JPH0568179B2 - - Google Patents

Info

Publication number
JPH0568179B2
JPH0568179B2 JP14217987A JP14217987A JPH0568179B2 JP H0568179 B2 JPH0568179 B2 JP H0568179B2 JP 14217987 A JP14217987 A JP 14217987A JP 14217987 A JP14217987 A JP 14217987A JP H0568179 B2 JPH0568179 B2 JP H0568179B2
Authority
JP
Japan
Prior art keywords
coil
rotor
holder
core
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14217987A
Other languages
Japanese (ja)
Other versions
JPS63310342A (en
Inventor
Shinsaku Shirata
Yoshio Furukawa
Hisashi Toshima
Sadahiko Niwa
Yasuhiro Yasaka
Osamu Nagura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd, Kansai Denryoku KK filed Critical Kansai Electric Power Co Inc
Priority to JP14217987A priority Critical patent/JPS63310342A/en
Publication of JPS63310342A publication Critical patent/JPS63310342A/en
Publication of JPH0568179B2 publication Critical patent/JPH0568179B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は回転電機の回転子に係り、特に、回転
子鉄心に回転子コイルを装着した大容量回転電機
の回転子に関する。 〔従来の技術〕 従来の回転電機の回転子は、実公昭27−9421に
記載のように、例えば第3図で説明すると、回転
子鉄心2は鉄心押え13により固着され、回転軸
1に連結されたコイル受金4を回転子コイル3の
内周部に配し、回転子コイル3の外方をコイル支
持部材6で固着したもの。すなわち、回転子コイ
ル3の回転子鉄心2の近傍を鉄心押え13と接触
させたものや、実公昭37−3503に記載のごとく、
コイル受金(円筒リング部分)を回転子鉄心近く
まで延長しコイル内周部を受けるものなどがあ
る。 ところが、このような回転子を巻線形回転子コ
イルを装着する交流機、例えば水車発電機に適用
する場合には、この回転子コイルに大電流・高電
圧を連続通電することからコイルの絶縁に対し信
頼性の高い構造とする必要がある。また、水車発
電機の回転子には、はずみ車効果をもたせる必要
があることから、この回転子は同一容量の誘導機
や直流機の場合よりも大形化し、主機容量を大形
化出来ないという欠点がある。すなわち第4図お
よび第5図で説明すると、第4図は主機停止状態
を示すが、コイル支持部材6は、回転時における
コイル端部の遠心力に耐えられる様強固に装着さ
れる(バインド線巻付けや円筒リング焼ばめなど
が一般的な方法である)ため、回転子鉄心2内の
回転子コイル3とコイル支持部材6側に段差δ1
おのずと発生する。次にこの状態で回転されると
第5図のように回転子鉄心2に働く遠心力F2
回転速度に比例し増加するため回転子鉄心2側の
コイルに更にδ2の段差が発生し、段差δ3は更に大
きくなりコイル曲部a,bにおける応力が更に増
加する。(尚、コイル端部に働く遠心力F1は、あ
る回転速度までコイル支持部材によつて押えられ
るためコイル端部の外周側への伸びは発生しな
い。) 上記不具合を解消する方法として、まず第1番
目に実昭18−349223号記載のように、コイル受金
を分割した構造により、コイル受金の遠心力をコ
イルを介してコイル支持部材に加えて運転時のコ
イル段差を少なくする方法も考えられるが、水車
発電機などにおいては、過渡時最大回転速度にお
いてもコイル受金の遠心力に抗してコイル支持部
材を所定位置に保持させるため、コイル支持部材
が極単に大きくなり、非常に効率の悪い機械とな
る。かつ、コイル内周部の面圧も非常に大きなも
のとなり、おのずと回転速度や寸法が制限され
る。あるいは、コイル支持部材の剛性を下げて、
コイル段差δ1およびδ3を小さくすることも考えら
れるが、組立時におけるコイル支持部材とコイル
外周面の当り確保や運転時におけるコイル受金と
コイル内周面の当り確保等の問題から設計上及び
製作上から複雑なものとなり実現困難となる。 第2番目の方法として、実開昭61−41347に記
載の如く、(但し、本案は固定子コイルに関する
発明)鉄心とコイル接触面の距離を大にし、段差
による応力を緩和する方法が考えられる。(すな
わち、第4図および第5図におけるl寸法を大に
する方法におきかえてもよい)しかし、この方法
でも大容量機や高速機になると適用困難となる。
すなわち、第6図および第7図で説明すると、ま
ず第6図のように、回転子鉄心2側に切欠きC1
C2を設けて、コイル段差δ3を空隙lより大きいl1
の間に吸収させてコイル曲部の応力を緩和させる
ものであるが、実際の運転時における空隙はl1
り小さいl0となり、切欠きC1,C2を大きくしても
応力は緩和しない。つまり、空隙l0はコイルの弾
性係数と変形量によつて一定値となり、ある寸法
からは切欠き寸法の大きさに影響されなくなるた
め、l0=lとおけば、回転子鉄心内に切欠きの設
置は不要となる。すなわち、上記第7図につい
て、更に第8図のようにモデル化し説明を加える
と、限界空隙l0及びコイル応力σは次式で与えら
れる。尚、第8図は停止時初期変位δ1(第4図参
照)の状態に、運転時のコイル遠心力を合成した
ものである。
[Industrial Field of Application] The present invention relates to a rotor for a rotating electric machine, and particularly to a rotor for a large-capacity rotating electric machine in which a rotor coil is mounted on a rotor core. [Prior Art] As described in Japanese Utility Model Publication No. 27-9421, the rotor of a conventional rotating electric machine is described in, for example, FIG. 3. As shown in FIG. A coil holder 4 is arranged on the inner circumference of the rotor coil 3, and the outer side of the rotor coil 3 is fixed with a coil support member 6. That is, the rotor coil 3 in the vicinity of the rotor core 2 is brought into contact with the core presser 13, or as described in Publication of Utility Model Publication No. 37-3503,
