JPH0567840B2 - - Google Patents

Info

Publication number
JPH0567840B2
JPH0567840B2 JP10750083A JP10750083A JPH0567840B2 JP H0567840 B2 JPH0567840 B2 JP H0567840B2 JP 10750083 A JP10750083 A JP 10750083A JP 10750083 A JP10750083 A JP 10750083A JP H0567840 B2 JPH0567840 B2 JP H0567840B2
Authority
JP
Japan
Prior art keywords
temperature
pressure
gas
liquefied gas
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10750083A
Other languages
Japanese (ja)
Other versions
JPS60210A (en
Inventor
Kazuo Hosoi
Tatatomi Ooba
Naoyoshi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUSAN KOGYO KK
Original Assignee
NITSUSAN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUSAN KOGYO KK filed Critical NITSUSAN KOGYO KK
Priority to JP58107500A priority Critical patent/JPS60210A/en
Publication of JPS60210A publication Critical patent/JPS60210A/en
Publication of JPH0567840B2 publication Critical patent/JPH0567840B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0311Air heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0469Constraints, e.g. by gauges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【発明の詳細な説明】 本発明は空温式蒸発器を用いて液化ガスを気化
し、ついでガス圧縮機により気化したガスを昇圧
して消費先へ供給する方法とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for vaporizing liquefied gas using an air-temperature evaporator, then pressurizing the vaporized gas using a gas compressor, and supplying the vaporized gas to a consumer.

液化ガスを蒸発させ、使用先へ供給するに当つ
て、該液化ガスの蒸発潜熱を大気温より得る空温
式蒸発器を使用する場合は、大気温と蒸発温度と
の差を極力大きくし、蒸発器を小型化するために
液化ガスを減圧し、その沸点を下げて蒸発させる
のが通常の方法である。従つて気化したガスを消
費先へ供給するに必要な圧力が液化ガスの蒸発圧
力より高い場合は圧縮機等により所定の圧力まで
昇圧しなければならない。又、一般に空温式蒸発
器の熱交換面積は年間最低気温と、最大使用量
と、液化ガスの蒸発温度とから算出される。此の
場合、最低気温より大気温が高い期間が年間の大
部分を占めることから、空温式蒸発器は殆んど常
に表面積過大の状態で使用されている。一方、減
圧して沸点を下げた該液化ガスの気化圧力より、
消費先に供給する圧力が高い場合に、気化したガ
スを昇圧させるガス圧縮機は、定められた年間一
定の蒸発器圧力と、夏期最高気温時の蒸発器出口
のガス温度ならびに最大消費量とする供給圧力か
らその仕様が定められる。したがつて、従来の液
化ガス気化圧送設備においては、最低気温より求
められた低い蒸発圧力がガス圧縮機の吸入圧力と
なり、常時この吸入圧力から、必要な送ガス圧力
まで昇圧するに要する容量の大きなガス圧縮機を
運転することになり、年間の消費動力も大とな
る。
When using an air-temperature evaporator that obtains the latent heat of evaporation of the liquefied gas from the atmospheric temperature when evaporating the liquefied gas and supplying it to the user, the difference between the atmospheric temperature and the evaporation temperature should be made as large as possible. In order to downsize the evaporator, the usual method is to reduce the pressure of the liquefied gas, lower its boiling point, and evaporate it. Therefore, if the pressure required to supply the vaporized gas to the consumer is higher than the evaporation pressure of the liquefied gas, the pressure must be increased to a predetermined pressure using a compressor or the like. Further, the heat exchange area of an air-heated evaporator is generally calculated from the annual minimum temperature, the maximum usage amount, and the evaporation temperature of the liquefied gas. In this case, since the atmospheric temperature is higher than the minimum temperature for most of the year, the air-heated evaporator is almost always used with an excessive surface area. On the other hand, from the vaporization pressure of the liquefied gas whose boiling point has been lowered by reducing the pressure,
When the pressure supplied to the consumer is high, the gas compressor that increases the pressure of the vaporized gas has a fixed annual evaporator pressure, gas temperature at the evaporator outlet at the highest temperature in summer, and maximum consumption. Its specifications are determined from the supply pressure. Therefore, in conventional liquefied gas vaporization and pressure feeding equipment, the lower evaporation pressure determined from the lowest temperature becomes the suction pressure of the gas compressor, and the capacity required to raise the pressure from this suction pressure to the required gas feed pressure is constantly increased. This requires the operation of a large gas compressor, which increases the annual power consumption.

