JPH0568412B2 - - Google Patents

Info

Publication number
JPH0568412B2
JPH0568412B2 JP18731785A JP18731785A JPH0568412B2 JP H0568412 B2 JPH0568412 B2 JP H0568412B2 JP 18731785 A JP18731785 A JP 18731785A JP 18731785 A JP18731785 A JP 18731785A JP H0568412 B2 JPH0568412 B2 JP H0568412B2
Authority
JP
Japan
Prior art keywords
zeolite
silica
amount
supported
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18731785A
Other languages
Japanese (ja)
Other versions
JPS6252123A (en
Inventor
Juichi Murakami
Akio Furuta
Hirofumi Ito
Sanae Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP18731785A priority Critical patent/JPS6252123A/en
Publication of JPS6252123A publication Critical patent/JPS6252123A/en
Publication of JPH0568412B2 publication Critical patent/JPH0568412B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はゼロアイト細孔入口径の精密制御法に
関し、詳しくは流通状態のシラン化剤を用い、化
学蒸着(CVD)法により、ゼオライトにシイカ
(SiO2)を担持させるに際して、ゼオライトをア
ンモニアまたはn−ブチルアミン等の窒素含有有
機化合物で前処理し、ゼオライトの酸量を制御す
ることによりシリカの担持量を調整し、このこと
によりゼオライト細孔入口径を制御するゼオライ
ト細孔入口径の精密制御法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for precisely controlling the entrance diameter of zeroite pores, and more specifically, using a silanizing agent in a flowing state, silanizing agent is applied to zeolite by chemical vapor deposition (CVD). When supporting (SiO 2 ), the zeolite is pretreated with a nitrogen-containing organic compound such as ammonia or n-butylamine, and the amount of silica supported is adjusted by controlling the amount of acid in the zeolite. This article relates to a method for precisely controlling the entrance diameter of zeolite pores.

[発明が解決しようとする問題点] ゼオライトは多孔性のアルミニウムシリケート
の結晶であり、(1)水や有機物をよく吸着する、(2)
カチオン交換体である、(3)均一な細孔を有し、分
子篩性能をもつ、という物理化学的な特徴を有す
ることから、固体触媒や吸着剤として多くの工業
的な用途が知られている。
[Problems to be solved by the invention] Zeolite is a porous aluminum silicate crystal that (1) adsorbs water and organic substances well; (2)
It has many industrial uses as a solid catalyst and adsorbent because it has the physical and chemical characteristics of being a cation exchanger, (3) having uniform pores, and having molecular sieving properties. .

固体触媒としての最大の用途は石油のクラツキ
ング触媒であり、これはカチオン交換性の利用で
あり、ナトリウムカチオンをプロトン、カルシウ
ム等のアルカリ土類金属またはランタン等の希土
類元素に置き換え、酸性質を出すようにしてやる
と、非常に強い固体酸特性を示す。
The biggest use as a solid catalyst is as a petroleum cracking catalyst, which utilizes cation exchange properties, and replaces sodium cations with protons, alkaline earth metals such as calcium, or rare earth elements such as lanthanum, giving acidic properties. When done in this way, it exhibits extremely strong solid acid properties.

また、ある種のゼオライトを用いてメタノール
からガソリンを製造するプロセス、メタノールと
トルエンからp−キシレンの生成、トルエンの不
均化によるp−キシレンの生成に用いられている
が、これは分子の大きさにより反応性が異なると
いうゼオライトの形状選択性に特徴がある。この
形状選択性は、(1)細孔に入らない分子に反応しな
い(反応分子形状選択性)、(2)細孔から出られな
い分子は生成しない(生成分子形状選択性)、(3)
遷移状態がとれない生成物は生成しない(遷移状
態選択性)の3つに分けられるが、これらの形状
選択性を支配するのはゼオライトの細孔径であ
る。
In addition, certain zeolites are used to produce gasoline from methanol, to produce p-xylene from methanol and toluene, and to disproportionate toluene to produce p-xylene; Zeolite is characterized by its shape selectivity, which shows that its reactivity varies depending on the shape of the zeolite. This shape selectivity is characterized by (1) no reaction with molecules that do not enter the pore (reactant molecule shape selectivity), (2) no formation of molecules that cannot exit from the pore (produced molecule shape selectivity), (3)
Products that cannot form a transition state are not produced (transition state selectivity), and these shape selectivities are controlled by the pore diameter of the zeolite.

