JPH0567567B2 - - Google Patents

Info

Publication number
JPH0567567B2
JPH0567567B2 JP27136289A JP27136289A JPH0567567B2 JP H0567567 B2 JPH0567567 B2 JP H0567567B2 JP 27136289 A JP27136289 A JP 27136289A JP 27136289 A JP27136289 A JP 27136289A JP H0567567 B2 JPH0567567 B2 JP H0567567B2
Authority
JP
Japan
Prior art keywords
zeolite
gelatin
aqueous solution
added
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27136289A
Other languages
Japanese (ja)
Other versions
JPH03131512A (en
Inventor
Yoshiaki Goto
Kozo Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokushu Kika Kogyo KK
Original Assignee
Tokushu Kika Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokushu Kika Kogyo KK filed Critical Tokushu Kika Kogyo KK
Priority to JP27136289A priority Critical patent/JPH03131512A/en
Publication of JPH03131512A publication Critical patent/JPH03131512A/en
Publication of JPH0567567B2 publication Critical patent/JPH0567567B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • C01B33/2807Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures
    • C01B33/2838Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures of faujasite type, or type X or Y (UNION CARBIDE trade names; correspond to GRACE's types Z-14 and Z-14HS, respectively)
    • C01B33/2853Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures of faujasite type, or type X or Y (UNION CARBIDE trade names; correspond to GRACE's types Z-14 and Z-14HS, respectively) of type Y

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水溶液中にて合成されるゼオライト
の新規合成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel method for synthesizing zeolite in an aqueous solution.

[従来技術及び発明が解決しようとする課題] 一般に、アルミノ珪酸塩であるゼオライトは、
イオン交換、分子篩、吸着、触媒等の有用な各種
の特性を有しており、そこで今日、産業界におい
ても広く利用されている。そしてこの様なゼオラ
イトは、粒子の微細化および粒径の均一化がその
特性を向上させるために重要であり、そのため従
来から様々な試みがある。
[Prior art and problems to be solved by the invention] In general, zeolite, which is an aluminosilicate,
It has various useful properties such as ion exchange, molecular sieving, adsorption, and catalysis, and is therefore widely used in industry today. In order to improve the properties of such zeolite, it is important to make the particles finer and the particle size more uniform, and therefore various attempts have been made to date.

ところでゼオライトを人工的に合成する手法の
殆どが水溶液中で合成するものである。この水溶
液中でのゼオライトの合成は、反応機構自体が簡
単で設備的にも特殊なものを必要としないことか
ら、人工ゼオライトを大量かつ安価に合成する手
法として広く認められている。しかるに水溶液溶
媒なかで人工ゼオライトの合成は、溶倍の粘性が
低いこともあつて、結晶核が生成した後において
結晶の成長速度が早く、この結果、どうしても反
応のコントロールが難しく生成したゼオライト粒
子の粒径が不揃いになつてしまう許りでなく、粒
径の大きなものが生成されてしまうという実情に
あり、均質微細なゼオライトを水溶液中で合成す
ることは至難の技であつた。
By the way, most of the methods for artificially synthesizing zeolite involve synthesizing it in an aqueous solution. This synthesis of zeolite in an aqueous solution has a simple reaction mechanism and does not require special equipment, so it is widely recognized as a method for synthesizing artificial zeolite in large quantities and at low cost. However, when synthetic zeolite is synthesized in an aqueous solvent, the viscosity of the solution is low, and the crystal growth rate is fast after the crystal nuclei are formed.As a result, it is difficult to control the reaction, and the resulting zeolite particles are difficult to control. Synthesizing homogeneous and fine zeolite in an aqueous solution has been extremely difficult, as the particle sizes cannot be allowed to be uneven and large particle sizes are produced.

[課題を解決する手段] 本発明は、上記の如き実情に鑑み、これらの欠
点を一掃することができるゼオライトの新規合成
方法を提供することを目的として創案されたもの
であつて、ゼオライトを水溶液中にて合成する
に、溶媒は、水溶性ポリマーを含んだ水溶液溶媒
としたことを特徴とするものである。
[Means for Solving the Problems] In view of the above-mentioned circumstances, the present invention was created with the aim of providing a new method for synthesizing zeolite that can eliminate these drawbacks. In the synthesis, the solvent is an aqueous solvent containing a water-soluble polymer.