本発明は、かかる蒸発器およびガス圧縮器の非
効率な使用を改善し、消費動力を大幅に軽減する
ことを目的とした液化ガスの気化昇圧供給方法と
装置に関するもので以下に本発明の実施例をガス
の消費がほぼ一定の場合と大幅に変動する場合に
ついて説明する。
The present invention relates to a method and apparatus for vaporizing and pressurizing liquefied gas and supplying the liquefied gas with the aim of improving the inefficient use of evaporators and gas compressors and significantly reducing power consumption. An example will be explained of a case where gas consumption is approximately constant and a case where gas consumption fluctuates significantly.

(1) 工業用等ガスの消費量が概ね一定の場合 先ず液化ガスの減圧後の圧力を一定とせず該液
化ガスの沸点と、大気温との温度差を常時一定と
なる様に、該液化ガスの蒸発圧力を調圧すること
により、年間を通じ一定の効率にて蒸発器を稼動
させる。
(1) When the consumption of industrial gas is approximately constant: First, the pressure of the liquefied gas after decompression is not constant, and the temperature difference between the boiling point of the liquefied gas and the atmospheric temperature is always constant. By regulating the gas evaporation pressure, the evaporator can be operated at a constant efficiency throughout the year.

この調圧方法を採用することにより、蒸発器出
口圧力、即ちガス圧縮機の吸入圧力は、年間最低
気温時が最低となり、他の時間はこれより高くな
り、所定の消費先への供給圧力までに昇圧する動
力は大幅に節減し得る。
By adopting this pressure regulation method, the evaporator outlet pressure, that is, the suction pressure of the gas compressor, is the lowest at the lowest temperature of the year, and higher at other times, until the supply pressure to the specified consumer is reached. The power required to boost the pressure can be significantly reduced.

消費先への供給圧力が比較的に低く年間最低気
温時の液化ガス蒸発圧力との差が大きくなく、或
る気温下での蒸発圧力がガス供給圧力に等しくな
る様な場合は、その気温より高い気温の期間に
は、ガス圧縮機による昇圧をまつたく必要とせず
液化ガスの自己の圧力で消費先にガスを供給すれ
ばよい。
If the supply pressure to the consumer is relatively low and the difference from the liquefied gas evaporation pressure at the lowest temperature of the year is not large, and the evaporation pressure at a certain temperature is equal to the gas supply pressure, then During periods of high temperature, the liquefied gas can be supplied to the consumer at its own pressure without requiring pressure increase by a gas compressor.

(2) 都市ガス用等ガス消費量が一日の中で大幅に
変動する場合、ガス消費量が少ない時間は蒸発
器の能力に余裕が生ずるので、熱交換に必要な
大気温度と液化ガスの蒸発温度の差を少なくで
きる。即ち、大気と液化ガスの蒸発温度との温
度差の設定値をガス消費量の増減に合せて変化
させることにより、液化ガスの蒸発圧力を該蒸
発器の機能を最大限に発揮させる様に調圧し、
ガス圧縮機の動力を節減する。
(2) When gas consumption, such as for city gas, fluctuates significantly throughout the day, the evaporator capacity has a margin during times when gas consumption is low, so the atmospheric temperature and liquefied gas necessary for heat exchange The difference in evaporation temperature can be reduced. That is, by changing the set value of the temperature difference between the atmosphere and the evaporation temperature of the liquefied gas in accordance with the increase or decrease in gas consumption, the evaporation pressure of the liquefied gas can be adjusted to maximize the function of the evaporator. Press,
Save power of gas compressor.

第1図は大気温、液化ガスの蒸発温度と圧力の
関係を示したもので、実線は年間の大気温度変化
曲線を、点線は従来の気化方式による年間を通じ
一定の蒸発温度を示し、蒸発器内の圧力は該温度
を沸点とする液化ガスの気化圧力に相当し、年間
を通じ一定圧力となり、当該圧力から消費先への
供給圧力PKg/cm2Gまで常時ガス圧縮機にて昇圧
している。
Figure 1 shows the relationship between atmospheric temperature, evaporation temperature of liquefied gas, and pressure.The solid line shows the annual atmospheric temperature change curve, and the dotted line shows the constant evaporation temperature throughout the year in the conventional vaporization method. The pressure inside corresponds to the vaporization pressure of the liquefied gas with the boiling point at this temperature, and is constant throughout the year, and is constantly increased by a gas compressor from this pressure to the supply pressure to the consumer, PKg/cm 2 G. .

