JPH0568589A - Production of optically active carboxylic acid and its enantiomer ester - Google Patents

Production of optically active carboxylic acid and its enantiomer ester

Info

Publication number
JPH0568589A
JPH0568589A JP3249923A JP24992391A JPH0568589A JP H0568589 A JPH0568589 A JP H0568589A JP 3249923 A JP3249923 A JP 3249923A JP 24992391 A JP24992391 A JP 24992391A JP H0568589 A JPH0568589 A JP H0568589A
Authority
JP
Japan
Prior art keywords
carboxylic acid
optically active
transformed
dna fragment
esterase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3249923A
Other languages
Japanese (ja)
Other versions
JP2763213B2 (en
Inventor
Eiji Ozaki
英司 尾崎
Akihiro Sakimae
明宏 崎前
Ryozo Numazawa
亮三 沼沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP24992391A priority Critical patent/JP2763213B2/en
Priority to US07/882,329 priority patent/US5308765A/en
Priority to CA002068614A priority patent/CA2068614C/en
Priority to EP92108205A priority patent/EP0513806B1/en
Priority to DE69218034T priority patent/DE69218034T2/en
Priority to AT92108205T priority patent/ATE150087T1/en
Priority to KR1019920008207A priority patent/KR100232552B1/en
Publication of JPH0568589A publication Critical patent/JPH0568589A/en
Priority to US08/183,213 priority patent/US5482847A/en
Application granted granted Critical
Publication of JP2763213B2 publication Critical patent/JP2763213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject compound in an extremely good yield in a short time by treating the racemate of a carboxylate ester with a transformed microorganism containing a DNA fragment coding a specific esterase having excellent thermal stability. CONSTITUTION:A host microorganism is transformed with a recombinant ligated with a DNA fragment comprising a base sequence of formula I originated from Pseudomonas putida MR-2068 (FERN P9677) or its part to obtain a transformant. The cultured solution of the transformed microorganism or its cells (treated product) is acted on the racemate of a carboxylate ester of formula II (R1 is alkyl, aryl, etc.; R2, R3 are alkyl; (n) is 1, 2) preferably at a pH of 5-8 at a reaction temperature of >=40 deg.C to obtain the objective compound of formula III.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、 一般式The present invention has the general formula

【0002】[0002]

【化3】 [Chemical 3]

【0003】(式中、 R1 はアルキル基、アラルキル基
またはアリール基、 R2 及び R3 はアルキル基、nは1
または2を示す) で表されるカルボン酸エステルのラセ
ミ体(以下、カルボン酸エステル〔I〕という。)を不
斉加水分解するエステラーゼをコードするDNA断片を
組み込んだプラスミドDNAにより宿主微生物を形質転
換した形質転換微生物を用いて不斉加水分解することか
ら成る光学活性カルボン酸及びその対掌体エステルの製
造法に関する。
(Wherein R 1 is an alkyl group, an aralkyl group or an aryl group, R 2 and R 3 are alkyl groups, and n is 1
Or 2), a host microorganism is transformed with a plasmid DNA into which a DNA fragment encoding an esterase that asymmetrically hydrolyzes a racemate of a carboxylic acid ester (hereinafter referred to as a carboxylic acid ester [I]) is incorporated. And a method for producing an optically active carboxylic acid and its enantiomer ester, which comprises asymmetric hydrolysis using the transformed microorganism described above.

【0004】[0004]

【従来の技術】[Prior Art]

一般式 General formula

【0005】[0005]

【化4】 [Chemical 4]

【0006】(式中、 R1, R2,nは前記と同様) で表さ
れる光学活性カルボン酸及びその対掌体エステルは、種
々の生理活性物質の合成原料として有用であり、本発明
者らは、既に、一般式〔I〕で表されるカルボン酸エス
テルのラセミ体を酵素や微生物を用いて不斉加水分解す
る方法を初めて提案している (例えば特開昭60-12992号
公報、同60-12993号公報など参照) 。
The optically active carboxylic acid represented by the formula (wherein R 1, R 2, and n are the same as above) and its enantiomer ester are useful as raw materials for synthesizing various physiologically active substances. The present inventors have already proposed for the first time a method of asymmetrically hydrolyzing a racemate of a carboxylic acid ester represented by the general formula [I] using an enzyme or a microorganism (for example, JP-A-60-12992). , 60-12993, etc.).

【0007】本発明者らは更にこの不斉加水分解活性の
高いエステラーゼ生産菌株として、土壌より分離取得し
たシュードモナス プチダ微工研菌寄第9677号を提案し
ている (特開平1-222798号公報参照) 。一方、現在で
は、より一層酵素活性の高い微生物を取得するための手
段として組換えDNA技術がしばしば用いられている
が、上記の反応に関与するエステラーゼの生産能力を向
上させることを目的としたものとしては、DNA断片と
してシュードモナス フルオレセンス (Pseudomonas fl
uorescens) IFO3018由来のエステラーゼをコードする遺
伝子のDNA断片を調製し、該DNA断片を組み込んだ
プラスミドDNAにより宿主微生物を形質転換して得た
形質転換微生物を使用する方法が知られている(特開平
1-67190号公報)。
The present inventors have further proposed, as this esterase-producing strain having a high asymmetric hydrolysis activity, Pseudomonas putida microscopic research institute No. 9677 obtained by isolation from soil (Japanese Patent Laid-Open No. 1-222798). See). On the other hand, at present, recombinant DNA technology is often used as a means for obtaining a microorganism having a higher enzyme activity, but it is intended to improve the production capacity of esterase involved in the above reaction. As a DNA fragment, Pseudomonas fluorescens (Pseudomonas fl
Uorescens) A method is known in which a DNA fragment of a gene encoding an esterase derived from IFO3018 is prepared, and a transformed microorganism obtained by transforming a host microorganism with a plasmid DNA incorporating the DNA fragment is used (Japanese Patent Application Laid-Open No. HEI-H10 (1998)).
1-67190 publication).

【0008】[0008]

【発明が解決しようとする課題】上記のようなカルボン
酸エステル[I]を不斉加水分解するに際しては、酵素
の精製等の繁雑な操作を省いて菌体そのものを酵素源と
して使用することが通常為される。この手法において効
率的な反応を行うためには、菌体の酵素活性が高いこと
は勿論、酵素自体の性質として光学純度の高いカルボン
酸の生成能を有すること、かつ温度やpH等の反応諸条件
に対して安定性が高いことが必要である。とくに熱安定
性の劣る酵素は経時的に熱失活が起こるため反応温度上
昇による反応速度向上、あるいは酵素回収再利用といっ
たことを図ることが難しく、効率的な反応を行うために
は熱安定性が良好な酵素を産生する菌体を取得すること
が必要である。
When carrying out asymmetric hydrolysis of the above-mentioned carboxylic acid ester [I], it is preferable to omit complicated operations such as purification of the enzyme and use the bacterial cell itself as the enzyme source. Usually done. In order to carry out an efficient reaction in this method, not only the enzyme activity of the bacterial cells is high, but also the ability of the enzyme itself to produce a carboxylic acid with high optical purity and the reaction conditions such as temperature and pH. It needs to be highly stable to the conditions. Especially for enzymes with poor thermal stability, heat deactivation occurs over time, making it difficult to improve the reaction rate by increasing the reaction temperature or to recover and reuse the enzyme. It is necessary to obtain bacterial cells that produce good enzymes.

