JPH0568484B2 - - Google Patents

Info

Publication number
JPH0568484B2
JPH0568484B2 JP60265315A JP26531585A JPH0568484B2 JP H0568484 B2 JPH0568484 B2 JP H0568484B2 JP 60265315 A JP60265315 A JP 60265315A JP 26531585 A JP26531585 A JP 26531585A JP H0568484 B2 JPH0568484 B2 JP H0568484B2
Authority
JP
Japan
Prior art keywords
solution
polybutadiene
temperature
terminated
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60265315A
Other languages
Japanese (ja)
Other versions
JPS62127310A (en
Inventor
Atsushi Fujioka
Yasuo Myadera
Tomio Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP26531585A priority Critical patent/JPS62127310A/en
Publication of JPS62127310A publication Critical patent/JPS62127310A/en
Publication of JPH0568484B2 publication Critical patent/JPH0568484B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は積層板等の製造に用いられる誘電率が
低く、耐熱性の高い熱硬化性樹脂組成物の製造方
法に関する。 〔従来の技術〕 従来、誘電率が低く、しかも耐熱性の高い有機
高分子材料として、ポリテトラフルオロエチレン
あるいは特公昭59−5207号公報、特公昭60−
11634号公報に示されている1,2−ポリブタジ
エンとマレイミド化合物との混合物が使用されて
いる。 〔発明が解決しようとする問題点〕 しかしながら、ポリテトラフルオロエチレン
は、その融点が327℃であり、成形温度を融点以
上にする必要があり、成形加工が難しいという問
題点があつた。 また、1,2−ポリブタジエンとマレイミド化
合物の混合物は、前者が無極性高分子であるのに
対し、後者は極性化合物であるため、これらを溶
液化する場合の適切な共通溶媒がなく、非常に低
濃度の溶液しか得られなかつた。すなわち、例え
ば積層板用のエポキシ樹脂やポリイミド樹脂の溶
液は樹脂分が50wt%のものが容易に得られるの
に対し、1,2−ポリブタジエンとマレイミド化
合物の混合物では、樹脂分が高々30wt%位の濃
度の溶液しか得られない。 本発明はかかる状況に鑑みなされたものであつ
て、高濃度の均一溶液が得られ、成形が容易で三
次元硬化した硬化物の誘電率が低く、耐熱性が高
い熱硬化性樹脂組成物の製造方法を提供せんとす
るものである。 〔問題点を解決するための手段〕 かかる目的は本発明によれば、特定のポリブタ
ジエンと特定のビスマレイミドとを特定の溶媒中
で予備反応せしめて製造した熱硬化性樹脂組成物
によつて達成することができる。 すなわち、本発明は数平均分子量が10000以下
であるカルボキシル基末端1,4−ポリブタジエ
ンとN,N′−p,p′−ジフエニルメタンビスマレ
イミド(以下ビスマレイミドと略す。)とをシク
ロヘキサノン溶媒中で予備反応せしめることによ
り熱硬化性樹脂組成物を製造する方法を提供する
ものである。 本発明において使用するポリブタジエンはシス
およびトランスの1,4構造を主体とし、残りの
構造として1,2構造を含んでいてもよく、各分
子の両末端にカルボキシル基を含有しているポリ
ブタジエンである。 また、本発明において使用するカルボキシル基
末端1,4−ポリブタジエンの数平均分子量は、
10000以下であり、10000より大きいとポリマレイ
ミドと予備反応せしめた熱硬化性樹脂組成物の流
動性が非常に低下してしまう。 本発明者らは、シクロヘキサノン溶媒中でカル
ボキシル基末端1,4−ポリブタジエンとビスマ
レイミドとを加熱により予備反応させると、均一
なワニスが得られ、溶液粘度が徐々に増加し、さ
らに、このワニスを室温に戻しても二層分離を起
こさないで均一な状態を保つことを見出した。 予備反応温度は100℃から200℃の範囲で、好ま
しくは150℃から170℃の範囲である。予備反応温
度が100℃より低いと反応に時間がかかりすぎ、
200℃より高いとビスマレイミド同志の反応が起
こり、ゲル化してしまう。 予備反応に要する時間は、ワニスを室温に戻し
た際、均一な状態を保つているようになるまで続
けられる。予備反応時間が短いとワニスは二層分
離を起こしてしまい、また予備反応時間が長すぎ
るとゲル化が起きてしまう。 カルボキシル基末端1,4−ポリブタジエンお
よびポリマレイミドの総量に対するカルボキシル
基末端1,4−ポリブタジエンの割合は20wt%
から80wt%の割合であり、20wt%より少ないと
誘電率が高くなつてしまい、また、80wt%より
多いと耐熱性が低くなつてしまう。使用するシク
ロヘキサノンの量は予備反応後のワニスの濃度が
70wt%以下となるように使用することが好まし
く、高濃度だと、二層分離しやすくなる。 また、使用したシクロヘキサノンは、予備反応
後、得られたワニスから減圧あるいは加熱によつ
て必要濃度まで除去し、高濃度な熱硬化性樹脂組
成物の均一溶液を得ることができる。 この熱硬化性樹脂組成物は、加熱加圧成形する
ことにより三次元硬化する。加熱温度は150℃か
ら300℃の範囲であり、好ましくは180℃から250
℃の間である。圧力は組成物をある程度流動させ
るため、5Kgf/cm2以上必要である。 本発明の熱硬化性樹脂組成物にラジカル反応開
始剤として適当な有機過酸化物を添加すると、硬
化時間を短縮することができる。 また、本発明の熱硬化性樹脂組成物にはシリ
カ、ガラスパウダー、水酸化アルミニウム等の充
填剤および難燃剤等を併用することも可能であ
る。 さらに、本発明の熱硬化性樹脂組成物をガラス
クロス、ガラスペーパー、紙、カーボンフアイバ
ークロス、芳香族ポリアミドクロス、石英繊維ク
ロス等の基材に含浸させて用いることも可能であ
る。 〔作用〕 本発明により、高濃度のカルボキシル基末端
1,4−ポリブタジエン−ビスマレイミド組成物
の均一溶液が得られる理由は、カルボキシル基末
端1,4−ポリブタジエンとビスマレイミドが反
応し、溶媒への溶解性が向上したためと考えられ
る。この反応の詳細については定かではないが、
ポリマレイミドの炭素−炭素二重結合にカルボキ
シル基末端1,4−ポリブタジエンの活性水素が
付加反応したと考えられる。 また、カルボキシル基末端1,4−ポリブタジ
エン成分が誘電率の低下に作用し、ビスマレイミ
ドが耐熱性の向上に作用する。 〔実施例〕 以下、本発明の実施例につき説明する。ただ
し、本発明は以下の実施例に限定されるものでは
ない。 実施例 1 カルボキシル基末端1,4−ポリブタジエン、
HYCAR CTB(1,4構造が88wt%で、数平均
分子量が4800、1モル当たりの末端カルボキシル
基数が2.0であるカルボキシル基末端1,4−ポ
リブタジエン、米国BF Goodrich社製商品名)
を温度80℃にてシクロヘキサノンに溶解させ、濃
度30wt%の溶液〔A〕を得た。 N,N′−p,p′−ジフエニルメタンビスマレイ
ミドを温度155℃にてシクロヘキサノンに溶解さ
せ、濃度30wt%の溶液〔B〕を得た。 溶液〔A〕と溶液〔B〕とを重量比が1:1に
なるように混合した後、温度155℃にて90分間反
応させ溶液〔C〕を得た。溶液〔C〕は室温に冷
却後も濁りがなく、均一な状態を保持していた。 実施例 2 前記CTBを温度80℃にてシクロヘキサノンに
溶解させ、濃度40wt%の溶液〔D〕を得た。 N,N′,−p,p′,−ジフエニルメタンビスマレ
イミドを温度155℃でシクロヘキサノンに溶解さ
せ、濃度40wt%の溶液〔E〕を得た。 溶液〔D〕と〔E〕とを重量比が1:1になる
ように混合した後、温度155℃にて90分間反応さ
せ、溶液〔F〕を得た。溶液〔F〕は室温に冷却
後も濁りがなく、均一な状態を保持していた。 この溶液〔F〕に有機過酸化物ジクミルパーオ
キサイドを樹脂100重量部に対し、1.0重量部にな
るように室温で添加し、30分間撹拌し、溶液
〔G〕を得た。 溶液〔G〕にガラスクロスG−7010−BX(ア
ミノシラン処理0.1mm厚ガラスクロス、日東紡製)
を浸漬し、170℃で3分間加熱乾燥して溶媒を除
去し、樹脂分52wt%のプリプレグを得た。この
プリプレグを12枚重ねて、その両側に電解銅箔
NDGAC−35(35μm片面粗化銅箔、日本電解社
製)を重ね、圧力80Kg/cm2、温度200℃、成形時
間2時間の条件でプレス成形し、1.6mm厚の銅張
積層板を作製した。 得られた銅張積層板はボイド、カスレがなく、
その誘電率、誘電正接、ガラス転移温度、半田耐
熱性、銅箔引きはがし強さを測定した結果、誘電
率が低く、耐熱性に優れていた。測定結果を表1
に示す。 比較例 1 実施例2における溶液〔D〕と溶液〔E〕とを
重量比が1:1になるように155℃にて反応させ
ることなく混合し、溶液〔H〕を得た。溶液
〔H〕をただちに室温に冷却すると、二層分離し
た。 比較例 2 ポリイミド樹脂銅張積層板MCL−I−67(1.6
mm厚、日立化成工業(株)製商品名)を用いて、
誘電率、誘電正接、ガラス転移温度、半田耐熱
性、銅箔引きはがし強さを測定した。測定結果を
表1に示す。
[Industrial Application Field] The present invention relates to a method for producing a thermosetting resin composition that has a low dielectric constant and high heat resistance and is used for producing laminates and the like. [Prior Art] Conventionally, polytetrafluoroethylene or Japanese Patent Publication No. 59-5207 and Japanese Patent Publication No. 1983-1987 have been used as organic polymer materials with a low dielectric constant and high heat resistance.
A mixture of 1,2-polybutadiene and a maleimide compound as shown in Japanese Patent No. 11634 is used. [Problems to be Solved by the Invention] However, polytetrafluoroethylene has a melting point of 327° C., which requires the molding temperature to be higher than the melting point, making molding difficult. In addition, a mixture of 1,2-polybutadiene and a maleimide compound is very difficult to solve because the former is a nonpolar polymer, while the latter is a polar compound. Only low concentration solutions were obtained. That is, for example, a solution of epoxy resin or polyimide resin for laminates can easily have a resin content of 50 wt%, whereas a mixture of 1,2-polybutadiene and a maleimide compound has a resin content of about 30 wt% at most. Only a solution with a concentration of is obtained. The present invention was made in view of the above circumstances, and is a thermosetting resin composition that can obtain a highly concentrated homogeneous solution, is easy to mold, has a low dielectric constant of a three-dimensionally cured cured product, and has high heat resistance. The purpose is to provide a manufacturing method. [Means for Solving the Problems] According to the present invention, this object is achieved by a thermosetting resin composition produced by pre-reacting a specific polybutadiene and a specific bismaleimide in a specific solvent. can do. That is, in the present invention, carboxyl-terminated 1,4-polybutadiene with a number average molecular weight of 10,000 or less and N,N'-p,p'-diphenylmethane bismaleimide (hereinafter abbreviated as bismaleimide) are mixed in a cyclohexanone solvent. The present invention provides a method for producing a thermosetting resin composition by carrying out a preliminary reaction. The polybutadiene used in the present invention is mainly composed of cis and trans 1,4 structures, may contain 1,2 structures as the remaining structure, and contains carboxyl groups at both ends of each molecule. . In addition, the number average molecular weight of the carboxyl group-terminated 1,4-polybutadiene used in the present invention is:
If it is less than 10,000, and if it is greater than 10,000, the fluidity of the thermosetting resin composition pre-reacted with the polymaleimide will be extremely reduced. The present inventors have found that when a carboxyl group-terminated 1,4-polybutadiene and bismaleimide are pre-reacted by heating in a cyclohexanone solvent, a uniform varnish is obtained, the solution viscosity gradually increases, and furthermore, this varnish is It has been found that even when the temperature is returned to room temperature, a homogeneous state is maintained without causing two-layer separation. The pre-reaction temperature is in the range of 100°C to 200°C, preferably in the range of 150°C to 170°C. If the pre-reaction temperature is lower than 100℃, the reaction will take too long,
If the temperature is higher than 200°C, a reaction between bismaleimides will occur, resulting in gelation. The pre-reaction time is continued until the varnish remains homogeneous upon returning to room temperature. If the pre-reaction time is too short, the varnish will separate into two layers, and if the pre-reaction time is too long, gelation will occur. The ratio of carboxyl group-terminated 1,4-polybutadiene to the total amount of carboxyl group-terminated 1,4-polybutadiene and polymaleimide is 20wt%.
If it is less than 20 wt%, the dielectric constant will increase, and if it is more than 80 wt%, the heat resistance will decrease. The amount of cyclohexanone used depends on the concentration of the varnish after the pre-reaction.
It is preferable to use it at a concentration of 70 wt% or less; a high concentration facilitates two-layer separation. Furthermore, after the preliminary reaction, the cyclohexanone used can be removed from the obtained varnish to a required concentration by reducing pressure or heating to obtain a homogeneous solution of a highly concentrated thermosetting resin composition. This thermosetting resin composition is three-dimensionally cured by heating and pressure molding. The heating temperature ranges from 150℃ to 300℃, preferably from 180℃ to 250℃
It is between ℃. A pressure of 5 Kgf/cm 2 or more is required to cause the composition to flow to some extent. When an appropriate organic peroxide is added as a radical reaction initiator to the thermosetting resin composition of the present invention, the curing time can be shortened. Further, fillers such as silica, glass powder, aluminum hydroxide, flame retardants, etc. can also be used in combination with the thermosetting resin composition of the present invention. Furthermore, it is also possible to use the thermosetting resin composition of the present invention by impregnating it into a base material such as glass cloth, glass paper, paper, carbon fiber cloth, aromatic polyamide cloth, or quartz fiber cloth. [Operation] The reason why a homogeneous solution of a highly concentrated carboxyl group-terminated 1,4-polybutadiene-bismaleimide composition can be obtained by the present invention is that the carboxyl group-terminated 1,4-polybutadiene and bismaleimide react and This is thought to be due to improved solubility. Although the details of this reaction are not certain,
It is thought that the active hydrogen of the carboxyl group-terminated 1,4-polybutadiene caused an addition reaction to the carbon-carbon double bond of the polymaleimide. Further, the carboxyl group-terminated 1,4-polybutadiene component acts to lower the dielectric constant, and the bismaleimide acts to improve heat resistance. [Examples] Examples of the present invention will be described below. However, the present invention is not limited to the following examples. Example 1 Carboxyl group-terminated 1,4-polybutadiene,
HYCAR CTB (Carboxyl-terminated 1,4-polybutadiene with 88 wt% 1,4 structure, number average molecular weight of 4800, and number of terminal carboxyl groups per mole of 2.0, trade name manufactured by BF Goodrich, USA)
was dissolved in cyclohexanone at a temperature of 80°C to obtain a solution [A] with a concentration of 30 wt%. N,N'-p,p'-diphenylmethane bismaleimide was dissolved in cyclohexanone at a temperature of 155°C to obtain a solution [B] with a concentration of 30 wt%. Solution [A] and solution [B] were mixed at a weight ratio of 1:1, and then reacted at a temperature of 155° C. for 90 minutes to obtain solution [C]. Solution [C] remained homogeneous without turbidity even after cooling to room temperature. Example 2 The above CTB was dissolved in cyclohexanone at a temperature of 80°C to obtain a solution [D] with a concentration of 40 wt%. N,N',-p,p',-diphenylmethane bismaleimide was dissolved in cyclohexanone at a temperature of 155°C to obtain a solution [E] with a concentration of 40 wt%. Solutions [D] and [E] were mixed at a weight ratio of 1:1, and then reacted at a temperature of 155°C for 90 minutes to obtain a solution [F]. Solution [F] remained homogeneous without turbidity even after cooling to room temperature. An organic peroxide dicumyl peroxide was added to this solution [F] at room temperature in an amount of 1.0 parts by weight based on 100 parts by weight of the resin, and the mixture was stirred for 30 minutes to obtain a solution [G]. Add glass cloth G-7010-BX (aminosilane treated 0.1mm thick glass cloth, manufactured by Nittobo) to solution [G]
was immersed and dried by heating at 170°C for 3 minutes to remove the solvent, yielding a prepreg with a resin content of 52 wt%. Layer 12 sheets of this prepreg and electrolytic copper foil on both sides.
NDGAC-35 (35 μm single-sided roughened copper foil, manufactured by Nippon Denki Co., Ltd.) was layered and press-formed under the conditions of a pressure of 80 Kg/cm 2 , a temperature of 200°C, and a molding time of 2 hours to produce a 1.6 mm thick copper-clad laminate. did. The resulting copper-clad laminate has no voids or scratches.
The dielectric constant, dielectric loss tangent, glass transition temperature, soldering heat resistance, and copper foil peel strength were measured, and the results showed that the dielectric constant was low and the heat resistance was excellent. Table 1 shows the measurement results.
Shown below. Comparative Example 1 Solution [D] and solution [E] in Example 2 were mixed at a weight ratio of 1:1 at 155° C. without reacting to obtain solution [H]. The solution [H] was immediately cooled to room temperature and the two layers separated. Comparative Example 2 Polyimide resin copper clad laminate MCL-I-67 (1.6
mm thickness, product name manufactured by Hitachi Chemical Co., Ltd.),
The dielectric constant, dielectric loss tangent, glass transition temperature, solder heat resistance, and copper foil peel strength were measured. The measurement results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明した如く、本発明によれば、カ
ルボキシル基末端1,4ポリブタジエンとビスマ
レイミドとの高濃度の均一溶液が得られ、成形が
容易で、三次元硬化した硬化物の誘電率が低く、
耐熱性が高い熱硬化性樹脂組成物が得られ、その
工業的価値は大である。
As explained in detail above, according to the present invention, a highly concentrated homogeneous solution of carboxyl group-terminated 1,4 polybutadiene and bismaleimide can be obtained, molding is easy, and the dielectric constant of the three-dimensionally cured product is low. ,
A thermosetting resin composition with high heat resistance can be obtained, and its industrial value is great.

Claims (1)

【特許請求の範囲】[Claims] 1 数平均分子量が10000以下であるカルボキシ
ル基末端1,4−ポリブタジエンと、N,N′−
p,p′−ジフエニルメタンビスマレイミドとをシ
クロヘキサノン溶媒中で予備反応せしめることを
特徴とする熱硬化性樹脂組成物の製造方法。
1 Carboxyl group-terminated 1,4-polybutadiene with a number average molecular weight of 10,000 or less and N,N'-
A method for producing a thermosetting resin composition, which comprises preliminarily reacting p,p'-diphenylmethane bismaleimide in a cyclohexanone solvent.
JP26531585A 1985-11-26 1985-11-26 Production of thermosetting resin composition Granted JPS62127310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26531585A JPS62127310A (en) 1985-11-26 1985-11-26 Production of thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26531585A JPS62127310A (en) 1985-11-26 1985-11-26 Production of thermosetting resin composition

Publications (2)

Publication Number Publication Date
JPS62127310A JPS62127310A (en) 1987-06-09
JPH0568484B2 true JPH0568484B2 (en) 1993-09-29

Family

ID=17415487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26531585A Granted JPS62127310A (en) 1985-11-26 1985-11-26 Production of thermosetting resin composition

Country Status (1)

Country Link
JP (1) JPS62127310A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230108275A (en) * 2020-11-16 2023-07-18 가부시끼가이샤 레조낙 Maleimide resin composition, prepreg, laminated board, resin film, printed wiring board and semiconductor package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595207A (en) * 1982-06-30 1984-01-12 Nec Home Electronics Ltd Manufacture of color filter
JPS6023767A (en) * 1983-07-18 1985-02-06 松下冷機株式会社 Quick refrigerator for refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595207A (en) * 1982-06-30 1984-01-12 Nec Home Electronics Ltd Manufacture of color filter
JPS6023767A (en) * 1983-07-18 1985-02-06 松下冷機株式会社 Quick refrigerator for refrigerator

Also Published As

Publication number Publication date
JPS62127310A (en) 1987-06-09

Similar Documents

Publication Publication Date Title
JP6872081B2 (en) Polyamic acid resin, polyimide resin and resin composition containing these
CN107964203B (en) Low-dielectric prepreg composition, copper-clad plate and manufacturing method thereof
CN101068851B (en) Polyimide, polyimide film and laminated body
JP3506413B2 (en) Prepreg, multilayer printed wiring board and method of manufacturing the same
EP0390565A2 (en) Imide prepolymers, cured products, method for making the same, laminate preparation, and encapsulating compositions
JP3248424B2 (en) Process for producing modified polyphenylene oxide, epoxy resin composition using modified polyphenylene oxide by this process, prepreg using this composition, and laminate using this prepreg
TWI412564B (en) Dielectric material formula and circuit board utilizing the same
WO2000046816A1 (en) Thermoplastic resin composition having low permittivity, prepreg, laminated plate and laminated material for circuit using the same
WO2022004583A1 (en) Isocyanate-modified polyimide resin, resin composition and cured product of same
US20020120091A1 (en) Poly amic acid system for polyimides
JP2511480B2 (en) Polyaminobisimide-based resin composition
US5041519A (en) Composition comprising epoxy resin, bismaleimide and barbituric acid
JPH0568484B2 (en)
CN113930212B (en) Low dielectric loss flexible thermosetting adhesive and preparation method thereof
JPH04258658A (en) Flame-retardant thermosetting resin composition
JP3265984B2 (en) Epoxy resin composition, prepreg using this resin composition, and laminate using this prepreg
CN113651747A (en) Twisted non-planar-configuration bismaleimide, laminated board and preparation method thereof
JPH09227659A (en) Epoxy resin composition and laminate sheet using prepreg using this resin composition
JPH0323101B2 (en)
JPH10273518A (en) Epoxy resin composition, prepreg and laminate
JPH10212336A (en) Epoxy resin composition, prepreg prepared by using this composition and laminate prepared by using this prepreg
JPH10292031A (en) Epoxy resin composition, prepreg and laminate
JP3270378B2 (en) Metal / resin composite, method for producing the same, and substrate for flexible circuit wiring board
JP3525745B2 (en) Epoxy resin composition and insulating substrate using this epoxy resin composition
CN111454539B (en) Thermosetting resin composition and application thereof in millimeter wave circuit substrate