又、一点鎖線は本発明による蒸発器内の気化温
度曲線を示し、常に大気温度との温度差を一定と
している。消費先への供給圧力PKg/cm2Gに相当
する気化温度以上に、蒸発器出口圧力を上げる必
要はないので期間Bの間は温度差制御は解除し、
圧力Pを維持する制御を行う。
Moreover, the dashed line shows the vaporization temperature curve in the evaporator according to the present invention, and the temperature difference from the atmospheric temperature is always kept constant. Since there is no need to increase the evaporator outlet pressure above the vaporization temperature corresponding to the supply pressure PKg/cm 2 G to the consumer, the temperature difference control is canceled during period B.
Control is performed to maintain the pressure P.

即ち、期間A及びCの間はガス圧縮機によりP
Kg/cm2Gまで昇圧し、期間Bの間は該機の運転は
停止される。又期間A及びCの間のガス圧縮機の
吸入圧力はP0Kg/cm2G一定ではなく、P0Kg/cm2
Gの間、大気温度の変化に伴つて変動し、ガスの
圧縮に必要な動力は大幅に節減される。動力の消
費を図形的に表現すれば次の如くなる。
That is, during periods A and C, the gas compressor
The pressure is increased to Kg/cm 2 G, and the operation of the machine is stopped during period B. Also, the suction pressure of the gas compressor during periods A and C is not constant at P 0 Kg/cm 2 , but P 0 Kg/cm 2
During G, the power required to compress the gas is significantly reduced as it fluctuates with changes in atmospheric temperature. The power consumption can be expressed graphically as follows.

従来の消費動力=長方形T0−T−P−P0の面
積 本発明の消費動力=(形状T0−T−t)+(形状
P−P0−p)の合計面積 なお第1図は年間の温度、圧力曲線を示してい
るが、昼夜の気温の変化にも同様な蒸発温度、圧
力の制御が行われることはいう迄もない。
Conventional power consumption = Area of rectangle T 0 -T-P-P 0 Power consumption of the present invention = Total area of (shape T 0 -T-t) + (shape P-P 0 -p) Note that FIG. Although the annual temperature and pressure curves are shown, it goes without saying that the same control of evaporation temperature and pressure is performed even when the temperature changes between day and night.

次に第2図はガスの消費量が大きく変動する場
合の制御を示したもので、大気と液化ガスの蒸発
温度との温度差とガス消費量の変動曲線を夫々実
線にて、又液化ガス蒸発圧力を点線にて示してい
る。ガスの消費量即ち、本発明方法により供給さ
れるガスの量の変化に対応して大気温と、液化ガ
スの蒸発温度との温度差の設定値を最適値に変動
させつつ液化ガスの蒸発圧力を制御変動させ、蒸
発装置の熱交換器を常に最大の能力を発揮させる
ことにより、液化ガスの蒸発圧力を常に最大限度
に高めて、ガスの圧縮機への吸入圧力を高くし、
動力消費を低減させる。蒸発圧力がガス供給圧力
Pにまで高まればその圧力を維持し、温度差制御
を解除する。この間の圧縮機は停止される。
Next, Figure 2 shows control when the amount of gas consumed fluctuates greatly. The evaporation pressure is shown by the dotted line. The evaporation pressure of the liquefied gas is adjusted while changing the set value of the temperature difference between the atmospheric temperature and the evaporation temperature of the liquefied gas to an optimum value in response to changes in the amount of gas consumed, that is, the amount of gas supplied by the method of the present invention. By controlling and varying the heat exchanger of the evaporator to always exert its maximum capacity, the evaporation pressure of the liquefied gas is always raised to the maximum limit, and the suction pressure of the gas to the compressor is increased.
Reduce power consumption. When the evaporation pressure increases to the gas supply pressure P, that pressure is maintained and temperature difference control is canceled. During this time, the compressor is stopped.

次に本発明方法を実施するに適した昇圧供給装
置の1例を第3図により説明する。
Next, an example of a pressurization supply apparatus suitable for carrying out the method of the present invention will be explained with reference to FIG.

液化ガスは貯槽又は移動容器1を出、自動弁2
により減圧されて、蒸発器3に導入され蒸発気化
した後、ガス圧縮機4にて消費先への所定の供給
圧力に昇圧されてガス供給導管5へ送ガスされ
る。
The liquefied gas leaves the storage tank or transfer container 1 and passes through the automatic valve 2.
After being introduced into the evaporator 3 and evaporated, the gas is increased in pressure by the gas compressor 4 to a predetermined supply pressure to the consumer and sent to the gas supply conduit 5.

ガスの圧縮機4は供給ガス圧力P=一定となる
様に圧力計P1と圧縮機容量(又は回転数)制御
器C1により制御され、消費量の変動に対して常
に圧力を一定に保持し乍ら圧送量を追随変化させ
る。又、蒸発器内の蒸発温度は温度計T1により
蒸発器入口の液体部分で測定され、一方の大気温
度計T2の測定温との温度差を検知する温度差制
御器C2が設けられる。この温度差が所定の設定
値を保持する様、蒸発器入口の自動弁2が温度差
制御器C2により制御される。この蒸発温度(T
1で測定)と大気温(T2にて測定)との温度差
を設定値に保つ制御により、自動弁2の出口温度
は常に大気温と所定の温度差を保ちつつガス消費
量に追随して、等量の液体を蒸発器内に送入す
る。ガスの供給量が概ね一定し量の変動が少い場
合はC−1の圧力制御とC−2の温度差制御にて
本発明の所期の目的は達成され、第1図に例示す
る様な圧力、温度状態を具現化する。蒸発圧力計
P2がガス供給圧力計P1と同一圧力に達したと
きにはC2による温度差制御は、温度差が設定値
より小さい期間中解除され、自動弁2はその間P
2=P1を一定となる様圧力制御を行う。C−2
の制御解放と同時にガス圧縮機4はこの間停止さ
れ弁7が開かれる。C−2にて測定される温度差
が設定値より大きくなればC−2による温度制御
は復帰再開される。
The gas compressor 4 is controlled by a pressure gauge P 1 and a compressor capacity (or rotational speed) controller C 1 so that the supply gas pressure P is constant, and the pressure is always kept constant despite fluctuations in consumption. Meanwhile, the pumping amount is changed accordingly. Further, the evaporation temperature in the evaporator is measured at the liquid portion at the inlet of the evaporator by a thermometer T1, and a temperature difference controller C2 is provided to detect the temperature difference between the evaporation temperature and the temperature measured by one of the atmospheric thermometers T2. The automatic valve 2 at the evaporator inlet is controlled by the temperature difference controller C2 so that this temperature difference is maintained at a predetermined set value. This evaporation temperature (T
By controlling the temperature difference between the temperature (measured at T1) and the atmospheric temperature (measured at T2) to the set value, the outlet temperature of the automatic valve 2 always follows the gas consumption while maintaining a predetermined temperature difference from the atmospheric temperature. , an equal volume of liquid is pumped into the evaporator. When the amount of gas supplied is approximately constant and there is little variation in the amount, the intended purpose of the present invention can be achieved by controlling the pressure of C-1 and controlling the temperature difference of C-2, as illustrated in FIG. It embodies the pressure and temperature conditions. evaporation pressure gauge
When P 2 reaches the same pressure as the gas supply pressure gauge P1, the temperature difference control by C2 is canceled during the period when the temperature difference is smaller than the set value, and the automatic valve 2 controls P during that time.
2=Pressure control is performed so that P1 remains constant. C-2
Simultaneously with the release of the control, the gas compressor 4 is stopped during this period and the valve 7 is opened. If the temperature difference measured by C-2 becomes larger than the set value, temperature control by C-2 is resumed.

