JPH0567516A - Manufacture of superconducting coil - Google Patents

Manufacture of superconducting coil

Info

Publication number
JPH0567516A
JPH0567516A JP3228001A JP22800191A JPH0567516A JP H0567516 A JPH0567516 A JP H0567516A JP 3228001 A JP3228001 A JP 3228001A JP 22800191 A JP22800191 A JP 22800191A JP H0567516 A JPH0567516 A JP H0567516A
Authority
JP
Japan
Prior art keywords
coil
superconducting
inner plate
winding
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3228001A
Other languages
Japanese (ja)
Other versions
JP3199782B2 (en
Inventor
Shigeru Murai
成 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22800191A priority Critical patent/JP3199782B2/en
Publication of JPH0567516A publication Critical patent/JPH0567516A/en
Application granted granted Critical
Publication of JP3199782B2 publication Critical patent/JP3199782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To suppress the occurrence of temperature rises in a superconducting coil by improving the heat conduction in the coil. CONSTITUTION:In this manufacturing method of such a superconducting coil that the first insulation-to-the-earth layer 2, a coil 3 composed of a superconducting conductor, and the second insulation-to-the-earth layer 4 are closely arranged on the internal surface side of a cylindrical cooling body 1 that becomes an outer bobbin in a state where hey are integrally fixed to each other and an inner plate 5 is provided so as to cover the layer 4 side surface, the coil 3 is formed by winding the superconducting conductor around the inner plate 5 with the layer 4 in between after the plate 5 is put around a temporary bobbin 6. Then, after the cooling body 1 is put on the coil 3 with the layer 2 in between, the inner plate, coil, and the first and second insulation-to-the-earth layers are integrally fixed to each other by impregnating them with a resin. Then this superconducting coil is obtained by removing the temporary bobbin 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコイル内部の熱伝導を高
め得る超電導コイルの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a superconducting coil which can enhance heat conduction inside the coil.

【0002】[0002]

【従来の技術】高エネルギ物理分野での粒子計測用超電
導マグネット等においては、宇宙空間等無重力条件下で
使用されることを考慮して、超電導コイルを真空中に設
置し、別途に設置された冷媒容器、冷却管等から固体熱
伝導の作用により間接的にコイルを冷却する構造が採用
されている。これらの多くは直径および長さが1m以上
と比較的大形のものが多い。
2. Description of the Related Art In a superconducting magnet for particle measurement in the field of high energy physics, a superconducting coil was placed in a vacuum and separately installed in consideration of being used in weightless conditions such as outer space. The structure in which the coil is indirectly cooled by the action of solid heat conduction from a refrigerant container, a cooling pipe, or the like is adopted. Most of these are relatively large in diameter and length of 1 m or more.

【0003】ところで、真空外部からの輻射熱等により
上記冷媒容器、冷却管等(以下冷却体と呼ぶ)と超電導
コイルとの間に生じる温度差が著しく大きくなると超電
導コイルは、所要の性能を保つことができない。また、
超電導コイルに外部からのじょう乱を受け、クエンチ現
象が発生した場合には、コイルのエネルギの集中による
コイル焼損を防止しなければならないため、クエンチ発
生箇所からコイル全体へのクエンチ伝搬を速やかに行う
必要がある。これらは超電導コイルを運転する上におい
て、コイルの健全性を守るための基本的に必要な事項で
ある。
By the way, when the temperature difference between the superconducting coil and the refrigerant container, the cooling pipe, etc. (hereinafter referred to as the cooling body) becomes significantly large due to the radiant heat from the outside of the vacuum, the superconducting coil must maintain the required performance. I can't. Also,
If the superconducting coil is disturbed from the outside and the quench phenomenon occurs, it is necessary to prevent the coil from burning due to the concentration of energy in the coil. There is a need. These are basically necessary items for operating the superconducting coil to protect the integrity of the coil.

【0004】一般に間接冷却を行う超電導コイルと冷却
体との間は、アルミニウム等の金属からなる冷却体およ
び超電導線材と、これらの間に介在する絶縁材料の相互
の接着により固体熱伝導が作用する構成が採られてい
る。そして、冷却体は通常超電導コイルに作用する強大
な電磁力に対してコイルを支持する構造体と一体になっ
ている。しかしながら、超電導コイルはしばしば過酷な
冷熱サイクルや電磁力、機械力を受け、コイルと冷却体
の間に局部的な剥離等が発生する恐れがある。
In general, between the superconducting coil for indirect cooling and the cooling body, solid heat conduction acts by mutual adhesion of the cooling body and the superconducting wire made of metal such as aluminum and the insulating material interposed therebetween. The composition is adopted. The cooling body is usually integrated with a structure that supports the coil against the strong electromagnetic force that normally acts on the superconducting coil. However, the superconducting coil is often subjected to severe cooling and heating cycles, electromagnetic force, and mechanical force, and there is a possibility that local peeling or the like may occur between the coil and the cooling body.