There are some that extend the coil holder (cylindrical ring part) close to the rotor core to receive the inner circumference of the coil. However, when such a rotor is applied to an alternating current machine equipped with a wound rotor coil, such as a water turbine generator, large currents and high voltages are continuously passed through the rotor coil, making it difficult to insulate the coil. However, it is necessary to have a highly reliable structure. In addition, because the rotor of a water turbine generator needs to have a flywheel effect, the rotor is larger than that of an induction motor or DC motor of the same capacity, making it impossible to increase the main engine capacity. There are drawbacks. That is, to explain this with reference to FIGS. 4 and 5. Although FIG. 4 shows the main engine stopped state, the coil support member 6 is firmly attached to withstand the centrifugal force of the end of the coil during rotation (the binding wire (winding, cylindrical ring shrink fitting, etc. are common methods), a step δ 1 naturally occurs between the rotor coil 3 and the coil support member 6 side in the rotor core 2. Next, when the rotor core 2 is rotated in this state, the centrifugal force F 2 acting on the rotor core 2 increases in proportion to the rotation speed, as shown in Figure 5, so that an additional step of δ 2 occurs in the coil on the rotor core 2 side. , the step difference δ 3 becomes even larger, and the stress at the coil bending portions a and b further increases. (The centrifugal force F 1 acting on the coil end is suppressed by the coil support member up to a certain rotational speed, so the coil end does not extend toward the outer circumference.) As a method to solve the above problem, first Firstly, as described in Japanese Utility Model No. 18-349223, a method in which the coil holder is divided into parts applies the centrifugal force of the coil holder to the coil support member via the coil, thereby reducing the level difference in the coil during operation. However, in water turbine generators, etc., the coil support member is held in place against the centrifugal force of the coil holder even at the maximum rotational speed during a transient period, so the coil support member becomes extremely large and becomes extremely large. This results in an inefficient machine. Moreover, the surface pressure on the inner peripheral portion of the coil becomes extremely large, which naturally limits the rotational speed and dimensions. Alternatively, by lowering the rigidity of the coil support member,
It is possible to reduce the coil steps δ 1 and δ 3 , but this may be a design issue due to issues such as ensuring contact between the coil support member and the outer circumferential surface of the coil during assembly, and ensuring contact between the coil holder and the inner circumferential surface of the coil during operation. Also, the manufacturing process becomes complicated and difficult to realize. As a second method, as described in Utility Model Application Laid-open No. 61-41347 (however, this invention relates to stator coils), a method can be considered in which the distance between the core and the coil contact surface is increased to alleviate the stress caused by the step difference. . (In other words, the method may be replaced by increasing the l dimension in FIGS. 4 and 5.) However, even this method is difficult to apply to large-capacity or high-speed machines.
That is, to explain with reference to FIGS. 6 and 7, first, as shown in FIG. 6, notches C 1 ,
C 2 is provided, and the coil step difference δ 3 is larger than the air gap l 1
However, during actual operation, the air gap is l 0 which is smaller than l 1 , and even if the notches C 1 and C 2 are made larger, the stress will not be alleviated. . In other words, the air gap l 0 becomes a constant value depending on the elastic modulus of the coil and the amount of deformation, and is no longer affected by the size of the notch after a certain dimension. There is no need to install a notch. That is, if the above-mentioned FIG. 7 is further modeled and explained as shown in FIG. 8, the critical gap l 0 and the coil stress σ are given by the following equation. Incidentally, FIG. 8 shows a combination of the initial displacement δ 1 (see FIG. 4) at the time of stop and the centrifugal force of the coil during operation.