このように、ゼオライトを触媒または吸着剤と
したとき、重要な性質は酸性質と細孔径である。
そこでゼオライトをそのまま用いるのではなく、
何らかの処理を施し、ゼオライトの性質を変化さ
せることが考えられており、一番よく用いられて
いるのはイオン交換と脱アルミニウムであり、こ
のような処理はゼオライトの酸性質に大きな影響
を与える。
Thus, when zeolite is used as a catalyst or adsorbent, the important properties are acidity and pore size.
Therefore, instead of using zeolite as it is,
It has been considered that some kind of treatment can be applied to change the properties of zeolite, and the most commonly used treatments are ion exchange and dealumination, and these treatments have a large effect on the acid properties of zeolite.

これに対して、細孔径については、アルカリ金
属カチオン、アルカリ土類金属カチオンの大きさ
の違いを利用して細孔径を変える方法が知られて
いるが、この方法は酸特性を著しく変えてしまう
という欠点がある。このような観点から、酸性質
をそのままに維持し、細孔径の大きさを制御する
方法が望まれでる。
On the other hand, there is a known method for changing the pore size by utilizing the difference in size between alkali metal cations and alkaline earth metal cations, but this method significantly changes the acid properties. There is a drawback. From this point of view, a method is desired that maintains the acid properties as they are and controls the size of the pore diameter.

このため、ゼオライトにケイ素を含む有機化合
物を担持したり、担持後に焼成してシリカとした
ものが提案されているが、いずれも細孔入口径を
精密に制御するものではなかつた。
For this reason, it has been proposed to support zeolite with an organic compound containing silicon, or to sinter it to form silica after supporting it, but none of these methods allow precise control of the pore entrance diameter.

さらに、特定のシラン化剤を固定状態で用い、
真空条件下で化学蒸着法によつてゼオライトにシ
リカを担持させ、ゼオライト細孔入口径を制御す
ることも提案されているが、真空下で行なうこと
は工業的な規模では適さず、また多量のゼオライ
トに担持させる際、シリカの担持量にバラツキが
生じ、ゼオライト細孔入口径を精密にかつ均一に
制御することは出来なかつた。
Furthermore, using a specific silanizing agent in a fixed state,
It has also been proposed to control the entrance diameter of zeolite pores by supporting silica on zeolite by chemical vapor deposition under vacuum conditions, but carrying out under vacuum is not suitable on an industrial scale, and When supporting silica on zeolite, variations occurred in the amount of silica supported, making it impossible to precisely and uniformly control the entrance diameter of zeolite pores.

ゼオライトはシリカの担持量のごく僅かな差に
よつて大幅に性能が変わることから、ゼオライト
にシリカを担持させる試みは種々なされているも
のの、工業的規模でゼオライトに所定量のシリカ
を均一に担持させ、ゼオライト細孔入口径を精密
に制御する方法は未だ得られていない。
The performance of zeolite varies greatly depending on the slight difference in the amount of silica supported, so although various attempts have been made to support silica on zeolite, it has not been possible to uniformly support a predetermined amount of silica on zeolite on an industrial scale. A method for precisely controlling the zeolite pore entrance diameter has not yet been obtained.

本発明はかかる観点からなされたもので、ゼオ
ライトに所定量のシリカを均一に担持させ、工業
的な規模ぜゼオライト細孔入口径を精密に制御す
ることを可能としたゼオライト細孔入口径の精密
制御法を提供することを目的とする。
The present invention was made from this viewpoint, and it is possible to uniformly support a predetermined amount of silica on zeolite and precisely control the entrance diameter of zeolite pores on an industrial scale. The purpose is to provide a control method.

[問題点を解決するための手段および作用] 本発明者等は上記目的に従つて、検討の結果、
流通状態のシラ化剤を用い、化学蒸着法によりゼ
オライトにシリカを蒸着させる際にしては、前処
理としてアンモニア等を使用してゼオライトの融
点を部分的に被毒させ、酸量を制御することによ
りシリカ担持量が均一に調整でき、このことによ
りゼオライト細孔入口径が精密に制御されること
を知見して本発明に到達した。
[Means and effects for solving the problem] In accordance with the above purpose, the present inventors have as a result of their studies,
When depositing silica on zeolite by chemical vapor deposition using a circulating silizing agent, the amount of acid should be controlled by using ammonia or the like as a pretreatment to partially poison the melting point of the zeolite. The present invention was achieved based on the finding that the amount of silica supported can be uniformly adjusted by this method, and thereby the entrance diameter of the zeolite pores can be precisely controlled.

すなわち本発明は、流通状態のシラ化剤を用い
て、化学蒸着法によりシリカをゼオライトに担持
させ、ゼオライト細孔入口径を制御するに際し、
アンモニアまたは窒素含有有機物で前処理したゼ
オライトを用いてシリカの担持量を調整すること
を特徴とするゼオライト細孔入口径の精密制御法
にある。
That is, in the present invention, when controlling the entrance diameter of zeolite pores by supporting silica on zeolite by chemical vapor deposition using a silating agent in a flowing state,
This invention provides a method for precisely controlling the entrance diameter of zeolite pores, which is characterized by adjusting the amount of silica supported using zeolite pretreated with ammonia or a nitrogen-containing organic substance.

本発明においては、化学蒸着法を用いてシラン
化剤をゼオライトに蒸着させ、ゼオライト表面に
所定量のシリカを均一に担持させる。化学蒸着法
は、熱、プラズマ、光等のエネルギーを加えて気
相のガス分子を分解もしくは反応させて固体薄膜
を製造する方法であり、本発明においては反応雰
囲気等の諸条件は適宜定められる。この化蒸着法
により調製されたゼオライトの特徴は、ゼオライ
トの細孔内に入らない分子径のシラン化剤を用い
ゼオライトの外表面だけにシリカを担持するこ
と、およびシリカの担持を多層にわたつて行なう
ことにより細孔径を連続的に変えられる点にあ
る。これにより、1つのゼオライトで細孔入口径
の異なるゼオライトを任意に調製でき、目的とす
る用途に応じて適宜使い分けができる。
In the present invention, a silanizing agent is deposited on zeolite using a chemical vapor deposition method, and a predetermined amount of silica is uniformly supported on the zeolite surface. The chemical vapor deposition method is a method of producing a solid thin film by applying energy such as heat, plasma, light, etc. to decompose or react gas molecules in the gas phase, and in the present invention, various conditions such as the reaction atmosphere are determined as appropriate. . The characteristics of zeolite prepared by this chemical vapor deposition method are that silica is supported only on the outer surface of the zeolite using a silanizing agent with a molecular size that does not fit into the pores of the zeolite, and that the silica is supported in multiple layers. The point is that the pore diameter can be changed continuously by doing this. As a result, zeolites with different pore entrance diameters can be arbitrarily prepared from one zeolite, and can be used appropriately depending on the intended use.

また、本発明においてはシラン化剤を流通状態
で化学蒸着を行なう。流通状態のシラン化剤を用
い、ゼオライトへの化学蒸着を行なうと、シリカ
反応層上部より担持され、順次反応ゾーンが下流
へ移動する。反応初期はシラン化剤は全て反応し
て未反応物はない。そして、未反応物が検知され
始めるとごく短い時間で反応率は0となる。これ
はゼオライトとシラン化剤の反応が極めて速いこ
とを示している。また、シラン化剤がある量担持
されるとそれ以上反応しないことを示している。
シリカの担持量は化学蒸着反応温度の関数であ
り、化学蒸着反応温度を変えることによつてシリ
カの担持量を調整できる。
Further, in the present invention, chemical vapor deposition is carried out while the silanizing agent is in a flowing state. When chemical vapor deposition is performed on zeolite using a silanizing agent in a flowing state, the silica is supported from the upper part of the silica reaction layer, and the reaction zone sequentially moves downstream. At the initial stage of the reaction, all of the silanizing agent reacts and there is no unreacted material. When unreacted substances start to be detected, the reaction rate becomes 0 in a very short time. This indicates that the reaction between the zeolite and the silanizing agent is extremely fast. It also shows that once a certain amount of silanizing agent is supported, no further reaction occurs.
The amount of silica supported is a function of the chemical vapor deposition reaction temperature, and the amount of silica supported can be adjusted by changing the chemical vapor deposition reaction temperature.

このように化学蒸着反応温度によつてシリカの
担持量を制御することは可能であるが、使用目的
によつては、さらに微少な制御が要求される。そ
こで、本発明ではゼオライトをアンモニアまたは
窒素含有有機物で前処理し、ゼオライトの融点の
一部を被毒させ、酸量を調整することによりゼオ
ライト細孔入口径の微少制御を行なつている。こ
れに用いられる窒素含有有機物としてはn−ブチ
ルアミン、ピリジン等の融点に吸着し、しかも温
度を上げることによつて脱離するものであれば使
用可能であるが、特にアンモニアは安価であり取
り扱いが容易で、かつ酸量の制御のため昇温して
も炭素質が残存しないので使用に好適である。ま
た、酸量の制御は室温で吸着後、高温で一部のア
ンモニアを脱離させるか、または高温でアンモニ
アを吸着させるかの方法が可能である。
Although it is possible to control the amount of silica supported by the chemical vapor deposition reaction temperature in this way, even finer control is required depending on the purpose of use. Therefore, in the present invention, the zeolite is pretreated with ammonia or a nitrogen-containing organic substance to poison a part of the melting point of the zeolite, and the amount of acid is adjusted to finely control the entrance diameter of the zeolite pores. Nitrogen-containing organic substances that can be used for this purpose include those that adsorb to the melting point of n-butylamine, pyridine, etc. and are desorbed by raising the temperature, but ammonia is particularly cheap and difficult to handle. It is suitable for use because it is easy to use and no carbonaceous material remains even if the temperature is raised to control the amount of acid. Further, the amount of acid can be controlled by adsorbing at room temperature and then desorbing a part of ammonia at high temperature, or by adsorbing ammonia at high temperature.

本発明に用られるゼオライトは特に制限はな
く、A型、モルデナイト型、X型、Y型等のゼオ
ライトが用いられるが、アルカリ金属イオン、ア
ルカリ土類金属イオン、アンモニウムイオンで酸
点を完全に置換したゼオライトは融点を有しない
ためシリカを担持できず好ましくない。
The zeolite used in the present invention is not particularly limited, and zeolites such as A type, mordenite type, Since the zeolite has no melting point, it cannot support silica and is therefore undesirable.

本発明において用いられるシラン化剤は常温で
気体または液体であるものでよい。また、このシ
ラン化剤は流通状態で用いられることが必要で、
具体的には、Si(R1)x(R2)y[R1:C1〜C5まで
のアルキル基、R2:C1〜C5までのアルコキシド
基、0≦x≦3、1≦y≦4、x+y=4]で表
わされる化合物等から適宜選択される。しかしな
がら、塩素等のハロゲンやイオウを含有する化合
物は、ゼオライトを触媒として用いたときに、ゼ
オライトに付着した塩素やイオウが触媒毒となつ
たり、ゼオライトの性質を変えてしまうため好ま
しくない。また、シラン化剤の分子径は、ゼオラ
イト細孔径よりも大きいことが必要で、ゼオライ
ト細孔径よりも小さい場合には、シラン化剤がゼ
オライト細孔内に侵入し、ゼオライト細孔内の性
質が変化してしまう。
The silanizing agent used in the present invention may be a gas or a liquid at room temperature. In addition, this silanizing agent needs to be used in a distributed state,
Specifically, Si(R 1 ) x (R 2 ) y [R 1 : alkyl group from C 1 to C 5 , R 2 : alkoxide group from C 1 to C 5 , 0≦x≦3, 1 ≦y≦4, x+y=4]. However, compounds containing halogens such as chlorine or sulfur are not preferable because when zeolite is used as a catalyst, the chlorine or sulfur attached to the zeolite becomes a catalyst poison or changes the properties of the zeolite. In addition, the molecular diameter of the silanizing agent must be larger than the zeolite pore diameter; if it is smaller than the zeolite pore diameter, the silanizing agent will penetrate into the zeolite pores and change the properties inside the zeolite pores. It will change.

[実施例] 以下、実施例、比較例および実験例に基づき本
発明を具体的に説明する。
[Examples] The present invention will be specifically described below based on Examples, Comparative Examples, and Experimental Examples.

実施例 H型モルデナイト1gを内径4mmのステンレス
反応管に充填し、予め320℃に乾燥ヘリウムを1
時間流して処理した後、室温に下げアンモニアを
飽和吸着させた。次いで所定温度に昇温して、ア
ンモニアの一部を脱離させ、アンモニアで融点の
一部を被毒したゼオライトを得た。このゼオライ
トに220℃でテトラメトキシシラン(分圧3mm
Hg)とヘリウムの混合ガスを流してテトラメト
キシシランの転化率が0になるまで化学蒸着を行
なつた。
Example: Fill a stainless steel reaction tube with an inner diameter of 4 mm with 1 g of H-type mordenite, and add 1 g of dry helium to 320°C in advance.
After treatment for a period of time, the temperature was lowered to room temperature and ammonia was adsorbed to saturation. Next, the temperature was raised to a predetermined temperature to remove part of the ammonia, thereby obtaining a zeolite whose melting point was partially poisoned by ammonia. Add tetramethoxysilane (partial pressure 3mm) to this zeolite at 220℃.
Chemical vapor deposition was performed by flowing a mixed gas of Hg) and helium until the conversion rate of tetramethoxysilane became 0.

次いで、残存有機物を除去するために、500℃、
3時間空気流通下にて焼成し、シリカを担持した
ゼオライトを得た。
Then, to remove residual organic matter, heat at 500°C.
The product was calcined under air circulation for 3 hours to obtain silica-supported zeolite.

シリカの担持量はXPSを用いて分析を行ない、
担持されたシリカの厚さとして表示した。シリカ
の厚さは次式により求めた。
The amount of silica supported was analyzed using XPS.
It is expressed as the thickness of supported silica. The thickness of silica was determined using the following formula.

Si/Al=t(n+1)/(d−t)+n Si/Al:XPSで求めたSi、Alの原子比、 t:担持されたシリカの厚さ(Å)、 n:ゼオライトのSi/Al(原子比)、 d:electron escape depth(Å)、 アンモニアの脱離温度とシリカの厚さ(Å)の
関係を第1図の○で示したグラフに示す。同じグ
ラフにおいて、アンモニアの脱離温度が高いほど
シリカの厚みは増大している。すなわち、アンモ
ニアの吸着量を変化させることによつて、ゼオラ
イトのシリカの担持量が調整されることが判る。
Si/Al=t(n+1)/(d-t)+n Si/Al: Atomic ratio of Si and Al determined by XPS, t: Thickness of supported silica (Å), n: Si/Al of zeolite (atomic ratio), d: electron escape depth (Å), and the relationship between the ammonia desorption temperature and the silica thickness (Å) is shown in the graph indicated by the circle in FIG. In the same graph, the higher the ammonia desorption temperature, the greater the silica thickness. That is, it can be seen that the amount of silica supported on the zeolite can be adjusted by changing the amount of ammonia adsorbed.

比較例 アンモニアによる前処理を省略した以外は前記
の実施例と同様の手法および条件で化学蒸着を行
なつた。その結果、シリカの担持された厚さは
4.3Åであつた。このことから明らかなように、
アンモニア処理をしないものではシリカが多く担
持されている。
Comparative Example Chemical vapor deposition was carried out using the same method and conditions as in the previous example, except that the pretreatment with ammonia was omitted. As a result, the supported thickness of silica is
It was 4.3 Å. As is clear from this,
A large amount of silica is supported in those that are not treated with ammonia.

実験例 実施例および比較例で得られたゼオライトに関
して、細孔制御されているかどうかの確認を行な
つた。試料は実施例および比較例で得られた各々
のゼオライトを用い、分子径の異なる炭化水素の
混合物を用いて分解反応を行ない、各炭化水素の
転化率を測定した。炭化水素としては3−メチル
ペンタン(分子径5.3Å)とn−ヘキサン(分子
径4.3Å)の等モル混合物を用い、300℃でパルス
反応を行なつた。生成物の分析はガスクロマトグ
ラフイーで行ない、細孔が制御されたか否かを判
定するためには、下式で示すC.A.R.値を求めた。
Experimental Example Regarding the zeolites obtained in Examples and Comparative Examples, it was confirmed whether the pores were controlled. Using each of the zeolites obtained in Examples and Comparative Examples as samples, a decomposition reaction was carried out using a mixture of hydrocarbons with different molecular diameters, and the conversion rate of each hydrocarbon was measured. An equimolar mixture of 3-methylpentane (molecular diameter: 5.3 Å) and n-hexane (molecular diameter: 4.3 Å) was used as the hydrocarbon, and a pulse reaction was carried out at 300°C. The product was analyzed by gas chromatography, and in order to determine whether or not the pores were controlled, the CAR value expressed by the following formula was determined.

C.A.R.値=3−メチルペンタンの転化率
/n−ヘキサンの転化率 前記実施例におけるC.A.R.値を第1図の△で
示したグラフに示す。同じグラフより、実施例で
調整した触媒では、化学蒸着反応温度220℃では、
前処理のアンモニア脱離温度が低いほど、高いC.
A.R.値を有し、脱離温度が高くなるに従つて、
低いC.A.R.値を有することが判る。
CAR value=conversion rate of 3-methylpentane/conversion rate of n-hexane The CAR values in the above examples are shown in the graph indicated by △ in FIG. From the same graph, with the catalyst prepared in the example, at a chemical vapor deposition reaction temperature of 220°C,
The lower the ammonia desorption temperature in pretreatment, the higher the C.
As the desorption temperature increases,
It can be seen that it has a low CAR value.

これに対し、比較例の触媒ではC.A.R.値は0
でありn−ヘキサンも反応しなかつた。これはア
ンモニア処理しないものでは、シリカが多く蒸着
され、細孔が小さくなりすぎているとを示す。
On the other hand, the catalyst of the comparative example had a CAR value of 0.
And n-hexane also did not react. This indicates that in the case of non-ammonia treatment, a large amount of silica was deposited and the pores became too small.

[発明の効果] 以上説明のごとく、流通状態のシラン化剤を用
いて、化学蒸着法によりシリカをゼオライトに担
持させ、ゼオライト細孔入口径を制御するに際
し、アンモニアまたは窒素含有有機物で前処理し
たゼオライトを用いてシリカの担持量を調整する
本発明のゼオライト細孔入口径の精密制御法は、
ゼオライト細孔入口径のみを極めて精密に制御
し、細孔内部の性質を変えないことから、ゼオラ
イトに所望の性能を付与することができ、また流
通状態のシラン化剤を用いるので、工業的規模で
実施可能で、メンテナンス等も容易である。特
に、本発明の方法と化学蒸着反応温度を変える方
法とを組合せることによつて担持量を任意に変え
ることができる。従つて、本発明によつて得られ
たゼオライトは選択性を有し、吸着性、触媒等の
用途に好適に用いられる。
[Effects of the invention] As explained above, silica is supported on zeolite by chemical vapor deposition using a circulating silanizing agent, and when controlling the zeolite pore entrance diameter, pretreatment with ammonia or a nitrogen-containing organic substance is performed. The precise control method of the zeolite pore entrance diameter of the present invention, which adjusts the amount of silica supported using zeolite, is as follows:
Since only the entrance diameter of the zeolite pores is controlled extremely precisely and the properties inside the pores are not changed, the desired performance can be imparted to the zeolite, and since the silanizing agent is used in a circulating state, it can be applied on an industrial scale. It is possible to carry out the process by using the following methods, and maintenance etc. are easy. In particular, by combining the method of the present invention with a method of changing the chemical vapor deposition reaction temperature, the supported amount can be changed arbitrarily. Therefore, the zeolite obtained by the present invention has selectivity and is suitable for use in adsorption, catalysts, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、アンモニアの脱離温度とシリカの厚
さとの関係および調製したゼオライトのC.A.R.
値を示すグラフである。
Figure 1 shows the relationship between ammonia desorption temperature and silica thickness and the CAR of the prepared zeolite.
It is a graph showing values.

Claims (1)

【特許請求の範囲】 1 流通状態のシラン化剤を用いて、化学蒸着法
にりシリカをゼオライトに担持させ、ゼオライト
細孔入口径を制御するに際し、アンモニアまたは
窒素含有有機物で前処理したゼオライトを用いて
シリカの担持量を調整することを特徴とするゼオ
ライト細孔入口径の精密制御法。 2 前記窒素含有有機物が、n−ブチルアミンま
たはピリジンである特許請求の範囲第1項記載の
ゼオライト細孔入口径の精密制御法。
[Claims] 1. In order to support silica on zeolite by chemical vapor deposition using a silanizing agent in a flowing state and to control the entrance diameter of zeolite pores, zeolite pretreated with ammonia or a nitrogen-containing organic substance is used. A method for precisely controlling the entrance diameter of zeolite pores, which is characterized by adjusting the amount of silica supported using the method. 2. The method for precisely controlling the entrance diameter of zeolite pores according to claim 1, wherein the nitrogen-containing organic substance is n-butylamine or pyridine.
JP18731785A 1985-08-28 1985-08-28 Precise control of pore inlet diameter of zeolite Granted JPS6252123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18731785A JPS6252123A (en) 1985-08-28 1985-08-28 Precise control of pore inlet diameter of zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18731785A JPS6252123A (en) 1985-08-28 1985-08-28 Precise control of pore inlet diameter of zeolite

Publications (2)

Publication Number Publication Date
JPS6252123A JPS6252123A (en) 1987-03-06
JPH0568412B2 true JPH0568412B2 (en) 1993-09-28

Family

ID=16203886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18731785A Granted JPS6252123A (en) 1985-08-28 1985-08-28 Precise control of pore inlet diameter of zeolite

Country Status (1)

Country Link
JP (1) JPS6252123A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828875B2 (en) 2004-08-03 2010-11-09 The Regents Of The University Of Colorado Membranes for highly selective separations

Also Published As

Publication number Publication date
JPS6252123A (en) 1987-03-06

Similar Documents

Publication Publication Date Title
Niwa et al. Fine control of the pore-opening size of the zeolite mordenite by chemical vapour deposition of silicon alkoxide
Niwa et al. Fine control of the pore-opening size of zeolite ZSM-5 by chemical vapor deposition of silicon methoxide
Masuda et al. Modification of pore size of MFI-type zeolite by catalytic cracking of silane and application to preparation of H2-separating zeolite membrane
JPH05146677A (en) Special composite materials having carbonizing support, method for their production and use thereof
KR100279881B1 (en) Adsorbents and methods for the separation of ethylene and propylene AND/OR unsaturated hydrocarbons from mixed gases
EP1809417B1 (en) Use of a catalyst obtained using chemical liquid deposition in hydrocarbon cracking
US20050096494A1 (en) Light hydrocarbon separation using 8-member ring zeolites
Li et al. On the use of 1-butene double-bond isomerization as a probe reaction on cesium-loaded zeolite X
EP1222961A2 (en) Method of forming a zeolite layer on a substrate
de Jong et al. Activation and deactivation of the zeolite Ferrierite for olefin conversions
JPH0568412B2 (en)
AU719498B2 (en) Improvements in coated materials
JPH0568414B2 (en)
JPH0116311B2 (en)
KR20100014144A (en) Method for separating olefin/paraffin using porous nickel phosphate and food packaging material including porous nickel phosphate
JP2952409B2 (en) Catalyst for lower olefin production
US5773678A (en) Use of an omega zeolite based catalyst comprising at least one metal from groups IIa, IVb, IIb or IVa for the dismutation and/or transalkylation of alkylaromatic hydrocarbons
JPH0568413B2 (en)
US5096681A (en) Removal of trialkyl arsine from fluids
JPS63230516A (en) Method for precisely controlling pore diameter of zeolite
JPS62288111A (en) Precise control of inlet diameter of fine rope of zeolite
JP7218553B2 (en) Method for regenerating silver ion-supported zeolite catalyst
JP7293622B2 (en) METHOD FOR REGENERATING METAL ION-SUPPORTED ZEOLITE CATALYST
JPH0651566B2 (en) Precise control method of zeolite pore inlet diameter
JPH0674138B2 (en) Precise control method of zeolite pore inlet diameter