次にガスの供給量の変動が大きい場合は、上記
のC−1,C−2による制御の他に供給量の変動
に追随する制御が加えられる。即ちガス供給流量
計6にて測定される流量に対応して、本装置の蒸
発器3の設計能力に基づき大気との温度差を最適
値となる様にC−2の温度差設定器を変動せしめ
る。斯の様に流量計6と温度差制御器C−2とを
連動させて、自動弁2により蒸発温度T1を制御
し、同時に蒸発器3内での蒸発量を、ガス供給量
と等しくなる様に調節を行わせ、第2図に例示す
る状態を具現化する。この第2図の制御を年間を
通して行えば、第1図に示す大気温度の変化に対
応した圧力、温度状態をも併せて具現化する。
Next, when the fluctuation in the gas supply amount is large, control that follows the fluctuation in the supply amount is added in addition to the control by C-1 and C-2 described above. That is, in response to the flow rate measured by the gas supply flow meter 6, the temperature difference setting device of C-2 is varied so that the temperature difference with the atmosphere becomes the optimum value based on the design capacity of the evaporator 3 of this device. urge By interlocking the flow meter 6 and the temperature difference controller C-2 in this manner, the automatic valve 2 controls the evaporation temperature T1, and at the same time, the amount of evaporation in the evaporator 3 is made equal to the amount of gas supplied. The state illustrated in FIG. 2 is realized by making the adjustment. If the control shown in FIG. 2 is performed throughout the year, the pressure and temperature conditions corresponding to the changes in atmospheric temperature shown in FIG. 1 will also be realized.

なお上記実施例はガス圧縮機の吐出量と吐出圧
力の制御方法及び大気温と蒸発温度との温度差を
所定の設定値に保つ制御方法の1例を示したもの
で同様の目的を達成する為の制御方法は任意であ
る。
The above embodiment is an example of a method of controlling the discharge amount and discharge pressure of a gas compressor, and a method of controlling the temperature difference between the atmospheric temperature and the evaporation temperature to a predetermined set value, and achieves the same purpose. The control method for this purpose is arbitrary.

以上の説明から明らかなように、本発明による
と空温式蒸発器を常に効率よく使用できると共に
圧縮機による昇圧に要するエネルギーを極力小さ
くすることができる効果があり、実用性が高いも
のである。
As is clear from the above explanation, according to the present invention, the air-temperature evaporator can be used efficiently at all times, and the energy required for pressure increase by the compressor can be minimized, making it highly practical. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は年間における大気温、液化ガスの蒸発
温度と圧力との関係を示す線図、第2図は経時に
よるガス消費量液化ガス蒸発圧力および温度差を
示す線図、第3図は本発明装置の実施例を示す系
統図である。 1……液化ガス貯槽、2……自動弁、3……空
温式蒸発器、4……ガス圧縮機、P1,P2……圧
力検知器、T1,T2……温度検知器、C1……圧縮
機容量制御器、C2……温度差制御器。
Figure 1 is a diagram showing the relationship between annual atmospheric temperature, liquefied gas evaporation temperature, and pressure. Figure 2 is a diagram showing gas consumption, liquefied gas evaporation pressure, and temperature difference over time. Figure 3 is a diagram showing the relationship between atmospheric temperature, liquefied gas evaporation temperature, and pressure. FIG. 1 is a system diagram showing an embodiment of the invention device. 1...Liquefied gas storage tank, 2...Automatic valve, 3...Air temperature evaporator, 4...Gas compressor, P1 , P2 ...Pressure detector, T1 , T2 ...Temperature detector , C 1 ... Compressor capacity controller, C 2 ... Temperature difference controller.

Claims (1)

【特許請求の範囲】 1 液化ガスを空温式蒸発器により気化し、かつ
ガス圧縮器により昇圧して消費先に供給する液化
ガスの気化昇圧供給方法において、前記液化ガス
の蒸発温度と大気温度との温度差を検知し、かつ
該温度差が液化ガスの蒸発に必要な設定値になる
よう空温式蒸発器入口圧力を制御すると共に、ガ
ス消費量の増減に追随して前記液化ガスの蒸発に
必要な設定値を増減させることを特徴とする空温
式蒸発器による液化ガスの気化昇圧供給方法。 2 液化ガスを気化せしめる空温式蒸発器と気化
ガスを昇圧せしめるガス圧縮器からなる液化ガス
の気化昇圧供給装置において、蒸発器入口圧力を
調節する自動弁を設け、該弁の開度を液化ガスの
蒸発温度と大気温度との温度差を検知する温度差
制御器により制御して温度差が所定の設定値に保
持できるよう構成すると共にガス供給流量計の指
示により前記測定値が変化するよう構成したこと
を特徴とする空温式蒸発器による液化ガスの気化
昇圧供給装置。
[Scope of Claims] 1. In a method for vaporizing and pressurizing liquefied gas, in which liquefied gas is vaporized by an air-temperature evaporator, pressure is increased by a gas compressor, and the pressure is increased to be supplied to a consumer, the evaporation temperature of the liquefied gas and the atmospheric temperature. The temperature difference between the liquefied gas and A method for vaporizing and pressurizing liquefied gas using an air-temperature evaporator, which is characterized by increasing or decreasing a set value required for evaporation. 2. In a liquefied gas vaporization boost supply device consisting of an air-temperature evaporator that vaporizes liquefied gas and a gas compressor that boosts the pressure of vaporized gas, an automatic valve that adjusts the evaporator inlet pressure is provided, and the opening degree of the valve is adjusted to The temperature difference is controlled by a temperature difference controller that detects the temperature difference between the gas evaporation temperature and the atmospheric temperature, so that the temperature difference can be maintained at a predetermined set value, and the measured value is changed according to instructions from the gas supply flow meter. 1. A liquefied gas vaporization pressure boosting supply device using an air-temperature evaporator, characterized by comprising:
JP58107500A 1983-06-15 1983-06-15 Method and device for supplying liquefied gas vaporized and pressurized by air heating vaporizer Granted JPS60210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107500A JPS60210A (en) 1983-06-15 1983-06-15 Method and device for supplying liquefied gas vaporized and pressurized by air heating vaporizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107500A JPS60210A (en) 1983-06-15 1983-06-15 Method and device for supplying liquefied gas vaporized and pressurized by air heating vaporizer

Publications (2)

Publication Number Publication Date
JPS60210A JPS60210A (en) 1985-01-05
JPH0567840B2 true JPH0567840B2 (en) 1993-09-27

Family

ID=14460779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107500A Granted JPS60210A (en) 1983-06-15 1983-06-15 Method and device for supplying liquefied gas vaporized and pressurized by air heating vaporizer

Country Status (1)

Country Link
JP (1) JPS60210A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW580384B (en) * 2002-07-01 2004-03-21 Neochemir Inc Carbon dioxide administrating device
JP4816629B2 (en) * 2007-11-30 2011-11-16 東京電力株式会社 Liquefied high-pressure gas storage vaporizer and liquefied high-pressure gas storage vaporization method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102611A (en) * 1978-01-31 1979-08-13 Iwatani & Co Vaporizing method and apparatus for liquified gas with atmospheric heat as source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102611A (en) * 1978-01-31 1979-08-13 Iwatani & Co Vaporizing method and apparatus for liquified gas with atmospheric heat as source

Also Published As

Publication number Publication date
JPS60210A (en) 1985-01-05

Similar Documents

Publication Publication Date Title
US11493246B2 (en) Demand flow for air cooled chillers
EP2313709B1 (en) Chiller with setpoint adjustment
US8096141B2 (en) Superheat control by pressure ratio
EP0992275B1 (en) Process and installation for the production of variable quantities of a gas
US5867995A (en) Electronic control of refrigeration systems
US4627243A (en) Gas supply system for variable demand application
JPH06185815A (en) Method and equipment for controlling heat pump system
CN112013454A (en) Control method for air source heat pump heating unit
JP2008309464A (en) Energy-saving device of air conditioner or the like
CN114279056B (en) Machine room air conditioner
CN117490190B (en) Air conditioning unit control method and air conditioning unit
JPH0567840B2 (en)
JP2003161545A (en) Heat pump type water heater
WO2019127009A1 (en) System and method for supplying backup product in air separation device
CN110887293A (en) Constant temperature and humidity freezer
JPH0765822B2 (en) Open type heat pump
JP2002048420A (en) Heat pump hot water heater
TWI616612B (en) Heating control system and method for liquefied gas distribution system
CN110701817B (en) Air source heat pump operation regulation and control method based on load matching and frost suppression multiple targets
JP2001263857A (en) Cooling/heating water heater and its control method
CN110546441B (en) Method for controlling suction pressure based on maximum load cooling entity
JP5856042B2 (en) Heat pump water heater
CN2447676Y (en) Thermostatic dehumidifier
US4272965A (en) Method and apparatus for controlling and conserving energy in an absorption refrigeration system
JPH0571826A (en) Heat pump high water feeder