本発明において用いられる水溶液ポリマーとし
ては、例えば、ゼラチン、β−セルローズ、アル
ギン酸、カルボキシメチルセルロースのように天
然の水溶性ポリマー(変性により水溶性にしたも
のも含む)、あるいはポリビニルアルコール、ポ
リアクリルアミドのように合成した水溶性ポリマ
ーを単独、もしくは併用させて用いることができ
る。
Examples of the aqueous polymer used in the present invention include natural water-soluble polymers (including those made water-soluble through modification) such as gelatin, β-cellulose, alginic acid, and carboxymethylcellulose, or polyvinyl alcohol and polyacrylamide. Water-soluble polymers synthesized in can be used alone or in combination.

本発明が均一で微細なゼオライトの合成に有効
である理由として、ゼオライト合成をするための
結晶生成の場が、従来の水溶液の場合と異なり、
水溶性ポリマーの水溶液としたことで高分子粘性
溶媒となり、反応試薬が水溶液中に溶媒となつて
溶けている水溶性ポリマーに取り囲まれた状態と
なつて反応するため、水溶液で反応させる場合の
ように結晶の急激な成長が抑えられて穏やかな結
晶成長が営まれ、これによつて結晶核が多数形成
され、そして害形成された結晶核の成長が抑制さ
れて遅延して粒径が揃い、しかも微細な人工ゼオ
ライトが生成したものと考えられる。
The reason why the present invention is effective in synthesizing uniform and fine zeolite is that the crystal formation site for zeolite synthesis is different from the conventional aqueous solution.
By making an aqueous solution of a water-soluble polymer, the polymer becomes a viscous solvent, and the reaction reagent acts as a solvent in the aqueous solution and is surrounded by the dissolved water-soluble polymer. The rapid growth of crystals is suppressed and moderate crystal growth occurs, resulting in the formation of a large number of crystal nuclei, and the growth of the harmfully formed crystal nuclei is suppressed and delayed, resulting in uniform grain size. Furthermore, it is thought that fine artificial zeolite was produced.

本発明は、水溶液系で合成される種々の組成の
ゼオライト、例えば、ゼオライトA、ゼオライト
X、ゼオライトY、ゼオライトZ、ゼオライト
GMS−5、さらにはモルデナイト等の合成にお
いて実施することができる。
The present invention relates to zeolites of various compositions synthesized in an aqueous solution system, such as zeolite A, zeolite X, zeolite Y, zeolite Z, and zeolite
It can be carried out in the synthesis of GMS-5, mordenite, and the like.

[効果] 微細なゼオライト粒子を水溶液系で合成する場
合に、その溶媒が水溶性ポリマーの水溶液である
ため結晶成長が穏やかになつて、粒系が揃い、し
かも微細な人工ゼオライト粒子が生成することに
なり、この結果、従来の水溶液中では不可能とさ
れていた微細で粒径揃つた高特性のゼオライト粒
子を、反応溶媒を単なる水溶液溶媒に換えて水溶
性ポリマー水溶液としただけで簡単に生成し得る
ものである。
[Effect] When fine zeolite particles are synthesized in an aqueous solution system, since the solvent is an aqueous solution of a water-soluble polymer, crystal growth is moderate, resulting in uniform particle system and fine artificial zeolite particles. As a result, fine, uniformly sized, high-performance zeolite particles, which were thought to be impossible in conventional aqueous solutions, can be easily produced by simply replacing the reaction solvent with an aqueous solution and using a water-soluble polymer aqueous solution. It is possible.

次ぎに、本発明の実施例について述べる。 Next, examples of the present invention will be described.

[実験1] 水を40c.c.入れた三つ口フラスコに水酸化ナトリ
ウムを4グラム(g)、アルミン酸ナトリウムを
2g、40wt%水溶液のコロイダルシリカを14グ
ラム(g)を混合し、さらに水溶性高分子である
ゼラチンを、0.0wt%(重量パーセント)、0.1wt
%、0.5wt%、1.0wt%、3.0wt%、5.0wt%、
7.5wt%、10wt%の水溶液と成るようそれぞれ調
整して加えて攪拌後、室温にて1時間熟成し、そ
して100℃に加熱した状態で10時間反応させた。
[Experiment 1] In a three-necked flask containing 40 c.c. of water, mix 4 grams (g) of sodium hydroxide, 2 g of sodium aluminate, and 14 grams (g) of colloidal silica in a 40 wt% aqueous solution, and then Gelatin, which is a water-soluble polymer, is 0.0wt% (weight percent), 0.1wt%
%, 0.5wt%, 1.0wt%, 3.0wt%, 5.0wt%,
Aqueous solutions of 7.5 wt% and 10 wt% were respectively added and stirred, aged for 1 hour at room temperature, and reacted for 10 hours while heated to 100°C.

そして反応生成物を濾過し、その濾過物を水に
て洗浄した後、乾燥させて白色結晶を得た。この
ものについて、粉末X線回折法を用いて同定した
結果、フオージヤサイトであることが同定され、
さらにその格子定数を測定した経過、ゼオライト
Yであることが認められた。
The reaction product was filtered, and the filtered product was washed with water and dried to obtain white crystals. As a result of identifying this substance using powder X-ray diffraction method, it was identified as faujasite,
Furthermore, after measuring its lattice constant, it was confirmed that it was zeolite Y.

この反応生成物の収量を、第1図に示す表図に
示すが、これによると、ゼラチンの添加量が
5.0wt%を越えると特に急激な低下が認められ、
ゼオライトYの生成速度を抑制するのにゼラチン
が有効に働いていることが認められる。
The yield of this reaction product is shown in the table shown in Figure 1, which shows that the amount of gelatin added is
A particularly rapid decrease was observed when exceeding 5.0wt%,
It is recognized that gelatin is working effectively to suppress the production rate of zeolite Y.

[実験2] これら生成したゼオライトYのうち、ゼラチン
の添加量が0.0wt%、0.1wt%、1.0wt%、7.5wt%
のものについてそれぞれ粒径分布を測定し、その
結果を第2図の表図に示す。但し、ゼラチン添加
量が7.5wt%のものは20時間反応させ、98%の収
量となつたゼオライトYを用いた。
[Experiment 2] Of the zeolite Y produced, the amount of gelatin added was 0.0wt%, 0.1wt%, 1.0wt%, and 7.5wt%.
The particle size distribution of each sample was measured, and the results are shown in the table of FIG. However, when the amount of gelatin added was 7.5 wt%, zeolite Y was used, which was reacted for 20 hours and had a yield of 98%.

これによると、ゼラチンを添加しないもの(比
較例)においては、粒径が、0.66μm(マイクロ
メータ)から42.21μmまでと広い範囲にばらつい
て分布しており、そして累積50%の粒径も4.71μ
mとなつているのが確認されるが、ゼラチンを添
加したものは、何れのものも、その粒径分布の幅
が小さくなつていると共に、累積50%の粒径も、
ゼラチン濃度が0.1%のものが3.55μm、1.0%のも
のが1.97μm、7.5%のものが1.70μmと難れも小さ
くなつていることが観測され、これによつてゼラ
チンを添加したものは、添加しないものに比して
明らかに粒径が揃つていることが確認される。し
かも粒径分布の幅は、ゼラチンの添加量が多いほ
ど狭くなつていて、より均一なサイズの結晶が得
られることがわかる。そしてこれら得られた結晶
を電子顕微鏡観察した結果、ゼラチン濃度が高く
なるほど丸みを帯びた八面体構造を示すことも認
められた。
According to this, in the product without gelatin (comparative example), the particle size is distributed over a wide range from 0.66 μm (micrometer) to 42.21 μm, and the cumulative particle size of 50% is 4.71 μm. μ
It is confirmed that the width of the particle size distribution becomes smaller in all the products to which gelatin is added, and the cumulative particle size of 50% also decreases.
It was observed that the defects were reduced to 3.55 μm for the gelatin concentration of 0.1%, 1.97 μm for the 1.0% gelatin concentration, and 1.70 μm for the 7.5% gelatin concentration. It is confirmed that the particle sizes are clearly more uniform compared to those without the addition. Moreover, the width of the particle size distribution becomes narrower as the amount of gelatin added increases, indicating that crystals with a more uniform size can be obtained. As a result of electron microscopic observation of the obtained crystals, it was also observed that the higher the gelatin concentration, the more rounded the octahedral structure was.

そのうえゼオライトYの平均粒径も、ゼラチン
の添加量が多いほど小径になつていることが確認
できる。
Furthermore, it can be confirmed that the average particle size of zeolite Y becomes smaller as the amount of gelatin added increases.

[実験3] 反応条件は前記実験1の場合と同様にし、そし
てアルミン酸ナトリウムと40wt%水溶液のコロ
イダルシリカとの添加量を種々変化させ、ゼラチ
ン添加量が0.0wt%、1.0wt%、10.0wt%の場合に
ついて、それぞれゼオライトYが単相で生成され
る領域を調べた。その結果を第3図の反応組成図
として図示した。
[Experiment 3] The reaction conditions were the same as in Experiment 1, and the amounts of sodium aluminate and 40 wt% aqueous colloidal silica were varied, and the amounts of gelatin added were 0.0 wt%, 1.0 wt%, and 10.0 wt%. %, the region where zeolite Y is produced in a single phase was investigated. The results are illustrated as a reaction composition diagram in FIG.

これによるとゼラチンを含まないものは、酸化
珪素の割合が2.5モルパーセント(mol%)以下
の領域では、ゼオライトYを単品として得ること
ができず、ハーシエライト(Herschelite)との
混合物が得られることになるが、ゼラチン1.0wt
%添加したものでは、酸化珪素の割合が略
1.0mol%まで減少した領域までゼオライトYを
単品として得ることができた。酸化珪素の割合が
減少するということは、ゼオライトY中の酸化ア
ルミニウムの割合が増えることを意味するが、こ
のことは、イオン交換能に優れ、また触媒活性が
高まることにもなる。
According to this, zeolite Y that does not contain gelatin cannot be obtained as a single product in a region where the proportion of silicon oxide is less than 2.5 mol percent (mol%), but a mixture with Herschelite is obtained. Yes, gelatin 1.0wt
% added, the percentage of silicon oxide is approximately
It was possible to obtain zeolite Y as a single product to the extent that the amount decreased to 1.0 mol%. A decrease in the proportion of silicon oxide means an increase in the proportion of aluminum oxide in zeolite Y, which also means that the ion exchange ability is excellent and the catalytic activity is increased.

またゼラチンを10.0wt%まで添加したもので
は、さらに酸化珪素の割合が減少した領域でゼオ
ライトYが生成された。
In addition, in the case where gelatin was added up to 10.0 wt%, zeolite Y was produced in a region where the proportion of silicon oxide further decreased.

この結果から、ゼラチンを添加した場合には、
添加しないものに比して、ゼオライトYの生成領
域が広がつていることが認められ、アルミニウム
割合の高い組成のゼオライトYを容易に得ること
ができる。
From this result, when gelatin is added,
It was observed that the production region of zeolite Y was expanded compared to the case where no addition was made, and zeolite Y having a composition with a high aluminum content could be easily obtained.

実施例 4 水を28c.c.入れた三つ口フラスコに水酸化ナトリ
ウムを0.5グラム(g)、アルミン酸ナトリウムを
1.5g、40wt%水溶液のコロイダルシリカを30グ
ラム(g)を混合し、さらに水溶性高分子である
ポリビニルアルコール(鹸化度:98.5%、重合
度:2400)を、0.0wt%、0.1wt%(重量パーセン
ト)の水溶液と成るように調整して加えて攪拌
後、室温にて15時間熟成し、そして100℃に加熱
した状態で5時間反応させた。
Example 4 0.5 g (g) of sodium hydroxide and sodium aluminate were added to a three-necked flask containing 28 c.c. of water.
1.5g, 30g (g) of 40wt% aqueous solution of colloidal silica was mixed, and further 0.0wt%, 0.1wt% ( After adding and stirring, the mixture was aged at room temperature for 15 hours, and then reacted at 100° C. for 5 hours.

反応生成物を濾過し、その濾過物を水にて洗浄
した後、乾燥させてゼオライトAの白色粉末を得
た。
The reaction product was filtered, and the filtered product was washed with water and dried to obtain a white powder of zeolite A.

このものの粒径分布を測定し、結果を第4図の
表図に示す。このものも、ポリビニルアルコール
を添加したものの方が、添加しないもの比較例に
対して粒径分布の範囲が小さく揃つており、かつ
粒径も小さいことが認められる。
The particle size distribution of this material was measured and the results are shown in the table of FIG. It is also observed that the particle size distribution range of the sample to which polyvinyl alcohol was added was narrower and the particle size was smaller than that of the comparative example that did not contain polyvinyl alcohol.