【0009】菌体の酵素活性の高める方法としては前記
特開平1-67190号に開示されているように組み換えDN
A技術が有効である。一方、酵素自体の性質は、本質的
には酵素をコードしたDNAに対応しており、上記諸条
件に対する安定性の高い酵素を取得しようとすれば、ま
ず諸反応条件に対して安定性の優れた酵素をコードする
DNA断片を見いだす必要がある。
As a method for increasing the enzyme activity of the bacterial cells, recombinant DN is disclosed in Japanese Patent Laid-Open No. 67190/1989.
A technology is effective. On the other hand, the property of the enzyme itself essentially corresponds to the DNA encoding the enzyme, and if an enzyme having high stability to the above-mentioned conditions is to be obtained, first, the enzyme has excellent stability to the reaction conditions. It is necessary to find a DNA fragment encoding the enzyme.

【0010】しかしながら、前記したように特開平1-6
7190号においては、シュードモナスフルオレセンス (Ps
eudomonas fluorescens) IFO 3018由来のエステラーゼ
をコードしたDNA断片を組み込んだプラスミドDNA
から成る形質転換微生物が開示されているが、この菌株
のエステラーゼは熱安定性が劣り、例えば45℃以上の温
度では数時間で失活してしまう問題点を有していた。
However, as described above, Japanese Patent Laid-Open No. 1-6
Pseudomonas fluorescens (Ps
eudomonas fluorescens) plasmid DNA incorporating a DNA fragment encoding an esterase derived from IFO 3018
However, the esterase of this strain is inferior in thermostability and has a problem that it is inactivated in several hours at a temperature of 45 ° C. or higher, for example.

【0011】そこで、本発明の課題は、カルボン酸エス
テル〔I〕を不斉加水分解するに際し、熱安定性の優れ
たエステラーゼをコードするDNA断片を調製し、この
DNA断片を含みかつ良好な発現性を有する形質転換微
生物を用いて、該不斉加水分解を効率良く行うことにあ
る。
Therefore, an object of the present invention is to prepare a DNA fragment encoding an esterase having excellent thermostability when asymmetrically hydrolyzing a carboxylic acid ester [I], and to contain the DNA fragment and to achieve good expression. This is to efficiently perform the asymmetric hydrolysis using a transformed microorganism having a property.

【0012】[0012]

【課題を解決するための手段】本発明者らは、前記カル
ボン酸エステル[I]を効率良く不斉加水分解するべく
有効な酵素源を用いる方法に関して鋭意研究した結果、
本発明者らが土壌から分離した、シュードモナス プチ
ダ微工研菌寄第9677号からクローニングされたエステラ
ーゼ遺伝子を含む形質転換微生物の菌体を用いれば、該
菌体が高い酵素活性を有するとともに、該酵素は50℃以
上の高温反応でも経時的な熱失活が起きないことにより
極めて収率良くかつ短時間に反応を行うことができるこ
とを見いだし、本発明に至った。
Means for Solving the Problems As a result of intensive studies on the method of using an enzyme source effective for asymmetric hydrolysis of the above-mentioned carboxylic acid ester [I], the present inventors have
The present inventors have isolated from the soil, by using the cells of the transforming microorganism containing the esterase gene cloned from Pseudomonas putida Microbiology Research Institute No. 9677, the cells have high enzymatic activity, The present inventors have found that the enzyme can perform the reaction in an extremely high yield and in a short time because heat deactivation does not occur with time even at a high temperature reaction of 50 ° C. or higher, and the present invention has been completed.

【0013】すなわち本発明は、 一般式That is, the present invention has the general formula

【0014】[0014]

【化5】 [Chemical 5]

【0015】(式中、 R1 はアルキル基、アラルキル基
またはアリール基、 R2 及び R3 はアルキル基、nは1
または2を示す) で表されるカルボン酸エステルのラセ
ミ体に、配列番号1の塩基配列又はその一部から成るD
NA断片を連結した組み換え体プラスミドを含む形質転
換微生物の培養液、菌体または菌体処理物を作用させる
ことを特徴とする、 一般式
(Wherein R 1 is an alkyl group, an aralkyl group or an aryl group, R 2 and R 3 are alkyl groups, and n is 1
Or 2) in the racemic form of the carboxylic acid ester represented by
A general formula, characterized in that a culture medium, cells or treated product of transformed microorganisms containing a recombinant plasmid to which NA fragment is ligated is applied.

【0016】[0016]

【化6】 [Chemical 6]

【0017】(式中、 R1, R1 及びnは前記と同様) で
表される光学活性カルボン酸(以下、光学活性カルボン
酸〔II〕という)及びその対掌体エステルの製造法に関
するものである。上記一般式[I]及び[II]の置換基
R1 において、アルキル基としては例えばメチル基、エ
チル基などが、アラルキル基としては例えばベンジル基
が、アリール基としては、例えばフェニル基がそれぞれ
挙げられ、置換基 R2 又は R3 のアルキル基としては、
例えばメチル基、エチル基が挙げられる。そして、カル
ボン酸エステル[I]としては、例えばβ−アセチルチ
オ−α−メチルプロピオン酸メチル、S−アセチル−β
−メルカプトイソ酪酸メチル、S−アセチル−γ−メル
カプト−α−メチル−n−酪酸メチル、S−ベンゾイル
−β−メルカプトイソ酪酸メチル、S−フェニルアセチ
ル−β−メルカプトイソ酪酸メチル等が挙げられる。
(Wherein R 1, R 1 and n are the same as above) and a method for producing an optically active carboxylic acid (hereinafter referred to as an optically active carboxylic acid [II]) and its enantiomer ester Is. Substituents of the above general formulas [I] and [II]
In R 1 , examples of the alkyl group include a methyl group and an ethyl group, examples of the aralkyl group include a benzyl group, examples of the aryl group include a phenyl group, and examples of the substituent R 2 or R 3 include an alkyl group. Is
Examples thereof include a methyl group and an ethyl group. Then, as the carboxylic acid ester [I], for example, methyl β-acetylthio-α-methylpropionate, S-acetyl-β
-Methyl mercaptoisobutyrate, methyl S-acetyl-γ-mercapto-α-methyl-n-butyrate, methyl S-benzoyl-β-mercaptoisobutyrate and methyl S-phenylacetyl-β-mercaptoisobutyrate.

【0018】本発明にかかわるDNA断片の特徴である
配列番号1の塩基配列は、実施例1で得た組み換え体プ
ラスミドの全塩基配列を調査の上、活性に必須の領域と
SD配列などから決定されたものであるがその決定法詳
細は実施例1に記載の通りである。本願発明にかかわる
DNA断片供与体としてはシュードモナス プチダ(Pse
udomonas putida)微工研菌寄第9677号が適当である。本
菌株からのエステラーゼ遺伝子を含むDNA断片のクロ
ーニング、組み換え体プラスミドの調製、組み換え体プ
ラスミドの微生物への導入は例えば実施例に記載した方
法で実施可能である。
The nucleotide sequence of SEQ ID NO: 1, which is a characteristic of the DNA fragment according to the present invention, is determined from the region essential for activity and the SD sequence after investigating the entire nucleotide sequence of the recombinant plasmid obtained in Example 1. The details of the determination method are as described in Example 1. As a DNA fragment donor according to the present invention, Pseudomonas putida (Pse
udomonas putida) Microorganisms Research Institute No. 9677 is suitable. Cloning of a DNA fragment containing an esterase gene from this strain, preparation of a recombinant plasmid, and introduction of the recombinant plasmid into a microorganism can be carried out, for example, by the method described in Examples.

【0019】本願発明の熱安定性の優れたエステラーゼ
遺伝子を形質転換された微生物はDNA供与体である親
株シュードモナス プチダ (Pseudomonas putida) 微工
研菌寄第9677号と同様の酵素学的性質を有し、また多コ
ピープラスミドに連結することで親株に比べて遙かに高
活性を発現する。この形質転換微生物は、これを含む培
養液、菌体または菌体処理物として反応に用いられる。
The microorganism transformed with the esterase gene having excellent thermostability of the present invention has the same enzymatic property as that of the parent strain Pseudomonas putida which is a DNA donor. In addition, by ligating to a multi-copy plasmid, it expresses much higher activity than the parent strain. This transformed microorganism is used in the reaction as a culture solution containing the same, cells, or a treated product of cells.

【0020】これら形質転換微生物の培養は、通常は液
体培養で行われるが、固体培養によっても行うことがで
きる。培地としては、例えばLB培地が用いられる。培
養は10〜50℃の温度で、pH2〜11の範囲で行われる。微
生物の生育を促進させるために通気攪拌を行ってもよ
い。加水分解反応を行うに際しては、培養の開始時又は
途中で培地にカルボン酸エステル〔I〕を添加してもよ
く、あらかじめ微生物を培養したのち培養液にカルボン
酸エステル〔I〕を添加してもよい。また増殖した微生
物の菌体を遠心分離等により採取し、これをカルボン酸
エステルを含む反応媒体に加えてもよい。この場合菌体
は取り扱い上の便宜から、乾燥菌体例えば凍結乾燥菌
体、噴霧乾燥菌体又は有機溶媒例えばアセトン、トルエ
ン等で処理した菌体、あるいは菌体破壊物、菌体抽出物
等の菌体処理物を用いることもできる。反応媒体として
は例えばイオン交換水又は緩衝液が用いられる。反応媒
体又は培養液中のカルボン酸エステルの濃度は0.01〜50
重量%が好ましい。カルボン酸エステルは水に懸濁した
状態で加えることもできる。メタノール、アセトンなど
の有機溶媒を反応液に加えてエステルの溶解性を向上さ
せることもできる。反応液のpHは2〜11、好ましくは5
〜8の範囲である。反応が進行するに伴い生成した光学
活性カルボン酸により反応液のpHが低下してくるが、こ
の場合は適当な中和剤で最適なpHに維持することが好ま
しい。反応温度に関しては本願発明の形質転換微生物の
生産する酵素は極めて熱安定性が良好であるため、5〜
80℃で反応が可能であるが、この菌株生成酵素の特徴を
生かすためにも好ましくは40℃以上が好ましい。酵素活
性を維持しつつ高温反応が可能となる。
Cultivation of these transformed microorganisms is usually carried out by liquid culture, but can also be carried out by solid culture. As the medium, for example, LB medium is used. Culturing is performed at a temperature of 10 to 50 ° C. and a pH range of 2 to 11. Aeration and agitation may be carried out to promote the growth of microorganisms. When carrying out the hydrolysis reaction, the carboxylic acid ester [I] may be added to the medium at the beginning or during the culture, or the carboxylic acid ester [I] may be added to the culture medium after culturing the microorganism in advance. Good. Alternatively, the cells of the grown microorganism may be collected by centrifugation or the like and added to the reaction medium containing the carboxylic acid ester. In this case, the cells are, for convenience of handling, dried cells such as freeze-dried cells, spray-dried cells or cells treated with an organic solvent such as acetone or toluene, or disrupted cells, cell extracts, etc. A treated product of bacterial cells can also be used. As the reaction medium, for example, ion-exchanged water or a buffer solution is used. The concentration of carboxylic acid ester in the reaction medium or culture solution is 0.01 to 50.
Weight percent is preferred. The carboxylic acid ester can also be added in a state of being suspended in water. An organic solvent such as methanol or acetone may be added to the reaction solution to improve the solubility of the ester. The pH of the reaction solution is 2 to 11, preferably 5
The range is from 8 to 8. As the reaction proceeds, the pH of the reaction solution decreases due to the optically active carboxylic acid formed. In this case, it is preferable to maintain the pH at an optimum level with a suitable neutralizing agent. Regarding the reaction temperature, since the enzyme produced by the transformed microorganism of the present invention has extremely good thermal stability,
The reaction is possible at 80 ° C, but it is preferably 40 ° C or higher in order to utilize the characteristics of this strain-forming enzyme. A high temperature reaction is possible while maintaining the enzyme activity.

【0021】反応液又は培養液からの生成物の分離精製
は、通常の方法例えば抽出、再結晶、カラムクロマトグ
ラフィ等により行うことができる。 実施例1 1) エステラーゼ遺伝子をコードしたDNA断片のクロ
ーニング Pseudomonas putida (微工研菌寄第9677号) の培養菌体
より、Marmur 等の方法[J. Marmur, J. of Molecular
Biology, , 208, (1961) ]にしたがって染色体DN
Aを調製した。これを制限酵素EcoRI で部分分解しDN
A断片を得た。一方、ベクタープラスミドpUC19 を同酵
素で切断した。 EcoRI切断により直線状となったpUC19
とPseudomonas putidaからのDNA断片とを混ぜ、T4
DNAリガーゼで末端を結合させることにより雑種DN
Aを形成させた。これを、あらかじめCaCl2 処理により
外来DNAを受け入れやすくした宿主微生物のEscheric
hia coli K-12株の一つである JM105株に導入した。 pU
C19を含む JM105株をアンピシリンとIPTG、XGalを含む
LB寒天培地で増殖させると JM105株内で発現されたβ
−ガラクトシダーゼ活性によりXGalが切断され青色のコ
ロニーを形成した。ここでpUC19 のマルチクローニング
部位に外来DNA断片が挿入された場合はβ−ガラクト
ーダーゼ活性は発現されずコロニーは無色になることを
利用してPseudomonas putida由来のエステラーゼ遺伝子
を発現する形質転換株を選び出すために、アンピシリン
とIPTG、XGalを含むLB寒天培地において無色のコロニ
ーを選択し、そのうちでエステラーゼ活性を発現する株
をスクリーニングした。エステラーゼ遺伝子を持つEsch
erichia coli JM105株の検索は以下のように行った。10
mMトリス-HCl (pH7.5)、0.01%ブロモクレゾールパープ
ル、100ppm (±) −β−アセチルチオ−α−メチルプロ
ピオン酸メチルを染み込ませたロ紙にコロニーを移し室
温にて数時間放置した。エステラーゼ活性を持つコロニ
ーは酸を生成しコロニー付近のpHは低下した。pH指示薬
であるブロモクレゾールパープルは青紫色から黄色に変
化するため、肉眼観察によりエステラーゼ遺伝子を持つ
株を得ることが出来た。
Separation and purification of the product from the reaction solution or the culture solution can be carried out by an ordinary method such as extraction, recrystallization, column chromatography and the like. Example 1 1) Cloning of a DNA fragment encoding an esterase gene From the cultured bacterial cells of Pseudomonas putida (Microtechnology Research Institute, No. 9677), the method of Marmur et al. [J. Marmur, J. of Molecular
Biology, 3 , 208, (1961)]
A was prepared. This was partially digested with the restriction enzyme EcoRI and DN
A fragment was obtained. On the other hand, the vector plasmid pUC19 was cut with the same enzyme. PUC19 linearized by EcoRI digestion
And the DNA fragment from Pseudomonas putida are mixed together, and T4
Hybrid DN by ligating ends with DNA ligase
A was formed. Escheric of the host microorganism, which was previously treated with CaCl 2 to make it easier to accept foreign DNA
It was introduced into the JM105 strain, which is one of the hia coli K-12 strains. pU
When the JM105 strain containing C19 was grown on LB agar medium containing ampicillin, IPTG and XGal, β expressed in the JM105 strain was expressed.
-Galactosidase activity cleaved XGal to form blue colonies. To select a transformant expressing the esterase gene derived from Pseudomonas putida by utilizing the fact that when a foreign DNA fragment is inserted into the multiple cloning site of pUC19, the β-galactose activity is not expressed and the colony becomes colorless. In addition, colorless colonies were selected on LB agar medium containing ampicillin, IPTG and XGal, and among them, a strain expressing esterase activity was screened. Esch with an esterase gene
The search for erichia coli JM105 strain was performed as follows. Ten
The colonies were transferred to a paper impregnated with mM Tris-HCl (pH 7.5), 0.01% bromocresol purple, and 100 ppm (±) -β-acetylthio-α-methylmethylpropionate and left at room temperature for several hours. Colonies with esterase activity produced acid and the pH around the colonies decreased. Bromocresol purple, which is a pH indicator, changed from blue-purple to yellow, so that a strain having an esterase gene could be obtained by visual observation.

【0022】この形質転換株から再びプラスミドDNA
を取り出し、これを種々の制限酵素で切断し、より小さ
なDNA断片を持つプラスミドpPE101、pPE110、pPE11
1、pPE112、pPE113、pPE114、pPE115及びpPE116を作成
した。これらのプラスミドによってE.coliJM105 を形質
転換した株のエステラーゼ活性の有無によって、エステ
ラーゼ遺伝子の位置を知ることが出来た〔図1参照〕。
From this transformant, a plasmid DNA is again obtained.
Of the plasmid pPE101, pPE110, pPE11 having smaller DNA fragments.
1, pPE112, pPE113, pPE114, pPE115 and pPE116 were prepared. The position of the esterase gene could be known depending on the presence or absence of esterase activity of the strain transformed with E. coli JM105 by these plasmids (see FIG. 1).

【0023】なお、E.coliJM105 をプラスミドpPE116で
形質転換したE.coli JM105(pPE116)は工業技術院微生物
工業技術研究所にMR-2101 として寄託し、その寄託番号
は微工研菌寄第12232 号である。 2) エステラーゼ遺伝子の塩基配列の決定と予想される
アミノ酸配列 pPE116に含まれる親株由来のDNA断片の全塩基配列
を、M13 ファージベクターを用いたdideoxy chain term
inater法〔F. Sanger. Science., 214, 1205 (1981) 〕
により決定した。その結果、親株由来の約1.2kbのDN
A断片の塩基配列は、配列番号2に示した通りであっ
た。配列番号2の塩基配列について検討し、活性に必須
な領域をカバーするオープンリーディングフレームは唯
一つしか存在しないこと、SD配列が開始コドンの数ベ
ース上流に存在することなどから判断して配列番号1に
示した塩基配列がエステラーゼの構造遺伝子であること
が明らかとなった。また、この塩基配列から予想される
エステラーゼのアミノ酸配列は、配列番号2の302番目
より1132番目の塩基に相当する配列の下段に示した通り
である。 3) (±) −β−アセチルチオ−α−メチルプロピオン
酸メチルの不斉加水分解 E.coli JM105(pPE116)をアンピシリン50μg/mlを含む50
0ml のLB培地にて37℃一夜振盪培養した後、遠心分離
により菌体を得た。この菌体全量を5% (±)−β−ア
セチル−α−メチルプロピオン酸メチル200ml に懸濁し
て、0.1NNaOHでpH7.0 に制御しながら、45℃にて3時間
反応を行った。反応終了後、菌体を遠心分離により除
き、上澄より未反応のβ−アセチルチオ−α−メチルプ
ロピオン酸メチルを酢酸エチルで抽出除去した。次いで
抽出残液の水層のpHを希硫酸で2.0以下に下げた後、β
−アセチルチオ−α−メチルプロピオン酸を酢酸エチル
で抽出した。そしてその抽出液に無水硫酸ナトリウムを
加えて脱水処理したのち溶媒を蒸発除去し、油状物を得
た。一部を取り水で希釈後HPLCによりβ−アセチルチオ
−α−メチルプロピオン酸を定量した。また一部はクロ
ロホルムに溶解し、自動旋光計 (ユニオン技研 PM-101
型) で旋光度を測定した。その結果、目的の生成物は1.
5g得られ、比旋光度は
E. coli JM105 (pPE116), which was obtained by transforming E. coli JM105 with plasmid pPE116, was deposited at the Institute of Microbial Science and Technology of the Institute of Industrial Science and Technology as MR-2101, and the deposit number is Micromachine Research Institute Bacteria No. 12232. No. 2) Determining the nucleotide sequence of the esterase gene and the predicted amino acid sequence The entire nucleotide sequence of the DNA fragment derived from the parent strain contained in pPE116 was determined using the dideoxy chain term using the M13 phage vector.
inater method (F. Sanger. Science., 214 , 1205 (1981))
Determined by As a result, DN of about 1.2 kb derived from the parent strain
The base sequence of the A fragment was as shown in SEQ ID NO: 2. Examining the nucleotide sequence of SEQ ID NO: 2 and judging from the fact that there is only one open reading frame that covers the region essential for activity, and that the SD sequence exists upstream of the start codon number base, SEQ ID NO: 1 It was revealed that the nucleotide sequence shown in 1 is a structural gene for esterase. The amino acid sequence of esterase predicted from this base sequence is as shown in the lower part of the sequence corresponding to the 302nd to 1132nd bases of SEQ ID NO: 2. 3) Asymmetric hydrolysis of methyl (±) -β-acetylthio-α-methylpropionate E. coli JM105 (pPE116) containing 50 μg / ml ampicillin 50
After culturing with shaking in 0 ml of LB medium at 37 ° C. overnight, cells were obtained by centrifugation. The total amount of the cells was suspended in 200 ml of 5% (±) -β-acetyl-α-methylpropionate, and the reaction was carried out at 45 ° C for 3 hours while controlling the pH to 7.0 with 0.1N NaOH. After completion of the reaction, cells were removed by centrifugation, and unreacted methyl β-acetylthio-α-methylpropionate was extracted and removed from the supernatant with ethyl acetate. Next, after lowering the pH of the aqueous layer of the extraction residual liquid to 2.0 or less with dilute sulfuric acid,
-Acetylthio-α-methylpropionic acid was extracted with ethyl acetate. Then, anhydrous sodium sulfate was added to the extract for dehydration, and then the solvent was removed by evaporation to obtain an oily substance. After taking a part and diluting with water, β-acetylthio-α-methylpropionic acid was quantified by HPLC. In addition, a part of it was dissolved in chloroform and an automatic polarimeter (Union Giken PM-101
The optical rotation was measured with a (type). As a result, the desired product is 1.
5g was obtained, and the specific rotation was

【0024】[0024]

【数1】 [Equation 1]

【0025】で親株 (Pseudomonas putida微工研菌寄第
9677号) による生成物の比旋光度 -58.3とほぼ同等であ
った。 実施例2 1) pPE117の作製 pPE116をPstIで完全消化し、3.4kb, 0.4kbのフラグメン
トを回収しリガーゼを用いて連結した。この組換え体プ
ラスミドをE.coli C600 のコンペテントセルに形質転換
し、実施例1と同様にしてエステラーゼ活性を示す株を
選択し、その株の保有するプラスミドをpPE117と命名し
た。このpPE117は、pPE116中に含まれるPseudomonas pu
tida由来のDNAのうち、PstI−SmaIの0.2kbフラグメ
ントを欠失したものである。 2) エステラーゼ活性の測定 上記の形質転換株の培養菌体を用い、実施例1と同様に
して(±)−β−アセチルチオ−α−メチルプロピオン
酸メチルの不斉加水分解反応を行なった。このうち、初
期1時間の酵素活性を測定し、親株と比較した。
[0025] In the parent strain (Pseudomonas putida
9677) and the specific rotation of the product was almost equal to -58.3. Example 2 1) Preparation of pPE117 pPE116 was completely digested with PstI, 3.4 kb and 0.4 kb fragments were recovered and ligated with ligase. This recombinant plasmid was transformed into competent cells of E. coli C600, a strain showing esterase activity was selected in the same manner as in Example 1, and the plasmid possessed by the strain was named pPE117. This pPE117 is a Pseudomonas pu contained in pPE116.
It is a DNA derived from tida lacking the 0.2 kb fragment of PstI-SmaI. 2) Measurement of esterase activity Using the cultured bacterial cells of the above transformant, an asymmetric hydrolysis reaction of methyl (±) -β-acetylthio-α-methylpropionate was carried out in the same manner as in Example 1. Of these, the enzyme activity in the initial 1 hour was measured and compared with the parent strain.

【0026】[0026]

【表1】 [Table 1]

【0027】表1に示したようにE.coli C600 (pPE117)
は、親株であるP. putida に比べて約200倍のエステ
ラーゼ活性を示した。
As shown in Table 1, E. coli C600 (pPE117)
Showed about 200-fold higher esterase activity than the parent strain P. putida.

【0028】[0028]

【発明の効果】本発明により得られる組換え体プラスミ
ドpPE101、pPE116、pPE117およびこれらにより形質転換
されたEscherichia coli形質転換株は、カルボン酸エス
テル (I) を不斉加水分解するエステラーゼ遺伝子を含
有する。また、形質転換株のエステラーゼは、親株のそ
れと同様に熱安定性に優れているという特徴を有してい
る。そして、形質転換株のエステラーゼ活性はその親株
のそれに比して飛躍的に増大させることができた。更
に、この形質転換株の菌体またはその処理物を45℃以上
の高温でカルボン酸エステル〔I〕に作用させて光学活
性カルボン酸〔II〕及びその対掌体エステルを効率良く
得ることができた。
INDUSTRIAL APPLICABILITY The recombinant plasmids pPE101, pPE116, pPE117 obtained by the present invention and the Escherichia coli transformant transformed with these contain an esterase gene which asymmetrically hydrolyzes carboxylic acid ester (I). .. In addition, the esterase of the transformant strain is characterized by being as excellent in thermostability as that of the parent strain. Then, the esterase activity of the transformed strain could be dramatically increased as compared with that of the parent strain. Furthermore, the optically active carboxylic acid [II] and its enantiomer ester can be efficiently obtained by allowing the microbial cell of this transformant or a treated product thereof to act on the carboxylic acid ester [I] at a high temperature of 45 ° C or higher. It was

【0029】[0029]

【配列表】[Sequence list]

配列番号:1 (1)配列の長さ:831 (2)配列の型:核酸 (3)鎖の数:二本鎖 (4)トポロジー:直鎖状 (5)配列の種類:genomic DNA (6)起源 (a) 生物名:シュードモナス プチダ(Pseudomonas put
ida) (b) 株名: MR-2068 微工研菌寄第9677号 (7)配列の特徴:1〜831 P CDS (8)配列: ATGAGCTATG TAACCACGAA GGACGGCGTA CAGATCTTCT ACAAGGACTG GGGCCCGCGC 60 GATGCGCCGG TCATCCACTT CCACCACGGC TGGCCGCTCA GTGCCGACGA CTGGGACGCG 120 CAGATGCTGT TCTTCCTCGC CCACGGTTAC CGCGTGGTCG CCCACGACCG CCGCGGCCAT 180 GGCCGCTCCA GCCAGGTATG GGACGGCCAC GACATGGACC ACTACGCCGA CGACGTAGCC 240 GCAGTGGTGG CCCACCTGGG CATTCAGGGC GCCGTGCATG TCGGCCACTC GACCGGTGGC 300 GGTGAGGTGG TGCGCTACAT GGCCCGACAC CCTGCAGACA AGGTGGCCAA GGCCGTGCTG 360 ATCGCCGCCG TACCGCCGTT GATGGTGCAG ACTCCCGATA ATCCCGGTGG CCTGCCCAAA 420 TCCGTTTTCG ACGGCTTCCA GGCCCAGGTC GCCAGCAACC GCGCGCAGTT CTACCGGGAT 480 GTGCCGGCAG GGCCGTTCTA CGGCTACAAC CGCCCCGGTG TCGACGCCAG CGAAGGCATC 540 ATCGGCAACT GGTGGCGCCA GGGCATGATC GGTAGCGCCA AGGCCCATTA CGATGGCATC 600 GTGGCGTTTT CCCAGACCGA CTTCACCGAA GACCTGAAGG GCATTACCCA GCCGGTGCTG 660 GTGATGCATG GCGACGACGA CCAGATCGTG CCGTATGAGA ACTCCGGGCT GCTGTCGGCC 720 AAGCTGCTGC CCAATGGCAC ACTGAAGACC TACCAGGGCT ACCCGCATGG CATGCCGACC 780 ACCCATGCCG ATGTGATCAA TGCGGATTTG CTGGCGTTTA TCCGTAGCTG A 配列番号:2 (1)配列の長さ:1329 (2)配列の型:核酸 (3)鎖の数:二本鎖 (4)トポロジー:直鎖状 (5)配列の種類:genomic DNA (6)起源 (a) 生物名:シュードモナス プチダ(Pseudomonas put
ida) (b) 株名: 微工研菌寄第9677号 (7)配列の特徴: 302ー1132 P CDS (8)配列 10 20 30 40 50 60 CCCGGGCCGTGAGCGATGCCATCCTCGGTGACGACGACCTGCTGGCGCTATATCAAGGCA 70 80 90 100 110 120 TCGACAACGGCCGCTTCCCCGGTGGCGACCTGCTGGCCGCACCGCTGGAAGCCGCCGCCA 130 140 150 160 170 180 AGGCCTGGTACCGGATGCGCGACCGCGCCTGATCGCCTGGCACCGCTCCTACACGGCGCC 190 200 210 220 230 240 GGGCAGGCCGGAAGCATGGTGCAAGCCCACTGCAGTGCAGTCACCACAAATTCCGGCGCC 250 260 270 280 290 300 AAGCAAAATTCCTCCTATTCTCAATAGCTCACTTCGCTTCCTGCACACAGGAGACCCGAC 310 320 330 340 350 360 CATGAGCTATGTAACCACGAAGGACGGCGTACAGATCTTCTACAAGGACTGGGGCCCGCG MetSerTyrValThrThrLysAspGlyValGlnIlePheTyrLysAspTrpGlyProArg 370 380 390 400 410 420 CGATGCGCCGGTCATCCACTTCCACCACGGCTGGCCGCTCAGTGCCGACGACTGGGACGC AspAlaProValIleHisPheHisHisGlyTrpProLeuSerAlaAspAspTrpAspAla 430 440 450 460 470 480 GCAGATGCTGTTCTTCCTCGCCCACGGTTACCGCGTGGTCGCCCACGACCGCCGCGGCCA GlnMetLeuPhePheLeuAlaHisGlyTyrArgValValAlaHisAspArgArgGlyHis 490 500 510 520 530 540 TGGCCGCTCCAGCCAGGTATGGGACGGCCACGACATGGACCACTACGCCGACGACGTAGC GlyArgSerSerGlnValTrpAspGlyHisAspMetAspHisTyrAlaAspAspValAla 550 560 570 580 590 600 CGCAGTGGTGGCCCACCTGGGCATTCAGGGCGCCGTGCATGTCGGCCACTCGACCGGTGG AlaValValAlaHisLeuGlyIleGlnGlyAlaValHisValGlyHisSerThrGlyGly 610 620 630 640 650 660 CGGTGAGGTGGTGCGCTACATGGCCCGACACCCTGCAGACAAGGTGGCCAAGGCCGTGCT GlyGluValValArgTyrMetAlaArgHisProAlaAspLysValAlaLysAlaValLeu 670 680 690 700 710 720 GATCGCCGCCGTACCGCCGTTGATGGTGCAGACTCCCGATAATCCCGGTGGCCTGCCCAA IleAlaAlaValProProLeuMetValGlnThrProAspAsnProGlyGlyLeuProLys 730 740 750 760 770 780 ATCCGTTTTCGACGGCTTCCAGGCCCAGGTCGCCAGCAACCGCGCGCAGTTCTACCGGGA SerValPheAspGlyPheGlnAlaGlnValAlaSerAsnArgAlaGlnPheTyrArgAsp 790 800 810 820 830 840 TGTGCCGGCAGGGCCGTTCTACGGCTACAACCGCCCCGGTGTCGACGCCAGCGAAGGCAT ValProAlaGlyProPheTyrGlyTyrAsnArgProGlyValAspAlaSerGluGlyIle 850 860 870 880 890 900 CATCGGCAACTGGTGGCGCCAGGGCATGATCGGTAGCGCCAAGGCCCATTACGATGGCAT IleGlyAsnTrpTrpArgGlnGlyMetIleGlySerAlaLysAlaHisTyrAspGlyIle 910 920 930 940 950 960 CGTGGCGTTTTCCCAGACCGACTTCACCGAAGACCTGAAGGGCATTACCCAGCCGGTGCT ValAlaPheSerGlnThrAspPheThrGluAspLeuLysGlyIleThrGlnProValLeu 970 980 990 1000 1010 1020 GGTGATGCATGGCGACGACGACCAGATCGTGCCGTATGAGAACTCCGGGCTGCTGTCGGC ValMetHisGlyAspAspAspGlnIleValProTyrGluAsnSerGlyLeuLeuSerAla 1030 1040 1050 1060 1070 1080 CAAGCTGCTGCCCAATGGCACACTGAAGACCTACCAGGGCTACCCGCATGGCATGCCGAC LysLeuLeuProAsnGlyThrLeuLysThrTyrGlnGlyTyrProHisGlyMetProThr 1050 1100 1110 1120 1130 1140 CACCCATGCCGATGTGATCAATGCGGATTTGCTGGCGTTTATCCGTAGCTGATGTGATCG ThrHisAlaAspValIleAsnAlaAspLeuLeuAlaPheIleArgSer*** 1150 1160 1170 1180 1190 1200 CCTGCACCGGCCTCTTCGCGGGCACTGGCAACACACCTCCCCCAGGATTACCATGTCACG 1210 1220 1230 1240 1250 1260 CTTCTAGTGCGGCCCTTTGCCGCCCCTTGCCTCCCTGCCTGCCAAAACCCCATGCCCTTC 1270 1280 1290 1300 1310 1320 GAACTCACCGTAGAACCCCTCACCCTGCTGATCCTGGCCCTGGTCGCCTTCGTCGCCGGT TTCATCGAT
SEQ ID NO: 1 (1) Sequence length: 831 (2) Sequence type: Nucleic acid (3) Number of strands: Double strand (4) Topology: Linear (5) Type of sequence: genomic DNA (6) ) Origin (a) Organism name: Pseudomonas put
ida) (b) Strain name: MR-2068 Mikken Kenkyubo No. 9677 (7) Sequence features: 1-831 P CDS (8) Sequence: ATGAGCTATG TAACCACGAA GGACGGCGTACAGATCTTCT ACAAGGACTG GGGCCCGCGC 60 GATGCGCCGG TCATCCACTT CCACCACGGC TGCGCGCTCA GTGC CAGATGCTGT TCTTCCTCGC CCACGGTTAC CGCGTGGTCG CCCACGACCG CCGCGGCCAT 180 GGCCGCTCCA GCCAGGTATG GGACGGCCAC GACATGGACC ACTACGCCGA CGACGTAGCC 240 GCAGTGGTGG CCCACCTGGG CATTCAGGGC GCCGTGCATG TCGGCCACTC GACCGGTGGC 300 GGTGAGGTGG TGCGCTACAT GGCCCGACAC CCTGCAGACA AGGTGGCCAA GGCCGTGCTG 360 ATCGCCGCCG TACCGCCGTT GATGGTGCAG ACTCCCGATA ATCCCGGTGG CCTGCCCAAA 420 TCCGTTTTCG ACGGCTTCCA GGCCCAGGTC GCCAGCAACC GCGCGCAGTT CTACCGGGAT 480 GTGCCGGCAG GGCCGTTCTA CGGCTACAAC CGCCCCGGTG TCGACGCCAG CGAAGGCATC 540 ATCGGCAACT GGTGGCGCCA GGGCATGATC GGTAGCGCCA AGGCCCATTA CGATGGCATC 600 GTGGCGTTTT CCCAGACCGA CTTCACCGAA GACCTGAAGG GCATTACCCA GCCGGTGCTG 660 GTGATGCATG GCGACGACGA CCAGATCGTG CCGTATGAGA ACTCCGCGCT GCTGTCGGCC 720AAAGCTGCTCT GCATGG CATGCCGACC 780 ACCCATGCCG ATGTGATCAA TGCGGATTTG CTGGCGTTTA TCCGTAGCTG A SEQ ID NO: 2 (1) Sequence length: 1329 (2) Sequence type: Nucleic acid (3) Number of strands: Double strand (4) Topology: Linear (5) ) Sequence type: genomic DNA (6) Origin (a) Organism name: Pseudomonas putida
ida) (b) Strain name: Mikken Kenkyukai No. 9677 (7) Sequence characteristics: 302-1132 P CDS (8) sequence 10 20 30 40 50 60 CCCGGGCCGTGAGCGATGCCATCCTCGGTGACGACGACCTGCTGGCGCTATATCAAGGCA 70 80 90 90 110 110 120 TCGACAACGGCCGCTTCCCCGACCGCGCCGACCTGCTGG. 170 180 AGGCCTGGTACCGGATGCGCGACCGCGCCTGATCGCCTGGCACCGCTCCTACACGGCGCC 190 200 210 220 230 240 GGGCAGGCCGGAAGCATGGTGCAAGCCCACTGCAGTGCAGTCACCACAAATTCCGGCGCC 250 260 270 280 290 300 AAGCAAAATTCCTCCTATTCTCAATAGCTCACTTCGCTTCCTGCACACAGGAGACCCGAC 310 320 330 340 350 360 CATGAGCTATGTAACCACGAAGGACGGCGTACAGATCTTCTACAAGGACTGGGGCCCGCG MetSerTyrValThrThrLysAspGlyValGlnIlePheTyrLysAspTrpGlyProArg 370 380 390 400 410 420 CGATGCGCCGGTCATCCACTTCCACCACGGCTGGCCGCTCAGTGCCGACGACTGGGACGC AspAlaProValIleHisPheHisHisGlyTrpProLeuSerAlaAspAspTrpAspAla 430 440 450 460 470 480 GCAGATGCTGTTCTTCCTCGCCCACGGTTACCGCGTGGTCGCCCACGACCGCCGCGGCCA GlnMetLeuPhePheLeuAlaHisGlyTyrArgValValAlaHisAspArgArgGlyHis 490 500 510 520 530 540 TGGCCGCTCCAGCCAGGT ATGGGACGGCCACGACATGGACCACTACGCCGACGACGTAGC GlyArgSerSerGlnValTrpAspGlyHisAspMetAspHisTyrAlaAspAspValAla 550 560 570 580 590 600 CGCAGTGGTGGCCCACCTGGGCATTCAGGGCGCCGTGCATGTCGGCCACTCGACCGGTGG AlaValValAlaHisLeuGlyIleGlnGlyAlaValHisValGlyHisSerThrGlyGly 610 620 630 640 650 660 CGGTGAGGTGGTGCGCTACATGGCCCGACACCCTGCAGACAAGGTGGCCAAGGCCGTGCT GlyGluValValArgTyrMetAlaArgHisProAlaAspLysValAlaLysAlaValLeu 670 680 690 700 710 720 GATCGCCGCCGTACCGCCGTTGATGGTGCAGACTCCCGATAATCCCGGTGGCCTGCCCAA IleAlaAlaValProProLeuMetValGlnThrProAspAsnProGlyGlyLeuProLys 730 740 750 760 770 780 ATCCGTTTTCGACGGCTTCCAGGCCCAGGTCGCCAGCAACCGCGCGCAGTTCTACCGGGA SerValPheAspGlyPheGlnAlaGlnValAlaSerAsnArgAlaGlnPheTyrArgAsp 790 800 810 820 830 840 TGTGCCGGCAGGGCCGTTCTACGGCTACAACCGCCCCGGTGTCGACGCCAGCGAAGGCAT ValProAlaGlyProPheTyrGlyTyrAsnArgProGlyValAspAlaSerGluGlyIle 850 860 870 880 890 900 CATCGGCAACTGGTGGCGCCAGGGCATGATCGGTAGCGCCAAGGCCCATTACGATGGCAT IleGlyAsnTrpTrpArgGlnGlyMetIleGlySerAlaLysAlaHisTyrAspGlyIle 910 920 930 940 950 960 CGTGGCGTTTTCCCAGACCGACTTCACCGAAGACCTGAAGGGCATTACCCAGCCGGTGCT ValAlaPheSerGlnThrAspPheThrGluAspLeuLysGlyIleThrGlnProValLeu 970 980 990 1000 1010 1020 GGTGATGCATGGCGACGACGACCAGATCGTGCCGTATGAGAACTCCGGGCTGCTGTCGGC ValMetHisGlyAspAspAspGlnIleValProTyrGluAsnSerGlyLeuLeuSerAla 1030 1040 1050 1060 1070 1080 CAAGCTGCTGCCCAATGGCACACTGAAGACCTACCAGGGCTACCCGCATGGCATGCCGAC LysLeuLeuProAsnGlyThrLeuLysThrTyrGlnGlyTyrProHisGlyMetProThr 1050 1100 1110 1120 1130 1140 CACCCATGCCGATGTGATCAATGCGGATTTGCTGGCGTTTATCCGTAGCTGATGTGATCG ThrHisAlaAspValIleAsnAlaAspLeuLeuAlaPheIleArgSer *** 1150 1160 1170 1180 1190 1200 CCTGCACCGGCCTCTTCGCGGGCACTGGCAACACACCTCCCCCAGGATTACCATGTCACG 1210 1220 1230 1240 1250 1260 CTTCTAGTGCGGCCCTTTGCCGCCCCTTGCCTCCCTGCCTGCCAAAACCCCATGCCCTTC 1270 1280 1290 1300 1310 1320 GAACTCACCGTAGAACCCCTCACCCTGCTGATCCTGGCCCTGGTCGCCTTCGTCGCCGGT TTCATCGAT

