state under total reflux in the distillation step in which the distillation composition of the distillation column 3 and the following steps are used as the charge composition. Performed sequentially, and after the required number of steps, in the distillation column 4
The concentration of ethanol separated from t-butanol is 8
The distillation column 3 was simulated to have a top distillate composition and a bottom composition so that the content was 9.7 mol%. in this case,
It is also possible to set the respective compositional concentrations of ethanol and t-butanol to be separated, and similarly calculate and simulate from both values. Then, the distillation column 3 set as described above
Was calculated, and the obtained composition was almost the same as the top distillate composition of the distillation column 2 in the first stage, and the Pr content of n-propanol was very small (about 1 × 10 −7 mol%). As the added composition, the bottom composition and the charging composition in the distillation column 2 were obtained in the same manner, and the composition in which the A component of acetone was added in a small amount (about 1 × 10 −7 mol%) in the same manner as in the obtained charging composition was It was confirmed that it was obtained as an intermediate stage composition of the distillation column 1, the overhead distillation composition was A as a main component, the bottom composition was Pr as a main component, and that the charged composition matched the predetermined raw material composition.

【0020】上記方式によるシュミレーションは、各蒸
留塔におけるシュミレーション毎に所定の原料組成に一
致するように下流の蒸留塔から原料仕込み蒸留塔へ演算
させて行った。その結果を、図6において、各蒸留塔1
〜5の仕込み組成、塔頂留出組成、缶出組成としてそれ
ぞれライン部分に示した。
The simulation according to the above method was performed by calculating from the downstream distillation column to the raw material charging distillation column so that the simulation would match a predetermined raw material composition for each simulation in each distillation column. The results are shown in FIG.
The charged composition, the overhead distillation composition and the bottom composition of Nos. 5 to 5 are shown in the line portions.

【0021】[0021]

【発明の効果】本発明は、従来、熟練技術者によりコン
ピューターを駆使して求めていた非理想多成分系液体混
合物の分離システムが、グラフ上に表示可能な3成分系
の全還流素分離線図を利用して、簡単なシュミレーショ
ンにより分離システムを合成することができ工業上有用
である。
INDUSTRIAL APPLICABILITY In the present invention, a separation system for a non-ideal multi-component liquid mixture, which has been conventionally sought by a skilled engineer using a computer, is a three-component system total reflux element separation line which can be displayed on a graph. Using the figure, a separation system can be synthesized by a simple simulation, which is industrially useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の3成分系混合物の全還流素分離線図の
一例
FIG. 1 is an example of a total reflux element separation diagram of a ternary mixture of the present invention.

【図2】本発明の一実施例の3成分系混合物の全還流素
分離線図
FIG. 2 is a total reflux element separation diagram of a ternary mixture according to an embodiment of the present invention.

【図3】本発明の一実施例の3成分系混合物の全還流素
分離線図
FIG. 3 is a total reflux element separation diagram of a ternary mixture according to an embodiment of the present invention.

【図4】本発明の一実施例の3成分系混合物の全還流素
分離線図
FIG. 4 is a total reflux element separation diagram of a ternary mixture according to an embodiment of the present invention.

【図5】本発明の一実施例の3成分系混合物の全還流素
分離線図から分離システム合成に利用した一全還流素分
離線
FIG. 5: Total reflux element separation line used for synthesis of separation system from total reflux element separation line diagram of ternary mixture of one embodiment of the present invention

【図6】本発明の一実施例のブロックフローシートFIG. 6 is a block flow sheet of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非理想多成分系液体混合物に含まれる所
定の3成分系群を複数選択し、該各3成分系の全還流素
分離線図に基づき合成されることを特徴とする非理想多
成分系液体混合物の分離システム。
1. A non-ideal, characterized in that a plurality of predetermined three-component system groups included in a non-ideal multi-component liquid mixture are selected and synthesized based on a total reflux element separation diagram of each of the three-component systems. Separation system for multi-component liquid mixtures.
JP22992591A 1991-09-10 1991-09-10 Separation system for nonideal multicomponent liquid mixtures Pending JPH0568801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22992591A JPH0568801A (en) 1991-09-10 1991-09-10 Separation system for nonideal multicomponent liquid mixtures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22992591A JPH0568801A (en) 1991-09-10 1991-09-10 Separation system for nonideal multicomponent liquid mixtures

Publications (1)

Publication Number Publication Date
JPH0568801A true JPH0568801A (en) 1993-03-23

Family

ID=16899891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22992591A Pending JPH0568801A (en) 1991-09-10 1991-09-10 Separation system for nonideal multicomponent liquid mixtures

Country Status (1)

Country Link
JP (1) JPH0568801A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1080766A1 (en) * 1999-09-03 2001-03-07 Air Products And Chemicals, Inc. Process for the separation of multicomponent mixtures
KR100864391B1 (en) * 2004-02-25 2008-10-20 마이크로닉 레이저 시스템즈 에이비 Methods for exposing patterns and emulating masks in optical maskless lithography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1080766A1 (en) * 1999-09-03 2001-03-07 Air Products And Chemicals, Inc. Process for the separation of multicomponent mixtures
KR100864391B1 (en) * 2004-02-25 2008-10-20 마이크로닉 레이저 시스템즈 에이비 Methods for exposing patterns and emulating masks in optical maskless lithography

Similar Documents

Publication Publication Date Title
Rose et al. Continuous distillation calculations by relaxation method
Foust et al. Principles of unit operations
Doherty et al. Design and synthesis of homogeneous azeotropic distillations. 3. The sequencing of columns for azeotropic and extractive distillations
US2245945A (en) Extraction of mixtures of isomeric organic compounds
Lang et al. Nonlinear observers for distillation columns
JPH0568801A (en) Separation system for nonideal multicomponent liquid mixtures
Thong et al. Distillation design and retrofit using stage-composition lines
Temmel et al. Equilibrium model of a continuous crystallization process for separation of substances exhibiting solid solutions
Bart et al. Reactive solvent extraction
Gavhane Mass transfer-ii
Scheibel Fractional Liquid Extraction-Relation between Batchwise and Continuous Countercurrent Extraction.
Palibroda Approach to the Theory of Separating Columns with Successive Exchange Between Three Fluids
Englert et al. Counter-current fractionation of polymers using their incompatibility
Williams Jr et al. A method of calculating countercurrent distribution curves of nonideal solutes
Tierney et al. Calculation methods for distillation systems with reaction
Boehm et al. A modeling and control framework for extraction processes
Hudson et al. Two-Dimensional Cross-Flow Extraction
Thomas et al. Separation of thulium and ytterbium in acidic chloride solutions by fractional solvent extraction
Hiester et al. Continuous Countercurrent Ion Exchange with Gross Components: Technical Report Number 6. In an equilibrium stage contractor. In a continuous countercurrent column
Anwar et al. Multistage separation of quinoline and iso-quinoline by dissociation extraction
Pfeiffer A graphical method for calculating ion exchange columns
Von Halle Stage separation theory
JP2006514882A (en) Method and apparatus for simulating separation process controlled mass transfer and heat transfer
Albin et al. Removal of organics from water in an aeration basin: a mathematical model
Modla et al. Batch heteroazeotropic rectification of a low α mixture under continuous entrainer feeding