【化】[ka]

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上に述べたような従来の回転電機の回転子
は、特にそれを大容量化し、かつ、高速化しよう
とすると、回転子コイルの強度上の制約からコイ
ル端部の変形量が制限されるため大容量化・高速
化しにくいという問題があつた。 従つて本発明の目的は、これらの問題点を解決
して回転子の大容量化・高速化をはかると共に、
回転子コイルの強度上及び絶縁上から信頼性の高
い、水車発電機などの回転子として好適を回転電
機の回転子を提供することにある。 〔問題点を解決するための手段〕 本発明は、この目的を達成するために、回転子
コイル内周部に円筒状のコイル受金を配し、該コ
イル受金の内周部に配した環状リングを径方向に
分離し、分離したリングの内側または外側リング
のいずれか一方をセグメント状に分割し、他の一
方の環状リングに連結したことを特徴とする。 〔作 用〕 コイル支持部材装着時、コイル支持部材のコイ
ル締付力は、コイル及びコイル受金を介してコイ
ル内周部の径方向分割リング(外・内側)を通
り、回転軸に伝えられる。次に、主機定格運転時
はコイル支持部材にコイル端部遠心力に加え、セ
グメント状の分割リングの遠心力がコイル受金内
側に加わる。コイル受金は円筒状のため、前記リ
ングの遠心力はコイル受金のフープ力に加算され
均等な外向変位としてコイルに伝達される。その
ため、回転子鉄心の遠心力による外向変位にほぼ
対応した変位となり、コイルの段差はほとんど変
化しない。 また、主機過渡運転時(例えば、回転速度が定
格運転時の2倍となる)においては、セグメント
状分割リングの遠心力を、分割されたもう一方の
環状リングにより係止出来るため、コイル支持部
材に無理な力が加わらない。これにより、コイル
支持部材は比較的薄くコンパクトに製作できる。 〔実施例〕 本発明の実施例を第1図、第2図を参照して説
明する。 第1図において、回転軸1の周囲に配置された
回転子鉄心2を鉄心押え8及び9により固着し、
4分割のセグメント状鉄心押え9(第2図参照)
の外周に円筒状のコイル受金4の下面内周と焼ば
めにより連結したものである。また、鉄心押え9
の内周と鉄心押え8の外周を接触させ、かつ、軸
方向に係止する凹凸により係合したものである。
このコイル受金4の外周に絶縁物5,7,12と
共に回転子コイル3を配し、バインド線又は円筒
状のコイル支持部材6によりコイル端部に圧縮変
位を与えるように固着したものである。 以上のような回転電機の回転子によれば、コイ
ル支持部材6装着時の回転子コイル3の内径側へ
の圧縮代は、円筒状のコイル受金4で均等化され
鉄心押え8,9により保持されるため、初期設定
時におけるコイル支持部材6とコイル3の外周当
りは確実に確保される。また、このコイル支持部
材6による圧縮力は環状鉄心押え8の剛性を大き
くすることにより分担可能なため、一般的に非磁
性鋼を使用するコイル受金4を比較的薄くでき、
経済的になるという効果もある。次に運転時に
は、鉄心押え9の遠心力が回転速度に比例して増
大するため、この力が円筒状のコイル受金4に内
圧として加わる。そして、コイル受金4は均等に
外側に拡がるため、均等な力がコイル3に加わ
り、回転子鉄心2側のコイル外周方向伸びに追随
可能となり、コイルの段差が変化することが抑え
られる。従つて、コイルには無理な応力が発生し
ないため絶縁性能上及び強度上も高い信頼性が得
られるものである。また、過渡運転状態におい
て、鉄心押え9の遠心力が強大となり、鉄心押え
9に外周側に大きく移動する力が働いても環状の
鉄心押え8により係止されるため、一定回転速度
以上においてもコイル支持部材6に過大な負担が
掛けるのを緩和し、その分コイル支持部材6を薄
くコンパクト化できる。更に、鉄心押え9はコイ
ル受金4の回転子鉄心2側に配置してあるため、
コイルの段差のつく部分を最も有効に押すと共
に、鉄心押えも兼ねるため部品点数を削減すると
いう効果もある。かつ、本例は、コイル受金4と
鉄心押え9を焼ばめにより連結したことにより、
接触を確実にし、偏心を防止すると共に回転トル
クも確実に伝達している。 〔発明の効果〕 以上のように本発明は、コイル受金内周部の径
方向分割リングの作用により、コイル支持部材固
着時は、この力を確実に保持し、運転時はセグメ
ント状分割リングの遠心力によりコイルに外向き
の変位を与えられるので、停止時及び運転時にお
いて、コイル端部の変形量の少ない回転子コイル
を提供でき、大容量・高速の回転子を提供するこ
とができる。
In the rotor of conventional rotating electric machines as described above, especially when trying to increase the capacity and speed, the amount of deformation of the end of the coil is limited due to constraints on the strength of the rotor coil. There was a problem that it was difficult to increase the capacity and speed. Therefore, the purpose of the present invention is to solve these problems and increase the capacity and speed of the rotor, and
It is an object of the present invention to provide a rotor for a rotating electrical machine that is highly reliable in terms of the strength and insulation of the rotor coil and is suitable as a rotor for a water turbine generator or the like. [Means for Solving the Problems] In order to achieve this object, the present invention provides a method in which a cylindrical coil holder is arranged on the inner periphery of the rotor coil; It is characterized in that the annular ring is separated in the radial direction, and