そしてこのものにおいても、ゼラチンを添加し
たものの場合と同様、ゼオライトの生成領域が広
がつている別途実験により確かめられた。
In this case as well, it was confirmed through a separate experiment that the zeolite production region was expanded, just as in the case of the gelatin-added product.

【図面の簡単な説明】[Brief explanation of the drawing]

図面において、第1図はゼラチンを添加した場
合の反応生成物の収量を示したグラフ図、第2図
は同上生成物の粒径分布状態を示した表図、第3
図は同上生成物の反応組成図を示した表図、第4
図はポリビニルアルコールを添加した場合の生成
物の粒径分布状態を示した表図である。
In the drawings, Fig. 1 is a graph showing the yield of the reaction product when gelatin is added, Fig. 2 is a table showing the particle size distribution state of the same product, and Fig. 3 is a graph showing the yield of the reaction product when gelatin is added.
The figure is a table showing the reaction composition diagram of the same product.
The figure is a table showing the particle size distribution of the product when polyvinyl alcohol is added.

Claims (1)

【特許請求の範囲】[Claims] 1 ゼオライトを水溶液中にて合成するに、溶媒
は、水溶性ポリマーを含んだ水溶液溶媒としたこ
とを特徴とするゼオライトの新規合成方法。
1. A novel method for synthesizing zeolite, characterized in that when zeolite is synthesized in an aqueous solution, the solvent is an aqueous solution solvent containing a water-soluble polymer.
JP27136289A 1989-10-18 1989-10-18 New method for synthesizing zeolite Granted JPH03131512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27136289A JPH03131512A (en) 1989-10-18 1989-10-18 New method for synthesizing zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27136289A JPH03131512A (en) 1989-10-18 1989-10-18 New method for synthesizing zeolite

Publications (2)

Publication Number Publication Date
JPH03131512A JPH03131512A (en) 1991-06-05
JPH0567567B2 true JPH0567567B2 (en) 1993-09-27

Family

ID=17499016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27136289A Granted JPH03131512A (en) 1989-10-18 1989-10-18 New method for synthesizing zeolite

Country Status (1)

Country Link
JP (1) JPH03131512A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864096B (en) * 2010-05-27 2012-05-30 南京工业大学 Organic/zeolite hybrid material and preparation method thereof

Also Published As

Publication number Publication date
JPH03131512A (en) 1991-06-05

Similar Documents

Publication Publication Date Title
KR0139289B1 (en) Zeolites
US3313594A (en) Method for producing crystalline aluminosilicate zeolitic particles of uniform size
JP2528066B2 (en) Cerium oxide-based composition and process for its preparation
DE19781813B4 (en) Mesoporous molecular sieve and process for its preparation
EP3450397B1 (en) Mse-type zeolite production method
CN103747849A (en) Reduction of oxides of nitrogen in a gas stream using molecular sieve SSZ-23
US4987106A (en) Process for producing clay mineral of chain structure
JP3547791B2 (en) High heat water resistant high silica zeolite and method for producing the same
EP0068796B1 (en) Method for manufacture of ams-ib crystalline borosilicate molecular sieve
US4606901A (en) Deagglomeration of porous siliceous crystalline materials
JPH0567567B2 (en)
US3629152A (en) Process for preparing alumina-coated silica catalyst material and the material so prepared
KR100304837B1 (en) Amorphous aluminosilicate and process for producing the same
GB1598042A (en) Method of preparing crystalline aluminosilicates
US4497786A (en) Deagglomeration of porous siliceous crystalline materials
US4774068A (en) Method for production of mullite of high purity
JPH03131514A (en) Ultrafine particulate aluminosilicate having function such as ion exchange capacity
JPH0676207B2 (en) Zeolite production method
JPH0339974B2 (en)
CN104556134B (en) A kind of synthetic method of the molecular sieve for preparing propylene from methanol reaction
DE19727893A1 (en) Process for the preparation of synthetic sheet silicates of the hectorite type
DE3014637A1 (en) METHOD FOR PRODUCING SHAPED CATALYSTS BASED ON CRYSTALINE ALUMINUM SILICATES AND THE USE THEREOF
DE60010315T2 (en) SYNTHETIC CRYSTALLINE MCM-69, THE SYNTHESIS AND USE THEREOF
CN115140747B (en) Granular NU-88 molecular sieve and preparation method thereof
JPH06102536B2 (en) Method for producing high-purity, high-purity synthetic kaolinite