【0005】このため、コイルの内面側に分割された金
属板からなるインナープレートを被着し、コイルの巻回
間方向に冷却体とは別体の熱伝導路を形成し、コイル全
体の温度が均一に保持されるように形成したものが知ら
れている。
Therefore, an inner plate made of a divided metal plate is attached to the inner surface of the coil to form a heat conduction path separate from the cooling body in the winding direction of the coil, and the temperature of the entire coil is increased. It is known that the film is formed so as to be held uniformly.

【0006】図5はインナープレートを備えた従来の内
巻超電導コイルの側面図である。図において、1は外巻
枠となる良熱伝導性金属円筒からなる冷却体、2は冷却
体1の内面側に被着された第1の対地絶縁層、3は絶縁
された超電導線を巻回して相互に固着したコイル、4は
コイル3の内面側に密接して形成された第2の対地絶縁
層、5は第2の対地絶縁層4の内周面に接着剤により被
着されたインナープレートである。
FIG. 5 is a side view of a conventional inner winding superconducting coil having an inner plate. In the figure, 1 is a cooling body made of a metal cylinder having good heat conductivity as an outer winding frame, 2 is a first ground insulating layer attached to the inner surface side of the cooling body 1, and 3 is an insulated superconducting wire. The coils 4 which are rotated and fixed to each other are adhered to the inner peripheral surface of the second ground insulating layer 4 by an adhesive. It is an inner plate.

【0007】このインナープレート5は、図示するよう
にコイル3と同一方向に鎖交する電気的周回路が形成さ
れ、誘導損失による発熱を防ぐため、円周方向に複数に
分割された長方形板で構成されている。また、インナー
プレート5は超電導コイルと共に極低温に冷却されてい
る状態において、熱伝導特性を最大限得るために、通常
99.999%以上の高純度のアルミニウムが用いられ
る。さらに、インナープレートの目的の一つはあくまで
コイルに局所的な高温度部分を発生させず、速やかにコ
イル全体をクエンチさせることにあり、インナープレー
ト自体が過大な熱容量を有してはならない。これらの条
件からインナプレートは、通常1mm以下の薄板となり、
材料は非常に軟質な特性を持つ。
As shown in the figure, the inner plate 5 is formed of a rectangular plate which is divided into a plurality of parts in the circumferential direction in order to form an electric circuit that links the coil 3 in the same direction as the coil 3 and to prevent heat generation due to inductive loss. It is configured. Further, the inner plate 5 is usually made of high-purity aluminum of 99.999% or more in order to obtain the maximum heat conduction characteristics in a state where it is cooled to a cryogenic temperature together with the superconducting coil. Further, one of the purposes of the inner plate is to quickly quench the entire coil without generating a local high temperature portion in the coil, and the inner plate itself should not have an excessive heat capacity. From these conditions, the inner plate is usually a thin plate of 1 mm or less,
The material has very soft properties.

【0008】[0008]

【発明が解決しようとする課題】しかし、このような構
成の超電導コイルを製造するには、前述したインナープ
レートを第2の対地絶縁層4に被着する工程において、
コイル曲率に対する曲げ加工、接着剤の塗布、インナー
プレートの固定、接着剤の硬化等の作業があるため、1
m以上にも及ぶ長方形の板を変形させることなく、また
僅かの隙間も生じさせずに施工することは極めて困難で
ある。このため、作業時間が長くなり、不経済であるば
かりでなく、インナープレートに所要の伝熱効果が得ら
れなくなる恐れがある。本発明はコイル内部の熱伝導を
高めて温度上昇を低く抑制できる超電導コイルの製造方
法を提供することを目的とする。
However, in order to manufacture the superconducting coil having such a structure, in the step of applying the above-mentioned inner plate to the second ground insulating layer 4,
Since there are work such as bending for coil curvature, application of adhesive, fixing of inner plate, and curing of adhesive, 1
It is extremely difficult to construct a rectangular plate extending up to m or more without deforming it and without causing a slight gap. For this reason, not only the working time becomes long and uneconomical, but there is also a possibility that the required heat transfer effect cannot be obtained in the inner plate. It is an object of the present invention to provide a method for manufacturing a superconducting coil that can increase heat conduction inside the coil and suppress a temperature rise to a low level.

【0009】[0009]

【課題を解決するための手段】本発明は上記の目的を達
成するため、外巻枠となる筒状の冷却体の内面側に密接
して配設される第1の対地絶縁層、超電導線よりなるコ
イルおよび第2の対地絶縁層を一体的に固着し、且つ前
記第2の対地絶縁層側の表面を覆うようにインナープレ
ートを被着してなる超電導コイルの製造方法において、
前記コイルの巻装前に仮巻枠の外周にインナプレートを
配設して前記超電導線を前記第2の対地絶縁層を介して
外巻してコイルを形成し、次にこのコイルの外周側に前
記第1の対地絶縁層を介して冷却体を嵌込んだ後、これ
らインナプレート、コイル、第1および第2の対地絶縁
層を樹脂含浸してこれらを一体的に固着し、しかる後前
記仮巻枠を取外して超電導コイルを得る。
In order to achieve the above object, the present invention provides a first ground insulating layer and a superconducting wire which are closely arranged on the inner surface side of a cylindrical cooling body which is an outer winding frame. In the method for manufacturing a superconducting coil, the coil and the second ground insulating layer are integrally fixed, and an inner plate is attached so as to cover the surface on the second ground insulating layer side.
Before winding the coil, an inner plate is arranged on the outer periphery of the temporary winding frame, and the superconducting wire is externally wound via the second ground insulating layer to form a coil. Then, the outer peripheral side of the coil is formed. After fitting the cooling body through the first ground insulating layer, the inner plate, the coil, and the first and second ground insulating layers are impregnated with resin to fix them integrally, and thereafter, the The temporary winding frame is removed to obtain a superconducting coil.

【0010】また、本発明は超電導線をソレノイド巻き
に多層巻きして樹脂含浸してなる超電導コイルの製造方
法において、前記超電導線をその巻回層間に熱伝導率の
大きい金属ストリップを挟み入れると共に、他の層間に
挟み入れられる金属ストリップと互いに連続するように
結合しながら巻回し、しかる後これらを樹脂含浸して一
体的に固着して超電導コイルを得る。
Further, according to the present invention, in a method of manufacturing a superconducting coil in which a superconducting wire is wound in multiple layers around a solenoid winding and impregnated with a resin, the superconducting wire is sandwiched between winding layers by a metal strip having a high thermal conductivity. A superconducting coil is obtained by winding the metal strip sandwiched between other layers so as to be continuous with each other, and then impregnating them with a resin and integrally fixing them.

【0011】[0011]

【作用】このような超電導コイルの製造方法によれば、
仮巻枠の外周にインナプレートを配設して超電導線を外
巻することにより、コイルの張力で仮巻枠の外周側に配
設されたインナプレートに対して一様な面圧をかけるこ
とが可能となり、この状態で樹脂含浸すればインナプレ
ートは樹脂で含浸される際に殆ど隙間なしにコイルに密
着する。従って、このような製造方法で得られた超電導
コイルにおいては、コイル、第2の対地絶縁層およびイ
ンナープレートが相互に良好な固体熱伝導が行われる状
態となし得る。
According to such a method of manufacturing a superconducting coil,
By applying an inner plate on the outer circumference of the temporary bobbin and winding the superconducting wire externally, a uniform surface pressure is applied to the inner plate arranged on the outer peripheral side of the temporary bobbin by the tension of the coil. If the resin is impregnated in this state, the inner plate will adhere to the coil with almost no gap when impregnated with the resin. Therefore, in the superconducting coil obtained by such a manufacturing method, the coil, the second ground insulating layer, and the inner plate can be brought into a state in which good solid heat conduction is performed with each other.

【0012】また、多層超電導コイルの製造方法にあっ
ては、ソレノイド巻される超電導線の巻回層間に熱伝導
率の大きな金属ストリップが挟み入れられると共に、他
の巻回層間に挟み入れられる金属ストリップと順次結合
しながら超電導線を巻回し、これらを樹脂含浸により一
体的に固着して多層超電導コイルを得るようにしている
ので、コイルの一部にクエンチが発生したときの発熱は
絶縁層を介して隣合う導体に伝わると同時に金属ストリ
ップにも伝り、他の層間にも熱伝達が急速に行われるこ
とになる。従って、クエンチの伝搬を早めることができ
るので、発熱時の温度上昇を低く抑えることが可能とな
る。
Further, in the method for manufacturing a multi-layer superconducting coil, a metal strip having a large thermal conductivity is sandwiched between the winding layers of the superconducting wire wound by the solenoid, and a metal strip is sandwiched between other winding layers. The superconducting wire is wound while being sequentially joined to the strip, and these are integrally fixed by resin impregnation so as to obtain a multilayer superconducting coil.Therefore, when a part of the coil is quenched, heat is generated in the insulating layer. At the same time, it is transmitted to the adjacent conductor via the metal strip, and the heat is rapidly transferred to other layers. Therefore, since the propagation of quench can be accelerated, it is possible to suppress the temperature rise at the time of heat generation.

【0013】[0013]

【実施例】以下本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は本発明による超電導コイルの製造方
法を説明するための第1の実施例を示す側断面図であ
る。図において、外巻枠となる冷却体1はコイルの電磁
力に対する支持機能を有し、この冷却体1の内周側には
第1の対地絶縁層2、絶縁された超電導導体を巻回して
相互に固着したコイル3、第2の対地絶縁層4、さらに
インナープレート5を順に配して超電導コイルが構成さ
れることは従来と同様であるが、本実施例ではかかる構
成の超電導コイルを次のようにして製造する。
FIG. 1 is a side sectional view showing a first embodiment for explaining a method of manufacturing a superconducting coil according to the present invention. In the figure, a cooling body 1 serving as an outer winding frame has a function of supporting an electromagnetic force of a coil, and a first ground insulating layer 2 and an insulated superconducting conductor are wound around an inner peripheral side of the cooling body 1. The superconducting coil is constructed by sequentially disposing the coil 3, the second ground insulating layer 4, and the inner plate 5 which are fixed to each other in the same manner as in the conventional case. Is manufactured as follows.

【0015】すなわち、本実施例では、冷却体1より小
さな径の仮巻枠6を用いてその外周面上にインナープレ
ート5を仮固定し、その外周面に第2の対地絶縁層4を
形成した上で超電導線を適度な張力で巻回してコイル3
を形成し、さらにコイル3の外周面に第1の対地絶縁層
2を形成した後、冷却体1を焼嵌め等の手段により第1
の対地絶縁層2に密着させて組立てる。従って、仮巻枠
6を用いてインナープレート5の仮固定を行い、超電導
線をその外周側に外巻されることによってコイル全体に
均一な加圧力が作用することになる。
That is, in this embodiment, the inner plate 5 is temporarily fixed on the outer peripheral surface of the temporary winding frame 6 having a diameter smaller than that of the cooling body 1, and the second ground insulating layer 4 is formed on the outer peripheral surface thereof. Then, coil the superconducting wire by winding it with appropriate tension.
And the first ground insulating layer 2 is further formed on the outer peripheral surface of the coil 3, and then the cooling body 1 is first fitted by means such as shrink fitting.
Assemble by closely adhering to the ground insulating layer 2. Therefore, the inner plate 5 is temporarily fixed by using the temporary winding frame 6, and the superconducting wire is externally wound on the outer peripheral side thereof, so that a uniform pressing force acts on the entire coil.

【0016】次にこのように組立てられた各部材を一体
としてエポキシ樹脂を注入して真空含浸を行うと、これ
ら冷却体1、第1の対地絶縁層2、コイル3、第2の対
地絶縁層4および仮巻枠6の各部材相互間は隙間の非常
に小さい状態で固着される。その後、仮巻枠6を取外す
ことにより超電導コイルが得られる。この場合、仮巻枠
6は容易に取外し可能なように複数に分割され、これら
を組立てることで構成される強固なものが使用される。
Next, by injecting epoxy resin into each of the members assembled in this way as an integral body and performing vacuum impregnation, the cooling body 1, the first ground insulating layer 2, the coil 3, and the second ground insulating layer are formed. 4 and the temporary winding frame 6 are fixed to each other with a very small gap. After that, the temporary winding frame 6 is removed to obtain the superconducting coil. In this case, the temporary winding frame 6 is divided into a plurality of parts so that they can be easily removed, and a strong one is used by assembling them.

【0017】このような製造方法により得られる超電導
コイルにおいては、各部材の全てが一体に真空含浸され
て固体熱伝達が作用する。特にインナプレート5は高純
度のアルミ材料を用いた熱伝導を主たる目的とした部材
で、インナープレート5の接着が殆ど隙間なしで可能で
あり、接着作業そのものには取扱い上の不確実さ、すな
わちインナープレート5を曲げる、折る等によりコイル
表面に密着しない等の恐れが殆どなくなる。
In the superconducting coil obtained by such a manufacturing method, all the members are integrally vacuum-impregnated so that solid heat transfer acts. In particular, the inner plate 5 is a member whose main purpose is to conduct heat using a high-purity aluminum material, and the inner plate 5 can be adhered with almost no gaps. There is almost no fear that the inner plate 5 will not adhere to the coil surface due to bending or folding.

【0018】従って、コイル3の内周面におけるインナ
ープレート5の接着作業が極めて簡易になると共に、イ
ンナープレート5とコイル3との間の熱伝達が良好に行
われるので、コイル全体が常に均一に冷却され、クエン
チ防止の機能を良好に保つことができる。また、外的な
じょう乱によってコイルがクエンチしたときでも局所的
な高温部分を緩和して速やかにコイル全体にエネルギが
拡散されるので、コイルが損傷することなく、信頼性の
向上を図ることができる。
Therefore, the work of adhering the inner plate 5 to the inner peripheral surface of the coil 3 is extremely simple, and the heat transfer between the inner plate 5 and the coil 3 is excellent, so that the entire coil is always uniform. It is cooled and can keep the function of preventing quenching well. Further, even when the coil is quenched by external disturbance, the local high temperature part is relaxed and the energy is quickly diffused throughout the coil, so that the coil is not damaged and the reliability is improved. it can.

【0019】図2は本発明方法が適用される超電導コイ
ルの第2の実施例を示す断面図であり、図1と同一部品
には同一記号を付して示してある。本実施例では超電導
コイルが単層巻きの場合であり、かかる構成の超電導コ
イルであっても仮巻枠6の外周側にインナープレート
5、第2の対地絶縁層4、超電導線を単層巻きしたコイ
ル3、第1の対地絶縁層2を順に配して組立て、これを
第1の実施例と同様の方法によってインナープレート5
をコイル3と密着させることにより、前記実施例と同様
の作用効果を得ることができる。
FIG. 2 is a sectional view showing a second embodiment of a superconducting coil to which the method of the present invention is applied, and the same parts as those in FIG. 1 are designated by the same symbols. In the present embodiment, the superconducting coil is a single-layer winding, and even with the superconducting coil having such a configuration, the inner plate 5, the second ground insulating layer 4, and the superconducting wire are single-layer winding on the outer peripheral side of the temporary winding frame 6. The coil 3 and the first ground insulating layer 2 are sequentially arranged and assembled, and the inner plate 5 is assembled by the same method as in the first embodiment.
By closely contacting the coil 3 with the coil 3, it is possible to obtain the same effect as that of the above-described embodiment.

【0020】このように第1および第2の実施例で述べ
た超電導コイルの製造方法によれば、インナプレート5
とコイル3の密着性が極めて良好になり、このことによ
ってインナープレート5の機能である定常運転時におけ
る冷却作用としては、間接冷却のコイルにおいて長さ、
直径とも1mを越えるような比較的大型のコイルでも温
度分布を高々0.5°K程度の温度差に抑え、またクエ
ンチ時に局所的に温度上昇が生じても速やかにコイル全
体を均熱化し、クエンチ伝搬を促進するイコライザ機能
についても、コイルが成形され固着された後からインナ
ープレートを張り付ける作業方法に比べて飛躍的に向上
する。従って、超電導コイルとしては、クエンチ防止性
能が高く、また万一クエンチした場合でもコイルの損傷
を防止できるので、信頼性の高い超電導コイルとなし得
る。
As described above, according to the manufacturing method of the superconducting coil described in the first and second embodiments, the inner plate 5
The adhesion between the coil 3 and the coil 3 becomes extremely good, and as a result, the cooling action during steady operation, which is the function of the inner plate 5, is the length of the coil for indirect cooling,
Even with a relatively large coil whose diameter exceeds 1 m, the temperature distribution is suppressed to a temperature difference of about 0.5 ° K at most, and even if the temperature rises locally during quenching, the entire coil is quickly soaked, The equalizer function that promotes quench propagation is also dramatically improved compared to the work method of attaching the inner plate after the coil is formed and fixed. Therefore, the superconducting coil has high quenching prevention performance and can prevent damage to the coil even if it is quenched, so that the superconducting coil can be made highly reliable.

【0021】以上はインナープレート5とコイル3との
密着性の観点からの解決手段であるが、冷却能力および
クエンチ保護能力が不十分となる他の要因として、特に
コイルが多層巻構成の場合、冷却板から最も離れた層の
超電導線にクエンチが発生すると、常電導抵抗部の拡散
は超電導線の長手方向に対しては比較的速く伝搬する
が、コイルの横方向および層間方向にはホルマールおよ
びエポキシ樹脂の比較的熱伝導率の小さい絶縁層が介在
するため、横方向のクエンチ伝搬は非常に遅く、実験に
よれば縦方向の1/100 〜1/1000程度になる。このため、
初めにクエンチの発生した部分の線材は局所的に発熱が
大きくなり、さらに冷却板から離れた位置のために冷却
されにくく、線材周囲の樹脂のクラック発生原因とな
る。さらに、コイルの蓄積エネルギが大きい場合には絶
縁層の損傷、あるいは線材の溶損に至る場合も考えられ
る。
The above is the solution from the viewpoint of the adhesion between the inner plate 5 and the coil 3, but as another factor of insufficient cooling capacity and quench protection capacity, especially when the coil has a multi-layer winding structure, When a quench occurs in the superconducting wire in the layer farthest from the cooling plate, diffusion of the normal conducting resistance portion propagates relatively fast in the longitudinal direction of the superconducting wire, but the formals and The quench propagation in the lateral direction is very slow due to the interposition of the insulating layer of epoxy resin, which has a relatively low thermal conductivity, and has been experimentally shown to be about 1/100 to 1/1000 in the longitudinal direction. For this reason,
The wire rod in the portion where the quench is first generated locally generates a large amount of heat, and is hard to be cooled due to the position away from the cooling plate, which causes a crack in the resin around the wire rod. Furthermore, when the energy stored in the coil is large, the insulating layer may be damaged or the wire material may be melted.

【0022】図3および図4はコイル内部の熱伝導を向
上させ得る本発明による超電導コイルの製造方法の実施
例を説明するための図であり、図3は超電導コイルの一
部を示す断面図、図4は同じく正面図である。図3にお
いて、超電導線11はNbTiと銅のモノリス導体に純
アルミの安定化材が添付された平角導体で、表面をホル
マールにより絶縁処理されている。この超電導線11を
ソレノイド巻きして多層コイルとする際、純アルミのス
トリップ13を巻線方向と直角に配置し、次の層の巻線
を行う時に挟み入れる。このアルミストリップ13は高
純度のアルミニウムを0.25mm程度の厚さに圧延したもの
で、幅はコイル12の周長の1/50〜1/60程度とし、コイ
ルの周方向に上記ストリップの幅と同等以上の間隔を空
けて断続的に配置する。
3 and 4 are views for explaining an embodiment of a method for manufacturing a superconducting coil according to the present invention which can improve heat conduction inside the coil. FIG. 3 is a sectional view showing a part of the superconducting coil. 4 is a front view of the same. In FIG. 3, a superconducting wire 11 is a rectangular conductor in which a stabilizer of pure aluminum is attached to a monolith conductor of NbTi and copper, and its surface is insulated by formal. When the superconducting wire 11 is solenoid-wound to form a multi-layer coil, a strip 13 of pure aluminum is arranged at right angles to the winding direction, and is sandwiched when winding the next layer. The aluminum strip 13 is made by rolling high-purity aluminum into a thickness of about 0.25 mm, and has a width of about 1/50 to 1/60 of the circumference of the coil 12, and the width of the strip is the same as the width of the strip in the circumferential direction of the coil. Place intermittently with equal or more intervals.

【0023】上記アルミストリップ13は配置した上層
に2層分の巻線を介した上層に連続的に折返され、さら
に次の層の巻線との層間に挟み入れられる。この場合、
アルミストリップ13は図4に示すように2層毎に互い
に連続して巻線の層間に挟み入れられ、位相をずせて順
次次の2層間が結ばれる配置となる。なお、15はコイ
ル13を外側から支持する冷却機能を有する冷却板であ
る。
The aluminum strip 13 is continuously folded back to the upper layer through the winding of two layers on the upper layer thus arranged, and is sandwiched between the layers of the winding of the next layer. in this case,
As shown in FIG. 4, the aluminum strips 13 are arranged such that every two layers are continuously sandwiched between the layers of the windings, and the next two layers are sequentially connected with a phase difference. Reference numeral 15 is a cooling plate having a cooling function for supporting the coil 13 from the outside.

【0024】このようにして巻回された超電導コイル1
2は一体にエポキシ樹脂16により含浸固着されて超電
導線11とアルミストリップ13および他の絶縁物スペ
ーサ17相互の間は全て埋められ、接着されて多層超電
導コイルとなる。
Superconducting coil 1 wound in this way
2 is integrally impregnated and fixed with an epoxy resin 16 so that the space between the superconducting wire 11, the aluminum strip 13 and the other insulating spacers 17 is completely filled and adhered to form a multilayer superconducting coil.

【0025】このような方法により得られた多層超電導
コイルにおいて、励磁中に発生する局所的な発熱ないし
クエンチ発生時の局所的なエネルギの集中による温度上
昇は、各層間に挟み入れられた熱伝導率の大なるアルミ
ストリップの作用により、線材と直角方向、特に層間で
の熱伝達が高速になり、局所的な温度上昇が抑制される
と共に、クエンチバック機能が増大する。
In the multi-layered superconducting coil obtained by such a method, the temperature rise due to local heat generation during excitation or local energy concentration at the time of quenching is caused by the heat conduction between the layers. Due to the action of the aluminum strip having a high rate, the heat transfer in the direction perpendicular to the wire, particularly between layers, becomes fast, the local temperature rise is suppressed, and the quench back function is increased.

【0026】また、局所的な発熱、例えばレジンクラッ
クによる発熱等も冷却能力が高いことから、クエンチに
至らず安定化され易くなる。また、ある層から1枚のア
ルミストリップは次の2層上方の導体へ熱伝達が行われ
るが、その熱は導体を線材方向(周方向)に高速で伝わ
るので、次の位相に配置されたアルミストリップに伝え
られ、さらに次の2層上方の導体へ熱伝達される。
Further, the local heat generation, for example, heat generation due to resin cracks, etc., has a high cooling capacity, and is therefore easily stabilized without quenching. In addition, one aluminum strip from one layer transfers heat to the conductor above the next two layers, but since that heat is transferred at high speed in the conductor in the wire direction (circumferential direction), it was arranged in the next phase. It is transferred to the aluminum strip, and then transferred to the conductors two layers above.

【0027】従って、かかる超電導コイルにおいては、
層間に挟み入れられたアルミストリップにコイル幅の約
2倍の寸法に切断された材料を用いているので、第1の
層を巻線した後、第2の層の巻線終了までアルミストリ
ップを仮固定しておくことが比較的容易に行うことがで
きる。さらに加えて、高純度のアルミストリップはその
目的とする熱伝導率が機械的歪みにより容易に低下する
性質があるので、曲げ戻しの回数が増えることにより、
上記クエンチバックの性能が低下する可能性が大とな
る。その点本構成の場合、曲げ戻しは1度のみで次の層
の巻線を行うことができる。
Therefore, in such a superconducting coil,
Since the aluminum strip sandwiched between the layers is made of a material cut to a size about twice the coil width, after the first layer is wound, the aluminum strip is cut until the winding of the second layer is completed. Temporary fixing can be performed relatively easily. In addition, since the high-purity aluminum strip has the property that its intended thermal conductivity is easily reduced by mechanical strain, the number of times of bending back increases,
There is a high possibility that the performance of the quench back will deteriorate. In that point, in the case of this configuration, the winding of the next layer can be performed only once by bending back.

【0028】他方、超電導線の長手方向に対しては非常
に熱伝搬が速いので、アルミストリップが周方向に断続
的に配置され、全ての層間のアルミストリップが連続し
ている場合より、純アルミの機能が向上し、巻線作業も
容易に行うことができる。さらに、多層コイルの内径、
外径差が大きければ、層によってアルミストリップの幅
を変えて熱伝導能力の増強を図ることもできる。また、
本構成の超電導コイルの励磁中に、万一クエンチが発生
した場合にコイル内部に発生する電圧は数kVに達する
ことがあるが、コイル内に挟み入れたアルミストリップ
は対地電位と導体電位の間で浮遊した電位となる。しか
し、アルミストリップが上記実施例の如く2層毎に分割
されているので、導体との電位差が小さく抑えられ、絶
縁物の量の低減、ひいてはコイルの寸法、重量の低減を
行いながらコイルの局部的な温度上昇の少ない多層超電
導コイルが実現できる。
On the other hand, since the heat propagation is very fast in the longitudinal direction of the superconducting wire, the aluminum strips are arranged intermittently in the circumferential direction and the aluminum strips between all the layers are continuous. Function is improved, and winding work can be easily performed. In addition, the inner diameter of the multilayer coil,
If the difference in outer diameter is large, the width of the aluminum strip can be changed depending on the layer to enhance the heat conduction ability. Also,
The voltage generated inside the coil may reach several kV in the event of a quench during the excitation of the superconducting coil of this configuration. However, the aluminum strip sandwiched in the coil is between the ground potential and the conductor potential. It becomes a floating potential at. However, since the aluminum strip is divided into two layers as in the above embodiment, the potential difference between the aluminum strip and the conductor can be kept small, and the amount of the insulating material can be reduced, and the coil size and weight can be reduced while the local area of the coil is reduced. A multi-layer superconducting coil with a small temperature rise can be realized.

【0029】なお、上記実施例では、アルミストリップ
の連続性を第1〜第3の層、第3〜第5の層の如く、2
層おきとしていたが、各層でも効果は同等以上と考えら
れ、またアルミストリップの連続性を3〜5層おきとし
ても、同様の効果が期待できる。さらに、上記実施例で
は純度の高いアルミストリップを用いたが、他の金属ス
トリップ、例えば銅の場合でも同様の効果が得られる。
In the above embodiment, the continuity of the aluminum strip is set to 2 as in the first to third layers and the third to fifth layers.
Although the effect is considered to be equal or higher in each layer, the same effect can be expected even if the continuity of the aluminum strip is every 3 to 5 layers. Further, although the aluminum strip having high purity is used in the above-mentioned embodiment, the same effect can be obtained even when other metal strips such as copper are used.

【0030】[0030]

【発明の効果】以上述べたように本発明によれば、超電
導内部の熱伝導を高めて温度上昇を低く抑制できる超電
導コイルの製造方法を提供できる。
As described above, according to the present invention, it is possible to provide a method of manufacturing a superconducting coil which can enhance the heat conduction inside the superconducting material and suppress the temperature rise to a low level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超電導コイルの製造方法を説明す
るための第1の実施例を示すコイル一部の断面図。
FIG. 1 is a sectional view of a part of a coil showing a first embodiment for explaining a method for manufacturing a superconducting coil according to the present invention.

【図2】本発明の第2の実施例を示すコイル一部の断面
図。
FIG. 2 is a sectional view of a part of a coil showing a second embodiment of the present invention.

【図3】本発明による多層超電導コイルの製造方法を説
明するための実施例を示すコイル一部の断面図。
FIG. 3 is a sectional view of a part of a coil showing an embodiment for explaining a method for manufacturing a multilayer superconducting coil according to the present invention.

【図4】同実施例を示すコイル一部の正面図。FIG. 4 is a front view of a part of the coil showing the embodiment.

【図5】従来の超電導コイルの製造方法を説明するため
の側断面図。
FIG. 5 is a side sectional view for explaining a conventional method for manufacturing a superconducting coil.

【符号の説明】[Explanation of symbols]

1……外枠を兼ねた冷却体、2……第1の対地絶縁層、
3……コイル、4……第2の対地絶縁層、5……インナ
ープレート、6……仮巻枠、11……超電導線、12…
…超電導コイル、13……アルミストリップ、15……
冷却板、16……エポキシ樹脂、17……絶縁スペー
サ。
1 ... Cooling body that also serves as an outer frame, 2 ... First insulating layer to ground,
3 ... Coil, 4 ... Second insulating layer to ground, 5 ... Inner plate, 6 ... Temporary reel, 11 ... Superconducting wire, 12 ...
… Superconducting coil, 13 …… Aluminum strip, 15 ……
Cooling plate, 16 ... Epoxy resin, 17 ... Insulating spacer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外巻枠となる筒状の冷却体の内面側に密
接して配設される第1の対地絶縁層、超電導線よりなる
コイルおよび第2の対地絶縁層を一体的に固着し、且つ
前記第2の対地絶縁層側の表面を覆うようにインナープ
レートを被着してなる超電導コイルの製造方法におい
て、前記コイルの巻装前に仮巻枠の外周にインナプレー
トを配設して前記超電導線を前記第2の対地絶縁層を介
して外巻してコイルを形成し、次にこのコイルの外周側
に前記第1の対地絶縁層を介して冷却体を嵌込んだ後、
これらインナプレート、コイル、第1および第2の対地
絶縁層を樹脂含浸してこれらを一体的に固着し、しかる
後前記仮巻枠を取外して超電導コイルを得るようにした
ことを特徴とする超電導コイルの製造方法。
1. A first ground insulating layer, a coil made of a superconducting wire, and a second ground insulating layer, which are closely arranged on the inner surface side of a cylindrical cooling body which is an outer winding frame, are integrally fixed to each other. In the method for manufacturing a superconducting coil, which comprises covering an inner plate so as to cover the surface on the side of the second ground insulating layer, an inner plate is provided on the outer periphery of the temporary winding frame before winding the coil. Then, the superconducting wire is wound around the second ground insulating layer to form a coil, and then a cooling body is fitted on the outer peripheral side of the coil through the first ground insulating layer. ,
A superconducting coil, characterized in that the inner plate, the coil, and the first and second ground insulating layers are impregnated with resin to integrally fix them, and then the temporary winding frame is removed to obtain a superconducting coil. Coil manufacturing method.
【請求項2】 超電導線をソレノイド巻きに多層巻きし
て樹脂含浸してなる超電導コイルの製造方法において、
前記超電導線をその巻回層間に熱伝導率の大きい金属ス
トリップを挟み入れると共に、他の層間に挟み入れられ
る金属ストリップと互いに連続するように結合しながら
巻回し、しかる後これらを樹脂含浸して一体的に固着す
ることを特徴とする超電導コイルの製造方法。
2. A method for manufacturing a superconducting coil, which comprises winding a superconducting wire in a multi-layer winding around a solenoid and impregnating with a resin,
The superconducting wire is wound while sandwiching a metal strip having a large thermal conductivity between the winding layers, and is wound while being bonded so as to be continuous with the metal strips sandwiched between the other layers, and then impregnating them with a resin. A method for manufacturing a superconducting coil, characterized in that they are integrally fixed.
JP22800191A 1991-09-09 1991-09-09 Superconducting coil manufacturing method Expired - Lifetime JP3199782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22800191A JP3199782B2 (en) 1991-09-09 1991-09-09 Superconducting coil manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22800191A JP3199782B2 (en) 1991-09-09 1991-09-09 Superconducting coil manufacturing method

Publications (2)

Publication Number Publication Date
JPH0567516A true JPH0567516A (en) 1993-03-19
JP3199782B2 JP3199782B2 (en) 2001-08-20

Family

ID=16869625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22800191A Expired - Lifetime JP3199782B2 (en) 1991-09-09 1991-09-09 Superconducting coil manufacturing method

Country Status (1)

Country Link
JP (1) JP3199782B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147665A (en) * 2006-12-06 2008-06-26 Siemens Magnet Technology Ltd Molding magnet end coil wound at site and manufacturing method thereof
GB2489661A (en) * 2011-03-14 2012-10-10 Siemens Plc Cylindrical electromagnet with a contracted outer mechanical support structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147665A (en) * 2006-12-06 2008-06-26 Siemens Magnet Technology Ltd Molding magnet end coil wound at site and manufacturing method thereof
GB2489661A (en) * 2011-03-14 2012-10-10 Siemens Plc Cylindrical electromagnet with a contracted outer mechanical support structure

Also Published As

Publication number Publication date
JP3199782B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
RU2340970C1 (en) Super-conducting cable
JP5269694B2 (en) Superconducting coil device
JPH07142245A (en) High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material
JP5512175B2 (en) Reinforced high-temperature superconducting wire and high-temperature superconducting coil wound around it
EP3189529A1 (en) A metal assembly comprising a superconductor
WO2017057064A1 (en) High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil
EP0207286B1 (en) Conical, unimpregnated winding for mr magnets
KR101665038B1 (en) electrically conductive material impregnated no-insulation superconducting coil and manufacturing apparatus of the same
JP5274983B2 (en) Superconducting coil device
KR101867122B1 (en) Superconducting coil, superconducting magnet, and method for manufacturing superconducting coil
US4242534A (en) Superconductor structure and method for manufacturing same
JP3151159B2 (en) Superconducting current lead
WO2007122670A1 (en) Superconducting cable
JP3199782B2 (en) Superconducting coil manufacturing method
JPH0722231A (en) Superconducting magnet for mri system
JPS6213010A (en) Superconductive electromagnet
JPS6350844B2 (en)
JP6005428B2 (en) Superconducting coil and superconducting coil device
JP7189290B2 (en) Reinforcement of superconducting electromagnetic coils
JP2000030929A (en) Wire protection for oxide superconducting coil
JP4638983B2 (en) Superconductor and manufacturing method thereof
WO2020067335A1 (en) Oxide superconductive coil and production method thereof
JP7234080B2 (en) High temperature superconducting coil
JPS5912003B2 (en) coil
GB2596826A (en) Flexible thermal bus for superconducting coil

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11