either the inner or outer ring of the separated ring is divided into segments and connected to the other annular ring. [Function] When the coil support member is installed, the coil clamping force of the coil support member is transmitted to the rotating shaft through the radial split ring (outer/inner) on the inner circumference of the coil via the coil and coil holder. . Next, during rated operation of the main engine, in addition to the centrifugal force at the end of the coil, the centrifugal force from the segment-shaped split ring is applied to the inside of the coil receiver. Since the coil receiver is cylindrical, the centrifugal force of the ring is added to the hoop force of the coil receiver and is transmitted to the coil as an even outward displacement. Therefore, the displacement approximately corresponds to the outward displacement due to the centrifugal force of the rotor core, and the step of the coil hardly changes. In addition, during transient operation of the main engine (for example, when the rotational speed is twice that of rated operation), the centrifugal force of the segmented split ring can be stopped by the other split annular ring, so the coil support member Do not apply excessive force to the This allows the coil support member to be manufactured relatively thin and compact. [Example] An example of the present invention will be described with reference to FIGS. 1 and 2. In FIG. 1, a rotor core 2 placed around a rotating shaft 1 is fixed by core holders 8 and 9,
Segmented core retainer 9 divided into four parts (see Figure 2)
The outer periphery of the coil holder 4 is connected to the inner periphery of the lower surface of the cylindrical coil receiver 4 by shrink fitting. In addition, iron core presser 9
The inner periphery of the iron core holder 8 and the outer periphery of the core holder 8 are brought into contact with each other and engaged by projections and depressions that lock in the axial direction.
A rotor coil 3 is arranged on the outer periphery of this coil holder 4 together with insulators 5, 7, and 12, and is fixed to the end of the coil with a binding wire or a cylindrical coil support member 6 so as to apply compressive displacement. . According to the rotor of the rotating electric machine as described above, the compression amount of the rotor coil 3 toward the inner diameter side when the coil support member 6 is installed is equalized by the cylindrical coil receiver 4 and is equalized by the core pressers 8 and 9. Therefore, contact between the outer peripheries of the coil support member 6 and the coil 3 at the time of initial setting is ensured. In addition, since the compressive force caused by the coil support member 6 can be shared by increasing the rigidity of the annular core holder 8, the coil holder 4, which is generally made of non-magnetic steel, can be made relatively thin.