【図面の簡単な説明】[Brief description of drawings]

【図1】pPE101より作成した欠失プラスミドとエステラ
ーゼ活性を示す。
FIG. 1 shows a deletion plasmid prepared from pPE101 and esterase activity.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【書類名】 受託番号変更届[Document name] Contract number change notification

【提出日】 平成4年4月23日[Submission date] April 23, 1992

【旧寄託機関の名称】 通商産業省工業技術院微生物工
業技術研究所
[Former name of depositary institution] Ministry of International Trade and Industry, Institute of Industrial Technology, Institute of Microbial Technology

【旧受託番号】 微工研菌寄第12232号(F
ERM P−12232 )
[Old consignment number] Microtechnology Research Institute, Microbiology No. 12232 (F
ERM P-12232)

【旧受託番号】 微工研菌寄第12416号(F
ERM BP−1241 6)
[Old consignment number] Microtechnology Research Institute Microbiology No. 12416 (F
ERM BP-1246 6)

【新寄託機関の名称】 通商産業省工業技術院微生物工
業技術研究所
[Name of new depositary institution] Institute of Microbial Technology, Ministry of International Trade and Industry, Institute of Industrial Technology

【新受託番号】 微工研条寄第3838号(FE
RM BP−3838)
[New consignment number] Micro Engineering Research Institute No. 3838 (FE
RM BP-3838)

【新受託番号】 微工研条寄第3835号(FE
RM BP−3835)
[New consignment number] Mikori Kenjoyori No. 3835 (FE
RM BP-3835)

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:19) (C12N 1/21 C12R 1:19) (C12N 15/55 C12R 1:40) Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display area C12R 1:19) (C12N 1/21 C12R 1:19) (C12N 15/55 C12R 1:40)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式 【化1】 (式中、 R1 はアルキル基、アラルキル基またはアリー
ル基、 R2 及び R3 はアルキル基、nは1または2を示
す) で表されるカルボン酸エステルのラセミ体に、配列
番号1の塩基配列又はその一部から成るDNA断片を連
結した組み換え体プラスミドを含む形質転換微生物の培
養液、菌体または菌体処理物を作用させることを特徴と
する、 一般式 【化2】 (式中、 R1, R2 及びnは前記と同様) で表される光学
活性カルボン酸及びその対掌体エステルの製造法。
1. A general formula: (Wherein R 1 is an alkyl group, an aralkyl group or an aryl group, R 2 and R 3 are alkyl groups, and n is 1 or 2), and the racemic carboxylic acid ester is represented by the base of SEQ ID NO: 1. A compound of the general formula: ## STR2 ## characterized in that a culture solution of transformed microorganisms containing a recombinant plasmid in which a DNA fragment consisting of a sequence or a part thereof is ligated, a microbial cell or a treated product of the microbial cell is allowed to act. (In the formula, R 1, R 2 and n are the same as the above), and a process for producing an optically active carboxylic acid and its enantiomer ester.
【請求項2】 形質転換微生物が大腸菌であることを特
徴とする請求項1記載の光学活性カルボン酸及びその対
掌体エステルの製造法。
2. The method for producing an optically active carboxylic acid and its enantiomer ester according to claim 1, wherein the transformed microorganism is Escherichia coli.
【請求項3】 45℃以上の温度で作用させることを特徴
とする請求項1記載の光学活性カルボン酸及びその対掌
体エステルの製造法。
3. The method for producing an optically active carboxylic acid and its enantiomer ester according to claim 1, which is operated at a temperature of 45 ° C. or higher.
JP24992391A 1991-05-15 1991-09-27 Process for producing optically active carboxylic acid and its enantiomer ester Expired - Fee Related JP2763213B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP24992391A JP2763213B2 (en) 1991-05-15 1991-09-27 Process for producing optically active carboxylic acid and its enantiomer ester
CA002068614A CA2068614C (en) 1991-05-15 1992-05-13 Esterase genes, esterase, recombinant plasmids and transformants containing the recombinant plasmid and methods of producing optically active carboxylic acids and their enantiomeric esters using said transformants
US07/882,329 US5308765A (en) 1991-05-15 1992-05-13 Esterase genes, esterase, recombinant plasmids and transformants containing the recombinant plasmid and methods of producing optically acitve carboxylic acids and their enantiomeric esters using said transformants
DE69218034T DE69218034T2 (en) 1991-05-15 1992-05-15 Esterase genes, esterase, recombinant plasmids and transformants containing them, and methods for producing optically active carboxylic acid and its enantiomeric esters by these transformants
EP92108205A EP0513806B1 (en) 1991-05-15 1992-05-15 Esterase genes, esterase, recombinant plasmids and transformants containing the recombinant plasmid and methods of producing optically active carboxylic acids and their enantiomeric esters using said transformants
AT92108205T ATE150087T1 (en) 1991-05-15 1992-05-15 ESTERASE GENES, ESTERASE, RECOMBINANT PLASMIDS AND TRANSFORMANTS CONTAINING THESE, AND METHOD FOR PRODUCING OPTICALLY ACTIVE CARBOXYLIC ACID AND THEIR ENANTIOMERIC ESTERS BY THESE TRANSFORMANTS
KR1019920008207A KR100232552B1 (en) 1991-05-15 1992-05-15 Esterase genes esterase, recombinant plasmids and transforments containing the recombinant plasmid and methods of producing optically active carboxylic acids and their enantiomeric esters using said transformants
US08/183,213 US5482847A (en) 1991-05-15 1994-01-14 Esterase genes, esterase, recombinant plasmids and transformants containing the recombinant plasmid and methods of producing optically active carboxylic acids and their enantiomeric esters using said trasnformants

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11062891 1991-05-15
JP3-110628 1991-05-15
JP24992391A JP2763213B2 (en) 1991-05-15 1991-09-27 Process for producing optically active carboxylic acid and its enantiomer ester

Publications (2)

Publication Number Publication Date
JPH0568589A true JPH0568589A (en) 1993-03-23
JP2763213B2 JP2763213B2 (en) 1998-06-11

Family

ID=26450220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24992391A Expired - Fee Related JP2763213B2 (en) 1991-05-15 1991-09-27 Process for producing optically active carboxylic acid and its enantiomer ester

Country Status (1)

Country Link
JP (1) JP2763213B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191393A (en) * 2000-12-27 2002-07-09 Mitsubishi Rayon Co Ltd Method for producing optically active carboxylic acid and its antipode ester
JP2015181397A (en) * 2014-03-24 2015-10-22 三井化学株式会社 Method of producing powdered catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191393A (en) * 2000-12-27 2002-07-09 Mitsubishi Rayon Co Ltd Method for producing optically active carboxylic acid and its antipode ester
JP2015181397A (en) * 2014-03-24 2015-10-22 三井化学株式会社 Method of producing powdered catalyst

Also Published As

Publication number Publication date
JP2763213B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
JP4561010B2 (en) DNA encoding D-hydantoin hydrolase, DNA encoding N-carbamyl-D-amino acid hydrolase, recombinant DNA containing the gene, cells transformed with the recombinant DNA, and production of proteins using the transformed cells Method and method for producing D-amino acid
KR100312456B1 (en) Gene Derived from Pseudomonas fluorescens Which Promotes the Secretion of Foreign Protein in Microorganism
JP2008148694A (en) Method for producing (s)- or (r)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid
JPH07508169A (en) D-N-carbamoyl-amino acid amide hydrolase and hydantoinase
JP4561009B2 (en) DNA encoding D-hydantoin hydrolase, DNA encoding N-carbamyl-D-amino acid hydrolase, recombinant DNA containing the gene, cells transformed with the recombinant DNA, and production of proteins using the transformed cells Method and method for producing D-amino acid
EP3924477A1 (en) Enzymes with ruvc domains
JPH0568589A (en) Production of optically active carboxylic acid and its enantiomer ester
JPH08505286A (en) Cells modified for the catabolism of betaine, their preparation, and in particular their use for the production of metabolites or enzymes
EP0513806B1 (en) Esterase genes, esterase, recombinant plasmids and transformants containing the recombinant plasmid and methods of producing optically active carboxylic acids and their enantiomeric esters using said transformants
JP2764814B2 (en) Method for producing optically active α-hydroxycarboxylic acid
EP2128258B1 (en) Novel amidase, gene for the same, vector, transformant, and method for production of optically active carboxylic acid amide and optically active carboxylic acid by using any one of those items
JP4437170B2 (en) Microorganism, lactamase enzyme obtained from the microorganism, and use thereof
EP0846768B1 (en) Esterase gene and its use
JP2001520881A (en) Epoxide hydrolase
JP2516777B2 (en) Recombinant plasmid having gene of enzyme for asymmetric hydrolysis of carboxylic acid ester, microorganism transformed with the same, and method for producing optically active carboxylic acid by the microorganism
JP2759000B2 (en) DNA fragment having base sequence encoding esterase
JP3151893B2 (en) Ester asymmetric hydrolase gene
US6455730B1 (en) Preparation of dicarboxylic acid monoesters from cyanocarboxylic acid esters
EP1211312B1 (en) Method for sterilizing transformed cells
JPS63269986A (en) Gene regulating unit and cloning developing system
EP0845534A2 (en) Esterase gene and its use
JPH05176775A (en) Recombinant plasmid dna, transformed microbe and new esterase
JPH10262674A (en) Gene coding for alkaline phosphatase
JP2681634B2 (en) New bacterial strain with enhanced thermostable liquefied amylase production capacity
EP0414247A2 (en) Cloning, expression and sequencing of an ester hydrolase genein escherichia coli

Legal Events

Date Code Title Description
S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees