JPH0568452B2 - - Google Patents

Info

Publication number
JPH0568452B2
JPH0568452B2 JP58233356A JP23335683A JPH0568452B2 JP H0568452 B2 JPH0568452 B2 JP H0568452B2 JP 58233356 A JP58233356 A JP 58233356A JP 23335683 A JP23335683 A JP 23335683A JP H0568452 B2 JPH0568452 B2 JP H0568452B2
Authority
JP
Japan
Prior art keywords
diagnostic agent
radioactive
radioactivity
insulin
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58233356A
Other languages
Japanese (ja)
Other versions
JPS60126231A (en
Inventor
Akyo Shigematsu
Akiko Hajima
Naomi Baba
Emiko Hayama
Hiroko Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seitai Kagaku Kenkyusho KK
Original Assignee
Seitai Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seitai Kagaku Kenkyusho KK filed Critical Seitai Kagaku Kenkyusho KK
Priority to JP58233356A priority Critical patent/JPS60126231A/en
Publication of JPS60126231A publication Critical patent/JPS60126231A/en
Publication of JPH0568452B2 publication Critical patent/JPH0568452B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 この発明は、放射性沃素で標識したインシユリ
ンからなる、核医学的放射性診断剤に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear medicine radiodiagnostic agent comprising insulin labeled with radioactive iodine.

周知のように、インシユリンは、膵臓ランゲル
ハンス氏島β細胞群から分泌される内分泌ホルモ
ンで、分子量5807の蛋白質である。血液中には、
ごく僅かの(正常人で30μIU/血漿ml)のインシ
ユリンが常時存在している。インシユリンは、こ
れを皮下投与することにより、正常血糖値100
mg/dlを65mg/dl程度に低下させる作用があるの
で、これを利用して、糖尿病治療薬として活用さ
れている。また、沃素標識インシユリンが、糖尿
病の病態判定というカテゴリーにおいて、血中イ
ンシユリン濃度を測定するためのラジオイムノア
ツセイ法ですでに実用化されている。これと異な
つて、この発明の診断剤は、放射性沃素標識イン
シユリンを静脈内に注射した後の各器官および組
織への吸収・分布およびその後に派生する放射性
インシユリンやその代謝物の体外排泄の動態を核
医学的技法で可視化することによつて、各種疾患
の早期診断を可能にするものである。放射性沃素
を指標としたインシユリンの体内動態が各種の疾
患、特に癌またはその転移および高血糖症の早期
診断を可能にするとの知見は、全く新規のもので
あつて、飛躍的に各種核医学的診断の範囲の拡
大・精度の上昇および期間の短縮に資することが
できるとの利点を有する。
As is well known, insulin is an endocrine hormone secreted from the pancreatic Langerhans islet beta cells, and is a protein with a molecular weight of 5807. In the blood,
Very small amounts of insulin (30 μIU/ml of plasma in normal people) are present at any given time. Insulin can be administered subcutaneously to lower normal blood sugar levels to 100.
Since it has the effect of lowering mg/dl to about 65 mg/dl, it is used as a diabetes treatment drug. Furthermore, iodine-labeled insulin has already been put to practical use in the radioimmunoassay method for measuring blood insulin concentration in the category of determining the pathological condition of diabetes. Unlike this, the diagnostic agent of the present invention measures the absorption and distribution of radioactive iodine-labeled insulin into each organ and tissue after intravenous injection, and the subsequent dynamics of excretion of radioactive insulin and its metabolites from the body. Visualization using nuclear medicine techniques enables early diagnosis of various diseases. The knowledge that the pharmacokinetics of insulin, using radioactive iodine as an indicator, enables the early diagnosis of various diseases, especially cancer, its metastasis, and hyperglycemia, is completely new and will dramatically improve the effectiveness of various nuclear medicine methods. It has the advantage that it can contribute to expanding the range of diagnosis, increasing accuracy, and shortening the period of diagnosis.

この発明の放射性診断剤において、主成分とし
て用いる放射性沃素原子を分子内に含むインシユ
リンは、放射性沃素をインシユリンに導入するこ
とによつて製造することができる。ここにいう放
射性沃素には、123I,125Iおよび131Iが含まれる。ま
たインシユリンには、ひとインシユリン、うしイ
ンシユリン、ぶたインシユリン等が含まれる。導
入方法としては、クロラミンT法、酵素法、直接
導入法等、すなわち、I-イオンを生成する化合物
(例えばNaI)をクロラミンTの存在下、または
H2O2とラクトペルオキシターゼの存在下にイン
シユリンに作用させる方法、およびTeを3Heで
照射して生じた123Xeをインシユリンに加え、数
時間放置して123Iに壊変させる方法等が用いられ
る。
In the radioactive diagnostic agent of the present invention, insulin containing a radioactive iodine atom in its molecule, which is used as the main component, can be produced by introducing radioactive iodine into insulin. The radioactive iodine referred to herein includes 123 I, 125 I and 131 I. Furthermore, insulin includes human insulin, bovine insulin, pig insulin, and the like. The introduction method includes the chloramine T method, the enzyme method, the direct introduction method, etc. In other words, a compound that generates I - ions (e.g. NaI) is introduced in the presence of chloramine T, or
Two methods are used: one in which insulin is acted on in the presence of H 2 O 2 and lactoperoxidase , and another in which 123 .

この発明の放射性診断剤に含ませる放射能は、
核医学的診断を実施するに際して充分な情報が得
られる量であり、かつ被検者の放射線被曝をでき
るだけ低くする量であることが望ましいが、一般
に0.05−10mCi/ml程度が適当である。
The radioactivity contained in the radiodiagnostic agent of this invention is:
It is desirable that the amount be such that sufficient information can be obtained when performing a nuclear medicine diagnosis and that the radiation exposure of the subject be as low as possible, but in general, about 0.05-10 mCi/ml is appropriate.

この発明の放射性診断剤には、放射性沃素原子
を分子内に含むインシユリン以外に、必要に応じ
て常用される緩衝液、PH調節用酸またはアルカ
リ、等張化剤、保存剤等を含ませることができ
る。
The radioactive diagnostic agent of the present invention may contain, as necessary, commonly used buffers, acids or alkalis for pH adjustment, isotonicity agents, preservatives, etc., in addition to insulin, which contains radioactive iodine atoms in its molecules. I can do it.

この発明の放射性診断剤の投与方法としては、
一般に静脈内投与が行なわれる。
The method for administering the radiodiagnostic agent of this invention is as follows:
Administration is generally done intravenously.

次に、この発明の放射性診断剤の製造法、使用
法および効果を、製造例および実施例によつて示
す。
Next, the manufacturing method, usage, and effects of the radioactive diagnostic agent of the present invention will be illustrated by manufacturing examples and examples.

製造例 1 放射性沃素標識インシユリンの合成。Manufacturing example 1 Synthesis of radioiodine-labeled insulin.

放射性沃素は、アマシヤムジヤパンから購入し
125I−NaI(蛋白標識用)および日本メジフイジ
ツクス社から購入した125I−NaIを使用した。
As radioactive iodine, 125 I-NaI (for protein labeling) purchased from Amashyam Japan and 125 I-NaI purchased from Nihon Medi-Physics Co., Ltd. were used.

125I−インシユリンの合成法。 125 I-Insulin synthesis method.

まず、1mCi/0.01mlの125I−NaIを含むアルカ
リ性水溶液(PH8〜10)を用意し、クロラミンT
法によつて、インシユリン蛋白中のチロシン125I
で標識した。すなわち、ほう酸緩衝液(0.1M)
の0.1ml、125I−NaI液0.05ml、インシユリン水溶液
(Novo薬品株式会社製Actrapid MC(40 IU/ml
ぶた精製インシユリン)0.5mlを均一混和液とし
ておき、この混合液に、クロラミンT液(1mg/
ml)の0.02mlを加えて、氷冷下15秒間攪拌し、さ
らに0.02mlのクロラミンT液を追加して攪拌し、
15秒後に、メタ重亜硫酸ナトリウム水溶液(1
mg/ml)の0.03mlを加えて、反応を速やかに停止
させた。これに100mg/mlの沃化カリウム水溶液
を0.1ml添加して、反応の停止と、クロラミンT
の過剰な作用を完全に停止させた。
First, prepare an alkaline aqueous solution (PH8-10) containing 1mCi/0.01ml of 125 I-NaI, and
By method, tyrosine 125 I in insulin protein
Labeled with. i.e. borate buffer (0.1M)
0.1 ml of 125 I -NaI solution, 0.05 ml of 125 I-NaI solution, insulin aqueous solution (Actrapid MC manufactured by Novo Pharmaceutical Co., Ltd. (40 IU/ml)
Make a homogeneous mixture of 0.5 ml of porcine purified insulin, and add chloramine T solution (1 mg/ml) to this mixture.
ml), stirred for 15 seconds under ice-cooling, and then added 0.02ml of Chloramine T solution and stirred.
After 15 seconds, add sodium metabisulfite aqueous solution (1
The reaction was immediately stopped by adding 0.03 ml of 20 mg/ml). To this, 0.1 ml of 100 mg/ml potassium iodide aqueous solution was added to stop the reaction and chloramine T
completely stopped the excessive effects of

これら混液を直ちに、セフアデツクスG−25の
0.3Mグリシン−0.45%塩化ナトリウム溶液カラ
ム中を通過させて放射性沃素で標識されたインシ
ユリンのみを分取した。その比活性は、
500μCi/2IUインシユリンであつた。
Immediately pour these mixtures into Cephadex G-25.
Only insulin labeled with radioactive iodine was fractionated by passing through a 0.3M glycine-0.45% sodium chloride solution column. Its specific activity is
It was 500μCi/2IU insulin.

125Iまたは131I−インシユリンの合成法。Method for synthesizing 125 I or 131 I-insulin.

上記128I−インシユリンの合成法に準拠した。
上記合成法に従い、123Iおよび131I−NaIを用いて
インシユリンを標識化したところ、先の記載と全
く同様の標識物を合成することができた。
The method for synthesizing 128 I-insulin was followed.
When insulin was labeled using 123 I and 131 I-Nal according to the above synthesis method, a labeled product completely similar to that described above could be synthesized.

製剤例 1 製造例1で得た125I−インシユリン溶液を生理
食塩水で50μCi/mlに希釈して、この発明の放射
性診断剤を得た。
Formulation Example 1 The 125 I-insulin solution obtained in Production Example 1 was diluted with physiological saline to 50 μCi/ml to obtain a radioactive diagnostic agent of the present invention.

実施例 1 放射性沃素125標識インシユリンをラツト尾静
脈に注射した後の放射能のラツト体内吸収・分布
ならびに排泄(ADME)。
Example 1 Absorption, distribution, and excretion (ADME) of radioactivity in the rat body after injecting radioactive iodine 125- labeled insulin into the tail vein of the rat.

核医学的技法は、ひとの短時間診断、無痛、無
拘束診断として極めて優れてはいるが、ラツトの
ような小動物の場合は、これに代る方法で、かつ
極めて写真的解像力のよい、全身マクロオートラ
ジオグラフイがよく利用されている。本実施例も
全くこの方法に依つて、可視的放射能分布が記録
された。
Although nuclear medicine techniques are excellent for short-term, painless, and non-restrictive diagnosis in humans, there is an alternative method for small animals such as rats that uses whole-body techniques with extremely high photographic resolution. Macro autoradiography is often used. In this example, the visible radioactivity distribution was also recorded entirely by this method.

まず、ウイスター系雄性ラツト5週令の尾静脈
に5μCi/0.1mlの放射性沃素標識インシユリンを
注射し、10分、30分、1時間、3時間および5時
間の各時点に、エーテル麻酔死させ、直ちに液体
窒素で凍結させ、ライツ1400型大型滑走ミクロト
ームによつて、20μm厚の薄切切片を作成し、そ
れら切片を減圧凍結乾燥した。乾燥切片に、さく
らMARGを密着し、暗箱中で約4週間露出して
後、そのフイルムを、さくら指定の写真処理に付
して、全身マクロオートラジオグラフイを得た。
オートラジオグラフイの写真的黒化濃度は、全く
放射能濃度と相関関係を有している。投与後の分
布は、前期、中期および後期の3期について、そ
れぞれ特異的な分布を示していた。
First, 5 μCi/0.1 ml of radioactive iodine-labeled insulin was injected into the tail vein of 5-week-old male Wistar rats, and they were killed by ether anesthesia at 10 minutes, 30 minutes, 1 hour, 3 hours, and 5 hours. It was immediately frozen in liquid nitrogen, and thin sections with a thickness of 20 μm were prepared using a Leitz 1400 large sliding microtome, and the sections were freeze-dried under reduced pressure. Sakura MARG was applied closely to the dried sections and exposed for about 4 weeks in a dark box, and then the film was subjected to photo processing specified by Sakura to obtain whole-body macroautoradiography.
The photographic darkening density of autoradiography is completely correlated with the radioactivity density. The distribution after administration showed specific distributions in each of the three periods: early, middle, and late.

1 前期の分布 腎、心房、心室、各種動脈、肺、および肝臓な
どに、高放射能が記録された。脳および膵臓は、
顕著な放射能分布でなく、筋肉組織でやや高い放
射能の記録があつた。
1 Distribution in the early stage High radioactivity was recorded in the kidneys, atria, ventricles, various arteries, lungs, and liver. The brain and pancreas are
There was no significant radioactivity distribution, and rather high radioactivity was recorded in muscle tissue.

2 中期分布 血中放射能の存在を示すと思われる心房、心
室、下大動脈および肝臓内の大小の静脈内は低い
放射能となつていたが、各器官および組織相互の
放射能濃度の分布の比較は、投与の前期と近似し
ていた。
2 Mid-term distribution Radioactivity was low in the atria, ventricles, inferior aorta, and large and small veins in the liver, which are considered to indicate the presence of radioactivity in the blood, but the distribution of radioactivity concentration among each organ and tissue was Comparisons were similar to the previous period of administration.

3 後期の分布 投与後3〜5時間では、全体的な黒化濃度は、
薄れた。とくに、中期まで高い濃度を示していた
骨格筋、心筋、肺、肝などの中程度濃度群で明ら
かな濃度稀薄化が観察された。それに対して、中
期分布濃度とほとんど差がなく、放射能濃度が残
留していたのが左心房に連らなる大動脈、下大動
脈、頸動脈をはじめとした動脈群であつた。この
時期で、血中放射能が器官・組織内に、それぞれ
の要求に応じて吸収され、過剰分は肝から胆汁と
なつて消化管内への排泄と腎からの排泄が示され
ていた。とくに腎の皮質および髄質における特異
的な分布が記録されていた。
3 Late distribution 3 to 5 hours after administration, the overall blackening concentration is
Faded. In particular, a clear concentration dilution was observed in intermediate concentration groups such as skeletal muscle, cardiac muscle, lung, and liver, which had shown high concentrations until the middle stage. On the other hand, the radioactivity concentration remained in the arteries connected to the left atrium, including the aorta, inferior aorta, and carotid artery, with almost no difference from the mid-term distribution concentration. During this period, radioactivity in the blood was absorbed into organs and tissues according to their needs, and the excess was excreted from the liver into bile and excreted into the gastrointestinal tract and kidneys. In particular, a specific distribution in the cortex and medulla of the kidney was noted.

また本実施例において、予めアロキサンを静脈
内投与して、高血糖症としたものについて正常ラ
ツトとの症状差異を顕著にさせる目的で糖負荷を
行ない、1時間後に125I−インスリン(5mCi/
頭)を投与し、30分後の全身マクロオートラジオ
グラフを作成した。
In addition, in this example, alloxan was administered intravenously in advance to induce hyperglycemia. Glucose loading was performed in order to make the difference in symptoms from normal rats noticeable, and 1 hour later, 125I-insulin (5 mCi/
head), and a whole-body macroautoradiograph was created 30 minutes later.

その結果、対象群と比べて、高血糖ラツト群の
腎および肝の放射能は顕著に低下しており、もし
核医学臨床的にシンチカメラで125I−インスリン
分布を映像すれば、克明な差で病態を診断できる
ことは明らかである。
As a result, radioactivity in the kidneys and liver of the hyperglycemic rats group was significantly lower than that of the control group, and if the 125I-insulin distribution was imaged using a cinch camera in a nuclear medicine clinical setting, there would be a clear difference. It is clear that pathological conditions can be diagnosed.

また、125I−インスリンの腎でのアフイニテイ
ーが弱いためか、高血糖ラツトの尿は高い放射能
の排泄が特徴的であり、これも複雑な高血糖症の
原因を特定するために著しく有効な指針となるこ
とが明らかである。
Additionally, the urine of hyperglycemic rats is characterized by the excretion of high radioactivity, probably due to the weak affinity of 125I-insulin in the kidneys, and this is also an extremely effective guideline for identifying the cause of complex hyperglycemia. It is clear that

上記実施例に見られるとおり、この発明による
放射性診断剤(放射性沃素標識インシユリン)を
静脈注射することにより、体内の放射能分布およ
び各器官・組織内におけるその濃度の推移を知る
ことができ、それによつて動脈血管に特有の各種
疾患について、また主幹脈管系に限らず器官・組
織内の疾患についても、早期に無痛、無損傷の状
態で診断することが可能となつた。
As seen in the above examples, by intravenously injecting the radioactive diagnostic agent (radioactive iodine-labeled insulin) according to the present invention, it is possible to know the distribution of radioactivity in the body and the changes in its concentration in each organ and tissue. As a result, it has become possible to diagnose various diseases specific to arterial blood vessels and diseases not only in the main vascular system but also in organs and tissues at an early stage without pain or damage.

実施例 2 B−16メラノーマ移植C57系ブラツクマウス体
内の分布と排泄。
Example 2 Distribution and excretion in the body of B-16 melanoma transplanted C57 black mice.

B−16メラノーマ(黒色皮膚癌)を移植後24時
間および12日におけるブラツクマウスの尾静脈に
放射性沃素125I標識インシユリンの5μCi/0.1mlを
投与して、20分後の体内放射能分布を全身マクロ
オートラジオグラフイによつて可視化した。癌移
植後24時間では皮下組織で皮膚を反転させた外観
において、接種した黒色癌細胞塊が強固に皮下組
織に密着し、接種部分を数層の結合組織で被覆し
ているが、黒色部分の顕著な増量は、見掛上観察
されないことから、癌細胞の増殖が接種後24時間
中で顕著であるとは、推定されなかつた。しか
し、このような病巣部においても、125I−標識イ
ンシユリンは、極めて特異な病巣部内分布を示し
た。
24 hours and 12 days after transplantation of B-16 melanoma (black skin cancer), 5 μCi/0.1 ml of radioactive 125 I-labeled insulin was administered to the tail vein of black mice, and the radioactivity distribution in the body was measured 20 minutes later. Visualized by macroautoradiography. 24 hours after cancer transplantation, when the skin is inverted at the subcutaneous tissue, the inoculated black cancer cell mass is tightly adhered to the subcutaneous tissue, and the inoculated area is covered with several layers of connective tissue; Since no significant increase in volume was apparently observed, it could not be assumed that cancer cell proliferation was significant within 24 hours after inoculation. However, even in such lesions, 125 I-labeled insulin showed a very specific intralesional distribution.

接種24時間後の放射能分布は、明らかに接種癌
細胞接触部位に特異的に高濃度の125I−標識イン
シユリンの分布を示し、接触部位周辺の組織内濃
度と顕著な対照をなしていた。これは、接種癌接
触部位で、高エネルギーの要求があり、それに伴
つて解糖系代謝回転の驚く程の促進があるためか
もしれない。このように病巣部位における特異的
な放射能濃縮は、癌病巣進捗の初期診断の精度を
高く、かつ確実に上昇させるものであり、この発
明による放射性診断剤が、従来から要望されてい
た癌の早期診断剤としての有用性を有することを
立証するものである。接種12日後では、この癌病
態特有の包状の大きな黒塊を形成し、外包部はや
や強固な結合組織で被覆され、極めて血管に富む
特異な形態を示した。すでに病巣中央部は休止的
な細胞塊と壊死が幾分観察された。癌接種12日後
(後期癌)の病巣では、病巣部周縁の包被内の新
生癌細胞群(活性部分で細胞分裂がなお接続され
ている部分)のみで、強い放射能の分布像を示し
ていた。これは、別途の実験による14C−2−チ
ミジンの尾静脈注射後1時間における同様病巣部
分の14C−放射能分布ともよく一致していた。
The radioactivity distribution 24 hours after inoculation clearly showed a high concentration of 125 I-labeled insulin specifically at the site of contact with the inoculated cancer cells, which was in marked contrast to the concentration in the tissue around the contact site. This may be due to the high energy demands and concomitant significant acceleration of glycolytic turnover at the site of inoculation cancer contact. In this way, the specific concentration of radioactivity at the lesion site highly and reliably increases the accuracy of the initial diagnosis of the progress of cancer lesions, and the radioactive diagnostic agent according to the present invention can be used to treat cancer, which has been desired for a long time. This proves that it has utility as an early diagnostic agent. Twelve days after inoculation, a large, capsule-shaped black mass, which is characteristic of this cancerous pathology, was formed, and the outer capsule was covered with rather strong connective tissue, exhibiting a unique morphology that was extremely rich in blood vessels. Quiet cell clusters and some necrosis were already observed in the center of the lesion. In the lesion 12 days after cancer inoculation (late-stage cancer), only the newly formed cancer cells within the envelope around the lesion (the active part where cell division is still connected) show a strong radioactivity distribution pattern. Ta. This was in good agreement with the distribution of 14 C-radioactivity in the same lesion area 1 hour after injection of 14 C-2-thymidine into the tail vein according to a separate experiment.

実施例 3 生体検査的診断剤としての利用 (B−16)メラノーマ接種後24時間の担癌マウ
ス(C57ブラツク)を、エチルエーテル麻酔死後
液体窒素を用いて、冷凍した。その屍体を左側面
の断面として、左腎臓を保有する薄切切片(各
20μm)と正中線断面を示す薄切切片(各20μm)
とを多数作成した。
Example 3 Use as a biometric diagnostic agent (B-16) A tumor-bearing mouse ( C57 black) 24 hours after being inoculated with melanoma was anesthetized with ethyl ether and frozen using liquid nitrogen. The left side of the corpse was taken as a cross-section, and a thin section containing the left kidney (each
20 μm) and thin sections showing midline cross sections (20 μm each)
I created many.

作成は、ほぼウルバーグ原法に従い、スコツチ
テープ#615の助けで、クリオミクロトームを使
用し、−15℃下で、操作を行つた。得られた切片
を減圧下凍結乾燥した。この切片に、放射性沃素
125I標識インシユリン2mCi/0.1mlの0.005mlを微
少噴霧器を用いてスプレーし、37℃下、1分間の
放置後よく水洗して、自然乾燥させた。この125I
処置の切片とX線用高感度フイルムを密着させ
て、2日間の露出後、X線フイルムを写真処理し
たところ、癌接触部位に極めて強い写真黒化を観
察した。この事実は癌接触部位、発癌部位等の宿
主側の局所において、この発明の診断剤が特異的
親和性を有することを示している。このことは、
発癌もしくは転位を断定できないがその恐れのあ
る場合、それらの部位を生体検査のため一部採摘
出(バイオプシイ)して作成した簡易凍結切片等
または血漿、血清からイン・ビトロ的に癌性を診
断検査する試薬として、この発明の診断剤が有用
であることを証明している。
The preparation was carried out almost according to Ulberg's original method using a cryomicrotome with the help of Scotch tape #615 at -15°C. The obtained sections were freeze-dried under reduced pressure. Radioactive iodine is added to this section.
0.005 ml of 2 mCi/0.1 ml of 125 I-labeled insulin was sprayed using a microsprayer, allowed to stand at 37°C for 1 minute, thoroughly washed with water, and air-dried. This 125 I
When the treated section was brought into close contact with a high-sensitivity X-ray film and exposed for two days, the X-ray film was photographically processed, and extremely strong photographic darkening was observed at the site of cancer contact. This fact indicates that the diagnostic agent of the present invention has specific affinity for host-side localities such as cancer contact sites and carcinogenic sites. This means that
If carcinogenesis or metastasis cannot be determined but there is a possibility, cancerousness can be diagnosed in vitro from simple frozen sections prepared by removing a portion of the site (biopsy) for biological examination, or from plasma or serum. The diagnostic agent of the present invention has been proven to be useful as a testing reagent.

また、ウイスター系雄性ラツト5週令にアロキ
サンを100g体重当り25mgで腹腔注射することに
よつて発症させた高血糖ラツトについて、上記と
同様な処理を行ない、イン・ビトロ的診断の特異
性を検討したところ、対照群と比べて、肝への
125I−インスリンのアフイニテイは、極めて低
く、特に、グルコース負荷群においてその差が顕
著であつた。これらの結果から、この発明の診断
剤が、上記と同様に、バイオプシイして作成した
簡易凍結切片等からイン・ビトロ的診断を行なう
診断剤としての顕著な効果を有するものであるこ
とが判明した。
In addition, we performed the same treatment as above on hyperglycemic rats, which were induced by intraperitoneal injection of alloxan at 25 mg per 100 g of body weight at 5 weeks of age, to examine the specificity of in vitro diagnosis. The results showed that compared to the control group, the effect on the liver was
The affinity of 125 I-insulin was extremely low, and the difference was particularly noticeable in the glucose-loaded group. From these results, it was found that the diagnostic agent of the present invention has a remarkable effect as a diagnostic agent for performing in vitro diagnosis from simple frozen sections prepared by biopsy, etc., as described above. .

上記3実施例ともに、放射性標識沃素として
123I,131I等を使用しても同様の効果を示すことが
(これらが同位体であるという理由で)明らかで
あるが、すべての実験を追加実験したところ、
131Iが写真解像力的に劣つていることが明らかと
なつた。
In all three examples above, as radiolabeled iodine
It is clear that using 123 I, 131 I, etc. would have a similar effect (because these are isotopes), but when we added all the experiments, we found that
It became clear that 131 I was inferior in terms of photographic resolution.

これら実施例から、特に早期癌診断剤および肝
機能診断剤として使用した場合、この発明の診断
剤の有用性が顕著で他に類例をみないことが明ら
かとなつた。
From these Examples, it became clear that the usefulness of the diagnostic agent of the present invention is remarkable and unprecedented, especially when used as an early cancer diagnostic agent and a liver function diagnostic agent.

Claims (1)

【特許請求の範囲】 1 放射性よう素原子を分子内に含むインシユリ
ンを主成分とする、癌もしくはその転移または高
血糖症の診断のための核医学的放射性診断剤。 2 放射性よう素原子が125Iである、特許請求の
範囲第1項記載の放射性診断剤。 3 放射能の体内分布もしくはその推移、または
生検材料中もしくは尿中の放射能濃度の測定によ
る、特許請求の範囲第1または2項記載の放射性
診断剤。 4 放射能の体内分布もしくはその推移、または
生検材料中の放射能濃度の測定による癌またはそ
の転移の診断のための特許請求の範囲第3項記載
の放射性診断剤。 5 放射能の体内分布もしくはその推移、または
生検材料中の放射能濃度の測定による高血糖症の
診断のための特許請求の範囲第3項記載の放射性
診断剤。 6 高血糖症における肝機能または腎機能の診断
のための特許請求の範囲第1〜3項記載の放射性
診断剤。 7 高血糖症の病態の診断のための尿中の放射能
濃度の測定による、特許請求の範囲第1〜3項記
載の放射性診断剤。 8 上記診断剤に接触させた生検材料中の放射能
濃度の測定による、特許請求の範囲第1〜3項記
載の放射性診断剤。
[Scope of Claims] 1. A radioactive nuclear medicine diagnostic agent for diagnosing cancer or its metastasis or hyperglycemia, the main component of which is insulin containing a radioactive iodine atom in its molecule. 2. The radioactive diagnostic agent according to claim 1, wherein the radioactive iodine atom is 125 I. 3. The radioactive diagnostic agent according to claim 1 or 2, which is determined by measuring the distribution of radioactivity in the body or its transition, or the radioactivity concentration in biopsy material or urine. 4. The radioactive diagnostic agent according to claim 3 for diagnosing cancer or its metastasis by measuring the distribution of radioactivity in the body or its transition, or the radioactivity concentration in a biopsy material. 5. The radioactive diagnostic agent according to claim 3 for diagnosing hyperglycemia by measuring the distribution of radioactivity in the body or its transition, or the radioactivity concentration in a biopsy material. 6. The radioactive diagnostic agent according to claims 1 to 3 for diagnosing liver function or renal function in hyperglycemia. 7. The radioactive diagnostic agent according to claims 1 to 3, which is used by measuring the radioactivity concentration in urine for diagnosing the pathological condition of hyperglycemia. 8. The radioactive diagnostic agent according to claims 1 to 3, which is obtained by measuring the radioactive concentration in a biopsy specimen brought into contact with the diagnostic agent.
JP58233356A 1983-12-09 1983-12-09 Radioactie diagnostic agent Granted JPS60126231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58233356A JPS60126231A (en) 1983-12-09 1983-12-09 Radioactie diagnostic agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58233356A JPS60126231A (en) 1983-12-09 1983-12-09 Radioactie diagnostic agent

Publications (2)

Publication Number Publication Date
JPS60126231A JPS60126231A (en) 1985-07-05
JPH0568452B2 true JPH0568452B2 (en) 1993-09-29

Family

ID=16953863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58233356A Granted JPS60126231A (en) 1983-12-09 1983-12-09 Radioactie diagnostic agent

Country Status (1)

Country Link
JP (1) JPS60126231A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8519457D0 (en) * 1985-08-02 1985-09-11 Faulk Ward Page Tumour imaging agents
FR2613937B1 (en) * 1987-04-17 1989-07-21 Ire Celltarg Sa LIGANDS SPECIFIC TO STEROID HORMONE RECEPTORS USEFUL FOR TARGETED THERAPY OR MEDICAL IMAGING, PARTICULARLY CANCER

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225767A (en) * 1976-08-27 1977-02-25 Daiichi Rajio Isotope Kenkyusho:Kk Preparation of tyrosinated c-peptides and radioactive iodinated deriva tives thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225767A (en) * 1976-08-27 1977-02-25 Daiichi Rajio Isotope Kenkyusho:Kk Preparation of tyrosinated c-peptides and radioactive iodinated deriva tives thereof

Also Published As

Publication number Publication date
JPS60126231A (en) 1985-07-05

Similar Documents

Publication Publication Date Title
Stadalnik et al. Technetium-99m NGA functional hepatic imaging: preliminary clinical experience
Wackers et al. Noninvasive visualization of acute myocardial infarction in man with thallium-201.
JP2004522747A (en) Method for treating chronic heart failure and / or high cholesterol using 3,5-diiodothyropropionic acid and method for producing this acid
US4425319A (en) Radioactive diagnostic agent and non-radioactive carrier therefor
Shi et al. Technetium-99m-nitroimidazole (BMS181321): a positive imaging agent for detecting myocardial ischemia
Wang et al. Molecular imaging of fibroblast activity in pressure overload heart failure using [68 Ga] Ga-FAPI-04 PET/CT
WO2024188353A1 (en) Use of positron myocardial fatty acid metabolism imaging agent and positron 18f-fdg myocardial glucose imaging agent in pet combined imaging
Horiuchi et al. Tc (V)-DMS tumor localization mechanism: a pH-sensitive Tc (V)-DMS—enhanced target/nontarget ratio by glucose-mediated acidosis
US4859450A (en) Method of NMR imaging using antibody to cardiac myosin
JPH03505094A (en) Synthetic peptides for arterial imaging
Johnson et al. The role of antimyosin antibodies in acute myocardial infarction
JPH0568452B2 (en)
JP3717402B2 (en) Method and composition for imaging
Bergmann Clinical applications of myocardial perfusion assessments made with oxygen-15 water and positron emission tomography
Wahl et al. The effect of specimen processing on radiolabeled monoclonal antibody biodistribution
Anderson et al. Diagnosis of hepatoma using a multiple radionuclide approach
Johnson III et al. Technetium 99m—HL-91: A potential new marker of myocardial viability assessed by nuclear imaging early after reperfusion
Britton et al. Adrenal aldosterone-producing adenoma: use of colonic potential in diagnosis and subtraction scanning technique for localisation.
Shuvaev et al. Optimization of an Allysine-Targeted PET Probe for Quantifying Fibrogenesis in a Mouse Model of Pulmonary Fibrosis
RU2786824C1 (en) Method for assessing the degree of malignancy of brain tumors
JPS61158933A (en) Method of hitting tumor in human body as target
US20230256120A1 (en) Diagnostic agent for pancreatic function
US20240066157A1 (en) Molecular imaging complex for positron emission tomography
JP2680861B2 (en) Diagnostic agent
Alevizaki-Harhalaki et al. Increased Tc-99m DTPA uptake in active Graves' ophthalmopathy and pretibial myxoedema