It also has the effect of being economical. Next, during operation, since the centrifugal force of the core holder 9 increases in proportion to the rotational speed, this force is applied to the cylindrical coil receiver 4 as internal pressure. Since the coil holder 4 spreads outward evenly, a uniform force is applied to the coil 3, making it possible to follow the expansion of the coil in the outer circumferential direction on the rotor core 2 side, and suppressing changes in the level difference of the coil. Therefore, since unreasonable stress is not generated in the coil, high reliability can be obtained in terms of insulation performance and strength. In addition, in a transient operating state, the centrifugal force of the core holder 9 becomes strong, and even if a force is exerted on the core holder 9 to move the core holder 9 greatly toward the outer periphery, it is retained by the annular core holder 8, so even if the rotation speed exceeds a certain rotation speed, An excessive load on the coil support member 6 is alleviated, and the coil support member 6 can be made thinner and more compact. Furthermore, since the core holder 9 is placed on the rotor core 2 side of the coil receiver 4,
Not only does it press the stepped part of the coil most effectively, it also serves as a core holder, reducing the number of parts. In addition, in this example, the coil receiver 4 and the core holder 9 are connected by shrink fit, so that
It ensures contact, prevents eccentricity, and reliably transmits rotational torque. [Effects of the Invention] As described above, the present invention reliably maintains this force when the coil support member is fixed due to the action of the radial split ring on the inner circumference of the coil receiver, and the segmented split ring during operation. Since the centrifugal force of the rotor gives outward displacement to the coil, it is possible to provide a rotor coil with less deformation of the coil end during stoppage and operation, and it is possible to provide a large-capacity, high-speed rotor. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実施例を示すもの
で、第1図は回転子の縦断面図、第2図は第1図
をA―Aから見た平面矢視図、第3図ないし第8
図は従来例を示すもので、第3図は回転子の縦断
面図、第4図及び第5図は第3図のP部詳細図、
第6図及び第7図は、第3図のP部詳細図に準ず
る別の従来例によるもの、第8図は第6図及び第
7図をモデル化した図である。 1…回転軸、2…回転子鉄心、3…回転子コイ
ル、4…コイル受金、6…コイル支持部材、8…
鉄心押え(環状リング)、9…鉄心押え(セグメ
ント分割)。
1 and 2 show embodiments of the present invention, in which FIG. 1 is a longitudinal sectional view of the rotor, FIG. 2 is a plan view of FIG. 1 viewed from A-A, and FIG. Figure 8
The figures show a conventional example, in which Figure 3 is a vertical cross-sectional view of the rotor, Figures 4 and 5 are detailed views of the P section in Figure 3,
FIGS. 6 and 7 are another conventional example similar to the detailed view of the P section in FIG. 3, and FIG. 8 is a modeled version of FIGS. 6 and 7. DESCRIPTION OF SYMBOLS 1... Rotating shaft, 2... Rotor core, 3... Rotor coil, 4... Coil receiver, 6... Coil support member, 8...
Core holder (annular ring), 9... Core holder (segment division).

Claims (1)

【特許請求の範囲】 1 回転子鉄心に装着された回転子コイルと、こ
の回転子コイルの端部を回転子コイルの外方より
コイル支持部材で固着し、該コイルの内周部に絶
縁物を介して円筒状のコイル受金を配し、更に該
受金の内周部に環状のリングを配して回転軸や回
転子鉄心あるいはそれに類する物と連結したもの
において、前記環状のリングを径方向に分離し、
分離したリングの内側または外側リングのいずれ
か一方をセグメント状に分割し、他の一方の環状
のリングと連結したことを特徴とする回転電機の
回転子。 2 前記セグメント状に分割したリングの軸方向
位置をコイル受金の回転子鉄心側に配したことを
特徴とする特許請求の範囲第1項記載の回転電機
の回転子。 3 分離した環状のリングを回転子鉄心を押える
ように設置したことを特徴とする特許請求の範囲
第1項記載の回転電機の回転子。 4 分離した環状リングの外側リングにコイル受
金をしまりばめにより連結したことを特徴とする
特許請求の範囲第1項記載の回転電機の回転子。
[Claims] 1. A rotor coil attached to a rotor core, an end of the rotor coil fixed from the outside of the rotor coil with a coil support member, and an insulator attached to the inner circumference of the coil. A cylindrical coil holder is arranged through the holder, and an annular ring is arranged on the inner circumference of the holder to connect it to a rotating shaft, a rotor core, or something similar, in which the annular ring is radially separated,
A rotor for a rotating electrical machine, characterized in that either the inner or outer ring of the separated rings is divided into segments and connected to the other annular ring. 2. The rotor of a rotating electrical machine according to claim 1, wherein the axial position of the ring divided into segments is arranged on the rotor core side of the coil receiver. 3. A rotor for a rotating electric machine according to claim 1, characterized in that a separate annular ring is installed to press down on the rotor core. 4. The rotor of a rotating electric machine according to claim 1, wherein a coil holder is connected to the outer ring of the separated annular ring by tight fit.
JP14217987A 1987-06-09 1987-06-09 Rotor of rotating electric machine Granted JPS63310342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14217987A JPS63310342A (en) 1987-06-09 1987-06-09 Rotor of rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14217987A JPS63310342A (en) 1987-06-09 1987-06-09 Rotor of rotating electric machine

Publications (2)

Publication Number Publication Date
JPS63310342A JPS63310342A (en) 1988-12-19
JPH0568179B2 true JPH0568179B2 (en) 1993-09-28

Family

ID=15309207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14217987A Granted JPS63310342A (en) 1987-06-09 1987-06-09 Rotor of rotating electric machine

Country Status (1)

Country Link
JP (1) JPS63310342A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT508622B1 (en) 2009-07-29 2012-05-15 Andritz Hydro Gmbh WINDING HEAD SUPPORT OF AN ELECTRICAL MACHINE

Also Published As

Publication number Publication date
JPS63310342A (en) 1988-12-19

Similar Documents

Publication Publication Date Title
US3694906A (en) Method for manufacturing a high speed squirrel cage rotor
EP0695019B1 (en) A rotor for an electrical machine, in particular for an electric motor for starting the internal combustion engine of a motor vehicle, and a process for its production
WO2003085804A1 (en) System and method for providing coil retention in the rotor windings of a high speed generator
CN102197569B (en) Stator structure for electric machine
WO1995025376A1 (en) Electrical machines and components thereof incorporating foil journal bearings
US6037694A (en) Rotor for an automotive alternator
JPS6380740A (en) Commutator motor
US20070267932A1 (en) Stator for inner rotor type rotating electric machine
CN108292882A (en) Motor
CN1926746B (en) Claw pole rotor for an electrical machine and three-phase generator
JPH0568179B2 (en)
JP3811929B2 (en) Electrical equipment
CN111835168A (en) Rotor of an induction machine and method for assembling a cage winding of a rotor
JP2000156951A (en) Electric rotating machine
US3832584A (en) Rotor for dynamoelectric machines
US20020180305A1 (en) Electrical machine
JPH0139079Y2 (en)
CN111987822A (en) Stator assembly and motor
WO2011114758A1 (en) Stator and dynamo-electric machine
CN217444806U (en) Collecting ring device and vertical shaft hydraulic generator or generating motor with same
EP4203259A1 (en) A rotor for a rotary electric machine
JP7361813B2 (en) rotating electric machine
US3962594A (en) Rotor winding of electric machines
JPS63124737A (en) Rotor core for rotary electric machine
JPH0870546A (en) Field coil presser of salient pole-type rotary electric machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees