JPH0567437B2 - - Google Patents

Info

Publication number
JPH0567437B2
JPH0567437B2 JP59037291A JP3729184A JPH0567437B2 JP H0567437 B2 JPH0567437 B2 JP H0567437B2 JP 59037291 A JP59037291 A JP 59037291A JP 3729184 A JP3729184 A JP 3729184A JP H0567437 B2 JPH0567437 B2 JP H0567437B2
Authority
JP
Japan
Prior art keywords
light
substrate
recording medium
celluloid
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59037291A
Other languages
Japanese (ja)
Other versions
JPS60183191A (en
Inventor
Yasushi Oomori
Mikio Yoneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP59037291A priority Critical patent/JPS60183191A/en
Publication of JPS60183191A publication Critical patent/JPS60183191A/en
Publication of JPH0567437B2 publication Critical patent/JPH0567437B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2532Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising metals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/2585Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on aluminium

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は光学的情報記録媒体に関するものであ
り、特に、レーザービームを用いて記録層に微小
なピツトをあけたり、微小な変質点を形成して情
報の記録を行ういわゆるヒートモードのDRAW
用記録媒体に関するものである。 (従来技術) 光学的情報記録方式は書込みヘツドあるいは読
取りヘツドと記録媒体とが非接触であるため、摩
耗劣化が無いという利点があり、今日まで種々の
記録媒体が開発されている。 このような光記録媒体のうち、暗室による画像
処理が不要である等の点で、ヒートモード光記録
媒体の開発が活発になつている。 このヒートモード光記録媒体は、記録光を熱と
して利用する光記録媒体であり、普通は、レーザ
ー等の記録光で媒体の一部を融解蒸発除去して、
ピツトといわれる小穴を形成して書き込みを行
い、このピツトを読み出して光で検出して読み出
しを行う。 このようなピツト形式方式の媒体では基体上
に、例えばニトロセルロース等の自己酸化性化合
物と光吸収体とを含む記録層を設層し、ニトロセ
ルロース等を分解させてを形成する。 上記の光吸収体のうち、代表的に用いられる色
素としてはシアニン色素がある。しかし、シアニ
ン色素を記録層中に含有させたときには、熱や光
に対する安定性が低く、生保存性が悪い。例え
ば、室内光にさらした状態で保存するような場
合、書き込みができない状態になつてしまう。光
吸収体として、テトラヒドロコリンまたはココー
ルの錯体を用いたものはシアニン色素系と比べ
て、いわゆる記録媒体の耐久性が著しく向上して
いる(特開昭58−197088号)が、耐光性において
は、未だ実用レベルにまでは達しておらず、読み
出し光のくり返し照射により、いわゆる再生劣化
を生じ、S/N比が劣化する。 また、特に色素と熱可塑性樹脂とから記録層を
形成する方式のものは、一旦形成したピツトを消
去光や熱により消去して、再書き込みをすること
ができるが、このような消去により、書き込み特
性が劣化してしまう。また、書き込み感度や読み
出しのS/N比も十分でない。 一般には、記録層に、上記色素とともに、自己
酸化性化合物または熱可塑性樹脂を含有させて、
自己酸化性化合物を燃焼させたり、熱可塑性樹脂
を融解させてピツトを形成したり、変形スポツト
を形成させている。また、これら化合物や樹脂は
記録膜の物性を向上させる役目をする。 上記の自己酸性化合物としては従来一般にニト
ロセルロースが使用されている。光学的情報記録
媒体に使われるニトロセルロースはアルコール類
に不溶であるために、アルコール以外の有機溶剤
に溶解させて、基板に塗布し、その後、溶剤を蒸
発除去する方法で、記録媒体塗膜を基板上に付着
形成させている。 しかし、基板がポリメチルメタアクリレート、
ポリカーボネートの如きプラスチツク成形板から
成る場合には、ニトロセルロースの溶剤、即ちケ
トン類、エステル類、及び一般に染料の良溶媒と
して知られているハロゲン化炭化水素類は、プラ
スチツク成形基板をも、容易に溶解させてしま
う。 このために、例えば光記録デイスクの場合に
は、プラスチツク製のデイスク基板のグルーブ
(溝)をも溶解してしまうので、グルーブを完全
に残した状態で、記録膜を塗布することが不可能
であつた。 またアルコール類に溶解するような低粘度のニ
トロセルロースの場合には、その溶液粘度が低い
ので、その後一旦、溶液中に分散させた顔料がす
ぐに沈降してしまうので、顔料の分散状態の良好
な塗膜、即ち記録媒体を得ることが出来なかつ
た。 一方、アルコール可溶の染料を使用した時には
外観上、良好な塗膜が得られるけれども、この塗
膜は強靭性に欠けているために、いわゆる耐久性
に乏しいという欠陥があつた。 本発明者らの実験によると、染料−ニトロセル
ロース系塗膜は良好なピツトを形成することが出
来るけれども、顔料−ニトロセルロース系塗膜で
は、良好なピツトを形成することが難しく、特に
無機顔料−ニトロセルロース系では満足すべきピ
ツトを形成することが出来なかつた。 (発明の目的) したがつて、本発明の目的は保存安定性に優れ
且つ書込みおよび読取り感度またははS/N比の
高いバランスのとれたヒートモードの光学的情報
記録媒体を提供することにある。 本発明者らは、このような目的につき鋭意研究
を行つた結果、このような目的を達成する光吸収
体としての顔料および染料の中から選択される少
なくとも一種とセルロイドの組合せを見い出し、
本発明をなすに至つた。 すなわち、本発明による光学的情報記録媒体は
基材と、この基材上に設けられた記録層とを有
し、この記録層にレーザー光を照射して記録層を
燃焼または変質させて記録点を形成することによ
つて情報を記録する光学的情報記録媒体におい
て、上記記録層がセルロイドと光吸収剤とによつ
て構成されていることを特徴としている。 上記光吸収剤としては公知の任意のものが使用
できるが、特に顔料が好ましく、顔料としては
0.6〜0.8mmの領域に吸収波長を持つものが好まし
い。 一般によく知られている顔料として、無機顔料
では緑、青、紫、系統色のものがよく、クロム
緑、酸化クロム録、ビリジアン、紺青、群青、コ
バルト青、マンガン紫、コバルト紫、等が例示さ
れる。有機顔料ではフタロシアニン−金属醋体の
一群が例示される。 これらの顔料は、記録光の照射により、記録光
を吸収して、光を熱に変換することによりピツト
を形成することが出来る。 上記基材は公知の任意の材料で作ることがで
き、アルミニウム、ステンレススチール等の金属
板、ガラス板、あるいはポリメチルメタクリレー
ト、ポリカーボネート等のプラスチツク板、さら
にはポリエステルフイルム等より成るテープであ
つてもよい。 本発明の特徴は記録層が光吸収剤を分散させた
セルロイドによつて構成されている点にある。 先ず、従来自己酸化性化合物として周知のニト
ロセルロースとセルロイドとの相違を説明する。
セルロイドはニトロセルロースを原料にして作ら
れるが、両者の特性は大きく相違し、一般に両者
は全く別のものとして扱われている。すなわちニ
トロセルロースは一般にアルコール類には溶解せ
ず、好溶剤はエステル類である。溶剤中に非溶媒
であるアルコールを添加する場合もあるが、これ
は塗膜特性を改良するためで、溶剤の主体はエス
テル類である。これに対し、セルロイドは一般に
チツソ含量(N%)が11前後のニトロセルロース
からアルコール置換によつて水を3%以下に除去
した後、例えばニトロセルロース2部に、シヨウ
ノウ1部をエタノール2部に溶解した溶液を加え
て熟成し、塊状になつたものをニーダーで〓和
(約3時間)し、濾過したものである。このセル
ロイドは一般のニトロセルロースと違つてアルコ
ール類に溶解する。 一般にセルロイドはニトロセルロースと樟脳
(カンフアー)の混合物であり、樟脳はセルロイ
ドの中で、可塑剤として作用しているといわれて
いる。しかし、同一粘度のニトロセルローズから
製造したセルロイドの同一濃度のアルコール溶液
粘度は、セルロイドに用いたと同量のニトロセル
ロースと樟脳をアルコールに溶解した場合の溶液
粘度とは著しく異なり、その粘度はセルロイドの
方がはるかに高い。 以上の説明から明らかなように、本発明で用い
るセルロイドは従来公知(例、特開昭58−166548
号)のニトロセルロースとは全く構成、効果が異
るということは理解できよう。 一方、光学的情報記録媒体の基板としてポリメ
チルメタクリレート、ポリカーボネート等のプラ
スチツクを用いた場合にはアルコール類以外の溶
剤、例えば、ケトン、エステル、芳香族炭化水
素、ハロゲン化炭化水素、有機酸によつて基板が
溶けてしまう。従つて、700A・程度の深さのトラ
ツク溝(グループ)が成形されたプラスチツク基
板を使用する場合にはアルコール以外の溶剤を用
いると上記グループが溶けてしまい、実用化でき
ない。これに対して、本発明によるセルロイドを
用いた場合には、セルロイドがアルコール類に溶
解するので、ポリメチルメタアクリレート、ポリ
カーボネートのようなプラスチツク基板上に塗布
しても、基板のグループを溶解することなく、グ
ループを完全に残して塗布することができる。ま
たセルロイド−アルコール溶液はニトロセルロー
ズ溶液に比べて、低い濃度でも非常に高粘度であ
り、例えば濃度が5%の場合、粘度はセルロイド
では110cps/20℃、ニトロセルロースでは
14cps/20℃である。そのために、セルロイド溶
液はニトロセルロース溶液に比べて、顔料を分散
させることが容易であり、溶液中に分散された無
機顔料ですら、容易に沈降してしまう事がない。
従つて、この溶液を塗布して、顔料分散の均一な
塗膜を得ることも容易となる。しかも、光を照射
して、ピツトを形成する場合にも、顔料−ニトロ
セルロース系よりも、顔料−セルロイド系の方
が、良好なピツトを形成することができ、特に無
機顔料系では、さらに顕著である。セルロイドと
顔料とは通常重量比で、1対0.1〜100の広範な量
比の中から、後述の所望の透過率及び反射率が得
られるように選択することができる。 上記セルロイド溶液は周知のスピンコーター、
バーコーター・デイプコーテイング、その他任意
の方法で基板上に形成でき、その膜厚は一般に
0.03〜2μm程度でよい。 また、上記セルロイド溶液にはこの他、他のポ
リマーないしオリゴマー、各種可塑剤、界面活性
剤、帯電防止剤、滑剤、難燃剤、安定剤、分散剤
等が含有されていてもよい。 光学的情報記録媒体の書込みまたは読取り方式
には反射光利用方式と透過光利用方式の2つがあ
り、反射光利用方式の場合には記録層側から光を
当てる表面読取り方式と基板側から光を当てる背
面読取り方式があるが、本発明は基板と反射膜を
適当に選択することによつていずれの方式にも適
用することができる。その他必要に応じて保護層
を設けることもできる。 本発明のセルロイド−光吸収剤より成る記録層
は従来公知のTe等の易蒸発性金属の薄膜層と積
層して用いることもできる。 基板がプラスチツクの場合には基板と記録層と
の間にアルミニウムのような金属層を介在させて
反射率を大きくするのが好ましい。 また、背面読取り方式の場合には基板と反対側
の記録層外表面上にガス透過性の反射層を形成す
るのが好ましい。このガス透過性反射層はアルミ
ニウムの蒸着によつて形成することができ、200
Å程度のアルミニウム蒸着膜は半透明であり、そ
の膜はH2O,CO,CO2,NO,NO2ガスを通過さ
せることができるので、レーザー光の照射によつ
て本発明のセルロイド−染料記録層は不完全燃焼
して黒化するが、ガスは上記薄膜を通つて放出さ
れる。しかし、レーザー照射部に見掛上の形状変
形はほとんどない。こうして変質(炭化)したセ
ルロイドは耐久性、特に、光と熱に対する安定性
が非常に優れている。 さらに、本発明は一枚の基板の両面に形成して
両面を記録面とする場合、あるいは基板の片面の
みに記録層を形成した後、記録層を内側にして2
枚を貼合せて使用する場合のいずれにでも適用で
きる。 以下、本発明を特殊実施例により説明するが、
本発明はこれにのみ限定されるものではない。 実施例 1 下記組成の溶液(A)を調製し、これを直径5イン
チのアルミ製デイスク基板1上に、塗膜2の厚さ
0.2μmになるように、スピンコート塗布し、直ち
に60℃で10分間乾燥させた(第1図)。なお、光
吸収体の無機顔料、紺青はKFe〔Fe(CN)6〕であ
る。 溶液(A)セルロイド(ダイセル製No.5.11) 紺青ペースト(ダイセル製No.SB) メチルアルコール n−ブチルアルコール0.2g 1.0g 60.0g 40.0g こうして得られた記録媒体の入射角60゜の鏡面
反射率は44.2%であつた。また、この溶液(A)をポ
リカーボネート基板に塗布して得た記録媒体の各
波長における光吸収特性を測したところ、第5図
のような光線透過特性が得られた。600〜800nm
に強い光吸収帯が見られる。これを波長633nm、
出力10mwのHe−Neレーザーのパルス光(パル
ス幅1μsec)を1.6〓〓nのスポツトに集光して照射し
たところ、1〓〓nのピツト5が得られた。このよう
にして作成した、アルミ基板上に塗設した媒体に
つき、これを1800r.p.mで回転させながら、半導
体レーザー記録光(波長、830nm)を1〓〓nに集光
し、(集光部出力10mW)、1MHzの周波数で、パ
ルス列状に照射した。これにより、媒体にはピツ
トがトラツク状に形成された。このピツト5の形
状は第1図に示すように良好なものであつた。 この後、読出し光として、半導体レーザー光、
(波長830nm)を、1μmφに集光し(集光部
1mW)、これを連続光として照射しピツト形成ず
み基板を1800r.p.mで回転させ、ピツトとノン・
ピツトの鏡面反射光によりS/N比を測定した。
さらに、ピツト形成後の媒体に、読み出し光を連
続5分間照射して、S/N比の再生劣化を測定し
た。 これとは別に、本媒体を太陽光の下で、1ケ月
間放置し、その後書き込みを行い、S/N比の測
定を行い、耐光性を評価した。また、本媒体を
150℃の条件に5分間置いた後、書き込みを行い、
S/N比の測定を行い、耐熱性を評価した。これ
らの結果を第1表に示す。 比較例 1 次の組成の溶液(B)を調製し、実施例1と同様に
処理した。 溶液(B)ニトロセルロース (IPA30%含、ダイセルSS1/8) 紺青ペースト(ダイセル製SB) メチルアルコール n−ブチルアルコール 0.3g 1.0g 60.0g 40.0g 得られたピツト6の形状は第2図に示すように
ピツトの中心部がアルミ面であり、その周辺部は
塗膜面で、さらに、その周辺は盛り上がつてい
た。 尚、記録媒体の60゜鏡面反射率は49.0%であつ
た。 この比較例1の性能を実施例1と同じ方法で測
定した結果は第1表に示してある。
(Industrial Application Field) The present invention relates to an optical information recording medium, and in particular, information is recorded by drilling minute pits in a recording layer or forming minute altered points using a laser beam. So-called heat mode DRAW
This relates to recording media for (Prior Art) The optical information recording method has the advantage that there is no wear and tear deterioration because the writing head or reading head and the recording medium are not in contact with each other, and various recording media have been developed to date. Among such optical recording media, heat mode optical recording media are being actively developed because they do not require image processing in a darkroom. This heat mode optical recording medium is an optical recording medium that uses recording light as heat. Usually, a part of the medium is melted and evaporated using recording light such as a laser.
Writing is performed by forming small holes called pits, and reading is performed by reading out these pits and detecting them with light. In such a pit-type medium, a recording layer containing a self-oxidizing compound such as nitrocellulose and a light absorber is provided on a substrate, and the recording layer is formed by decomposing the nitrocellulose or the like. Among the above light absorbers, cyanine dyes are typically used. However, when a cyanine dye is contained in the recording layer, the stability against heat and light is low, and the storage stability is poor. For example, if you store it in a state where it is exposed to indoor light, you will not be able to write to it. Compared to cyanine dye systems, those using tetrahydrocholine or cocol complexes as light absorbers have significantly improved durability of so-called recording media (Japanese Patent Application Laid-Open No. 197088/1988), but the light resistance is However, it has not yet reached a practical level, and repeated irradiation with readout light causes so-called reproduction deterioration, resulting in a deterioration of the S/N ratio. In addition, especially with systems in which the recording layer is formed from a dye and a thermoplastic resin, once formed pits can be erased with erasing light or heat and rewritten. Characteristics deteriorate. Furthermore, the writing sensitivity and reading S/N ratio are also insufficient. Generally, the recording layer contains a self-oxidizing compound or a thermoplastic resin together with the above-mentioned dye,
Pits are formed by burning self-oxidizing compounds, melting thermoplastic resins, and forming deformed spots. Further, these compounds and resins serve to improve the physical properties of the recording film. Nitrocellulose has conventionally been generally used as the self-acidic compound. Nitrocellulose, which is used in optical information recording media, is insoluble in alcohols, so the recording media coating is created by dissolving it in an organic solvent other than alcohol, applying it to the substrate, and then removing the solvent by evaporation. It is deposited and formed on the substrate. However, the substrate is polymethyl methacrylate,
In the case of molded plastic substrates such as polycarbonate, the solvents for nitrocellulose, i.e. ketones, esters, and halogenated hydrocarbons, which are generally known as good solvents for dyes, can easily dissolve molded plastic substrates. It will dissolve. For this reason, for example, in the case of optical recording disks, the grooves of the plastic disk substrate are also dissolved, making it impossible to apply a recording film with the grooves completely intact. It was hot. In addition, in the case of low-viscosity nitrocellulose that dissolves in alcohols, the solution viscosity is low, so once the pigment is dispersed in the solution, it immediately settles, so the pigment is in a good dispersion state. It was not possible to obtain a coating film, that is, a recording medium. On the other hand, when an alcohol-soluble dye is used, a coating film with good appearance can be obtained, but this coating film lacks toughness and therefore has a defect of poor durability. According to experiments conducted by the present inventors, although dye-nitrocellulose coatings can form good pits, it is difficult to form good pits with pigment-nitrocellulose coatings. - It was not possible to form satisfactory pits with nitrocellulose. (Object of the Invention) Therefore, an object of the present invention is to provide a well-balanced heat mode optical information recording medium with excellent storage stability and high writing and reading sensitivity or S/N ratio. . As a result of intensive research into this objective, the present inventors have discovered a combination of celluloid and at least one selected from pigments and dyes as a light absorber that achieves this objective.
The present invention has now been accomplished. That is, the optical information recording medium according to the present invention has a base material and a recording layer provided on the base material, and the recording layer is irradiated with a laser beam to burn or change the quality of the recording layer to create recording points. An optical information recording medium in which information is recorded by forming an optical information recording medium is characterized in that the recording layer is composed of celluloid and a light absorbing agent. Any known light absorbing agent can be used, but pigments are particularly preferred;
It is preferable to have an absorption wavelength in the range of 0.6 to 0.8 mm. Generally well-known pigments include inorganic pigments such as green, blue, purple, and series colors, such as chrome green, chromium oxide, viridian, deep blue, ultramarine, cobalt blue, manganese violet, cobalt violet, etc. be done. Examples of organic pigments include the phthalocyanine-metal matrix group. These pigments can form pits by absorbing the recording light and converting the light into heat when irradiated with the recording light. The base material can be made of any known material, and may be a metal plate such as aluminum or stainless steel, a glass plate, a plastic plate such as polymethyl methacrylate or polycarbonate, or even a tape made of polyester film. good. A feature of the present invention is that the recording layer is composed of celluloid in which a light absorbing agent is dispersed. First, the difference between nitrocellulose and celluloid, which are conventionally known as self-oxidizing compounds, will be explained.
Celluloid is made from nitrocellulose, but the properties of the two are very different, and they are generally treated as completely different things. That is, nitrocellulose generally does not dissolve in alcohols, and esters are preferred solvents. Alcohol, which is a non-solvent, is sometimes added to the solvent, but this is to improve the properties of the coating film, and the main component of the solvent is esters. On the other hand, celluloid is generally made from nitrocellulose, which has a nitrogen content (N%) of around 11, by removing water to 3% or less by alcohol substitution. The dissolved solution was added and aged, and the resulting lumps were mixed in a kneader (about 3 hours) and filtered. Unlike ordinary nitrocellulose, this celluloid dissolves in alcohol. Generally, celluloid is a mixture of nitrocellulose and camphor, and camphor is said to act as a plasticizer in celluloid. However, the viscosity of a solution of celluloid made from nitrocellulose with the same viscosity in alcohol at the same concentration is significantly different from the viscosity of a solution when the same amount of nitrocellulose and camphor used for celluloid are dissolved in alcohol; is much more expensive. As is clear from the above explanation, the celluloid used in the present invention is known in the art (for example, Japanese Patent Application Laid-Open No. 58-166548
It is easy to understand that the composition and effects are completely different from nitrocellulose (No.). On the other hand, when plastics such as polymethyl methacrylate and polycarbonate are used as substrates for optical information recording media, solvents other than alcohols such as ketones, esters, aromatic hydrocarbons, halogenated hydrocarbons, and organic acids may be used. The board will melt. Therefore, when using a plastic substrate on which track grooves (groups) with a depth of about 700 A. are formed, if a solvent other than alcohol is used, the groups will dissolve, making it impossible to put it to practical use. On the other hand, when the celluloid according to the present invention is used, since the celluloid dissolves in alcohol, even if it is applied onto a plastic substrate such as polymethyl methacrylate or polycarbonate, it will not dissolve the groups on the substrate. It is possible to leave the group completely intact and apply it. Furthermore, celluloid-alcohol solutions have a much higher viscosity than nitrocellulose solutions even at low concentrations; for example, at a concentration of 5%, celluloid has a viscosity of 110 cps/20°C, while nitrocellulose has a viscosity of 110 cps/20°C.
14cps/20℃. Therefore, it is easier to disperse pigments in a celluloid solution than in a nitrocellulose solution, and even inorganic pigments dispersed in the solution do not easily settle.
Therefore, it is easy to apply this solution to obtain a coating film with uniform pigment dispersion. Furthermore, even when irradiated with light to form pits, pigment-celluloid systems can form better pits than pigment-nitrocellulose systems, and this is especially true for inorganic pigment systems. It is. Celluloid and pigment are usually used in a weight ratio, and can be selected from a wide range of 1:0.1 to 100 so as to obtain desired transmittance and reflectance as described below. The above celluloid solution is coated using a well-known spin coater.
It can be formed on the substrate by bar coater, dip coating, or any other method, and the film thickness is generally
It may be about 0.03 to 2 μm. In addition, the celluloid solution may contain other polymers or oligomers, various plasticizers, surfactants, antistatic agents, lubricants, flame retardants, stabilizers, dispersants, and the like. There are two methods for writing or reading optical information recording media: a method that uses reflected light and a method that uses transmitted light. In the case of the method that uses reflected light, there is a surface reading method that applies light from the recording layer side and a method that uses light from the substrate side. There is a back-side reading method in which the light is reflected, but the present invention can be applied to either method by appropriately selecting the substrate and reflective film. In addition, a protective layer may be provided as necessary. The recording layer made of the celluloid-light absorbing material of the present invention can also be used by laminating it with a conventionally known thin film layer of an easily evaporable metal such as Te. When the substrate is made of plastic, it is preferable to interpose a metal layer such as aluminum between the substrate and the recording layer to increase the reflectance. Further, in the case of a back reading method, it is preferable to form a gas permeable reflective layer on the outer surface of the recording layer on the side opposite to the substrate. This gas-permeable reflective layer can be formed by vapor deposition of aluminum,
The aluminum vapor-deposited film with a thickness of about 100 Å is translucent and allows H 2 O, CO, CO 2 , NO, and NO 2 gases to pass through it. The recording layer burns incompletely and becomes black, but gas is released through the thin film. However, there is almost no apparent shape deformation in the laser irradiated area. Celluloid that has been altered (carbonized) in this way has excellent durability, especially stability against light and heat. Furthermore, the present invention can be used when forming a recording layer on both sides of a single substrate so that both sides serve as recording surfaces, or after forming a recording layer on only one side of the substrate, two layers are formed with the recording layer inside.
It can be applied to any case where sheets are pasted together. Hereinafter, the present invention will be explained using special examples.
The present invention is not limited to this. Example 1 A solution (A) having the following composition was prepared, and it was applied on an aluminum disk substrate 1 with a diameter of 5 inches to a thickness of a coating film 2.
It was spin-coated to a thickness of 0.2 μm and immediately dried at 60° C. for 10 minutes (Figure 1). The inorganic pigment of the light absorber, dark blue, is KFe [Fe(CN) 6 ]. Solution (A) Celluloid (No. 5.11 manufactured by Daicel) Navy blue paste (No. SB manufactured by Daicel) Methyl alcohol n-butyl alcohol 0.2 g 1.0 g 60.0 g 40.0 g Specular reflectance of the recording medium thus obtained at an incident angle of 60° was 44.2%. Furthermore, when the light absorption characteristics at each wavelength of a recording medium obtained by coating this solution (A) on a polycarbonate substrate were measured, the light transmission characteristics as shown in FIG. 5 were obtained. 600~800nm
A strong optical absorption band can be seen. This has a wavelength of 633nm,
When the pulsed light (pulse width 1 μsec) of a He-Ne laser with an output of 10 mw was focused on a spot of 1.6〓〓n and irradiated, a pit 5 of 1〓〓n was obtained. For the medium coated on the aluminum substrate created in this way, while rotating it at 1800 rpm, semiconductor laser recording light (wavelength, 830 nm) is focused to 1〓〓n (concentrating part It was irradiated in the form of a pulse train at a frequency of 1MHz (output 10mW) and a frequency of 1MHz. As a result, track-shaped pits were formed in the medium. The shape of the pit 5 was good as shown in FIG. After this, semiconductor laser light is used as readout light,
(wavelength 830nm) is focused to 1μmφ (condensing section
1 mW), this is irradiated as a continuous light, the pit-formed substrate is rotated at 1800 rpm, and the pits and non-pits are separated.
The S/N ratio was measured using specularly reflected light from the pit.
Furthermore, readout light was continuously irradiated onto the medium after the pits were formed for 5 minutes to measure reproduction deterioration of the S/N ratio. Separately, this medium was left under sunlight for one month, after which writing was performed, the S/N ratio was measured, and the light resistance was evaluated. Also, this media
After leaving it at 150℃ for 5 minutes, write on it.
The heat resistance was evaluated by measuring the S/N ratio. These results are shown in Table 1. Comparative Example 1 A solution (B) having the following composition was prepared and treated in the same manner as in Example 1. Solution (B) Nitrocellulose (contains 30% IPA, Daicel SS1/8) Prussian paste (SB manufactured by Daicel) Methyl alcohol n-butyl alcohol 0.3g 1.0g 60.0g 40.0g The shape of the resulting pit 6 is shown in Figure 2. As you can see, the center of the pit was the aluminum surface, the periphery was the painted surface, and the area around it was raised. The 60° specular reflectance of the recording medium was 49.0%. The performance of Comparative Example 1 was measured using the same method as Example 1, and the results are shown in Table 1.

【表】 実施例 2 光吸収体として、下記構造式()のフタロシ
アニン銅誘導体(油溶染料)を用い、次の組成の
溶液(C)を調製し、これを直径5インチの、300Å
のアルミ薄膜14を真空蒸着により、塗設してあ
るポリカーボネート樹脂製の光デイスク基板10
上に、塗膜12の厚味が0.2μmになるように、ス
ピンコート塗布し、直ちに60℃で10分間乾燥させ
た。
[Table] Example 2 Using a phthalocyanine copper derivative (oil-soluble dye) with the following structural formula () as a light absorber, a solution (C) with the following composition was prepared, and this was applied to a 5-inch diameter, 300 Å
An optical disk substrate 10 made of polycarbonate resin is coated with a thin aluminum film 14 of 14 by vacuum evaporation.
The coating film 12 was spin-coated on top to a thickness of 0.2 μm, and immediately dried at 60° C. for 10 minutes.

【化】 置換基は3位 溶液(C)セルロイド(ダイセル製No.5.11) フタロシアニン銅誘導体 メチルアルコール n−ブチルアルコール0.2g 1.0g 60.0g 40.0g こうして得た記録媒体の鏡面反射率を測定する
と49.0%であつた。またこの溶液(C)をポリカーボ
ネート基板に塗布して得た記録媒体の各波長にお
ける光吸収特性を測したところ、第6図のような
光線透過特性が得られた。600〜700nmに強い光
吸収帯が見られる。これを波長633nm、出力
10mWのHe−Ne−レーザーパルス光(パルス幅
0.5μsec)1.6〓〓nのスポツトに集光して照射したと
ころ、1〓〓nの良好な型のピツトが形成された。走
査電顕で観察した。その断面図を第3図に示す。 このようにして作成した、媒体につき、これを
1800rpmで回転させ乍ら、He−Neレーザー記録
光(633nm)を1〓〓nに集光し(集光部出力10mW)
1MHzの周波数で、パルス列状に照射した。これ
により媒体にはピツトがトラツク状に形成され
た。その後、読み出し光として、He−Neレーザ
ー(633nm)を1〓〓nに集光し、(集光部1mW)、こ
れを連続光として照射し、ピツト形成ずみ基板を
1800rpmで回転させ、ピツトとノン・ピツトの鏡
面反射光によりS/N比を測定した。結果を第2
表に示す。また実施例1と同じ方法で測定した、
再生劣化、耐光性、耐熱性のS/N比も第2表に
示した。
[C] The substituent is 3-position solution (C) celluloid (Daicel No. 5.11) Phthalocyanine copper derivative methyl alcohol n-butyl alcohol 0.2g 1.0g 60.0g 40.0g The specular reflectance of the recording medium thus obtained was measured to be 49.0 It was %. Furthermore, when the light absorption characteristics at each wavelength of a recording medium obtained by coating this solution (C) on a polycarbonate substrate were measured, the light transmission characteristics as shown in FIG. 6 were obtained. A strong optical absorption band is seen between 600 and 700 nm. This has a wavelength of 633nm and output
10mW He−Ne− laser pulse light (pulse width
When the light was focused and irradiated onto a spot of 1.6〓〓n (0.5μsec), a well-shaped pit of 1〓〓n was formed. Observation was made using a scanning electron microscope. A sectional view thereof is shown in FIG. For the media created in this way, use this
While rotating at 1800 rpm, He-Ne laser recording light (633 nm) is focused at 1〓〓 n (focusing section output 10 mW).
Irradiation was performed in the form of a pulse train at a frequency of 1MHz. As a result, pits were formed in the medium in the form of tracks. After that, as readout light, a He-Ne laser (633 nm) is focused to 1〓〓n (condensing part 1mW), and this is irradiated as continuous light to illuminate the pit-formed substrate.
It was rotated at 1800 rpm and the S/N ratio was measured using specularly reflected light from pits and non-pits. Second result
Shown in the table. In addition, it was measured using the same method as in Example 1.
Table 2 also shows the S/N ratio of reproduction deterioration, light resistance, and heat resistance.

【表】 実施例 3 光吸収体として、アジン系油溶染料(Oriont
Spirit Black SB〔オリエント〕、青味の黒)を用
い、次の組成の溶液(D)を調製し、これを直径5イ
ンチの、700Åのプレグルーブ(溝)付き、ポリ
カーボネート樹脂製の光デイスク基板10上に塗
膜12の厚味が0.2μmになるように、スピンコー
ト塗布し、直ちに60℃で10分間乾燥させた。 溶液(D)セルロイド(ダイセル製No.5.11) メタノール n−ブタノール BlackSB0.5g 60.0g 40.0g 2.0g 次に、このコーテイング膜12上に膜厚が200
Åになるように、Al(アルミ)14を真空蒸着し
た。こうして得た記録媒体の鏡面反射率を基板側
から測定すると、38.4%であつた。またこの溶液
(D)を別のポリカーボネート基板に塗布して得られ
た記録媒体の各波長における光吸収特性を測定し
たところ、第7図のような光線透過特性が得られ
た。600〜700nmにゆるやかな光吸収帯が見られ
る。これを、波長633nm、出力10mW、のHe−
Neレーザーのパルス光(パルス幅0.5μsec)を
1.6〓〓nのスポツトに集光して、背面側(ポリカー
ボネート基板側)から照射したところ、1〓〓nの黒
色に変化した良好な形のピツトが形成された。走
査電顕で観察したその断面図を第4図に示した。 このようにして作成した、媒体につき、これを
1800rpmで回転させたら、He−Neレーザー記録
光(633nm)を1〓〓nに集光し、(集光部出力
10mW)1MHzの周波数で、背面(基板)側から
パルス列状に照射した。これにより媒体にはピツ
トがトラツク状に形成された。その後、読み出し
光として、He−Neレーザー(633nm)を1〓〓n
集光し、(集光部1mW)、これを連続光として、
背面(基板)側から照射し、ピツト形成ずみ基板
を1800rpmで回転させ、ピツトとノンピツトの鏡
面反射光によりS/N比を測定した。結果を第3
表に示す。また、実施例1と同じ方法で測定し
た、再生劣化、耐光性、耐熱性のS/N比も第3
表に示した。
[Table] Example 3 As a light absorber, azine-based oil-soluble dye (Oriont
Prepare a solution (D) with the following composition using Spirit Black SB [Orient], bluish black), and apply it to a polycarbonate resin optical disk substrate with a diameter of 5 inches and a pregroove of 700 Å. The coating film 12 was applied by spin coating onto the coating film 10 so that the thickness was 0.2 μm, and immediately dried at 60° C. for 10 minutes. Solution (D) Celluloid (No. 5.11 manufactured by Daicel) Methanol n-butanol BlackSB 0.5g 60.0g 40.0g 2.0g Next, on this coating film 12, a film thickness of 200
Al (aluminum) 14 was vacuum-deposited to a thickness of Å. The specular reflectance of the recording medium thus obtained was 38.4% when measured from the substrate side. Also this solution
When the light absorption characteristics at each wavelength of the recording medium obtained by coating (D) on another polycarbonate substrate were measured, the light transmission characteristics as shown in FIG. 7 were obtained. A gentle optical absorption band is seen between 600 and 700 nm. This is He− with a wavelength of 633 nm and an output of 10 mW.
Ne laser pulse light (pulse width 0.5μsec)
When the light was focused on a spot of 1.6〓〓n and irradiated from the back side (polycarbonate substrate side), a well-shaped pit with a black color of 1〓〓n was formed. The cross-sectional view observed with a scanning electron microscope is shown in FIG. For the media created in this way, use this
After rotating at 1800 rpm, the He-Ne laser recording light (633 nm) is focused at 1〓〓 n ,
It was irradiated in a pulse train from the back (substrate) side at a frequency of 1MHz (10mW). As a result, pits were formed in the medium in the form of tracks. After that, as readout light, a He-Ne laser (633 nm) is focused at 1〓〓 n (focusing section 1mW), and this is converted into continuous light.
Irradiation was performed from the back (substrate) side, the pit-formed substrate was rotated at 1800 rpm, and the S/N ratio was measured using specularly reflected light from pits and non-pits. 3rd result
Shown in the table. In addition, the S/N ratio of playback deterioration, light resistance, and heat resistance measured using the same method as in Example 1 was also the third highest.
Shown in the table.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による記録層をアルミ板上に形
成した実施例の概念的断面図で、ピツト形状は顕
微鏡でみたもの。第2図は従来公知のニトロセル
ロースを用いた比較例の第1図と同様な概念的断
面図。第3図は本発明による記録層をアルミ反射
層を介してプラスチツク板上に形成した実施例の
概念的断面図。第4図は背面読出し方式に本発明
を適用した実施例の概念的断面図で、この図は基
板上に形成したグルーブ上に記録点を形成した場
合を示している。第5〜7図は本発明による光学
的記録媒体の光線透過率を波長に対して描いた
図。 図中符号、1,10…基板、2,12…記録
層、14…反射層、15…記録点。
FIG. 1 is a conceptual cross-sectional view of an embodiment in which a recording layer according to the present invention is formed on an aluminum plate, and the pit shape is as seen with a microscope. FIG. 2 is a conceptual cross-sectional view similar to FIG. 1 of a comparative example using conventionally known nitrocellulose. FIG. 3 is a conceptual cross-sectional view of an embodiment in which a recording layer according to the present invention is formed on a plastic plate with an aluminum reflective layer interposed therebetween. FIG. 4 is a conceptual cross-sectional view of an embodiment in which the present invention is applied to a rear readout system, and this figure shows a case where recording points are formed on grooves formed on a substrate. 5 to 7 are diagrams depicting the light transmittance of the optical recording medium according to the present invention versus wavelength. Symbols in the figure: 1, 10...Substrate, 2, 12...Recording layer, 14...Reflection layer, 15...Recording point.

Claims (1)

【特許請求の範囲】 1 基材と、この基材上に設けられた記録層とを
有し、この記録層にレーザー光を照射して記録層
を燃焼または変質させて記録点を形成することに
よつて情報を記録する光学的情報記録媒体におい
て、 上記記録層がセルロイドと光吸収剤とによつて
構成されていることを特徴とする光学的情報記録
媒体。 2 上記光吸収剤が、顔料および染料によつて構
成される群の中から選択される少なくとも一種で
ある特許請求の範囲第1項に記載の光学的情報記
録媒体。 3 上記基材がプラスチツク材料によつて作られ
ている特許請求の範囲第1項に記載の光学的情報
記録媒体。 4 上記記録層と上記基板との間に金属層が介在
している特許請求の範囲第1項記載の光学的情報
記録媒体。 5 上記金属層がアルミニウムの薄膜である特許
請求の範囲第4項に記載の光学的情報記録媒体。 6 上記基板とは反対側の上記記録層の外表面上
に金属層が形成されている特許請求の範囲第1項
に記載の光学的情報記録媒体。 7 上記金属層がアルミニウムの薄膜である特許
請求の範囲第6項に記載の光学的情報記録媒体。
[Claims] 1. A device comprising a base material and a recording layer provided on the base material, and irradiating the recording layer with a laser beam to burn or change the quality of the recording layer to form recording points. What is claimed is: 1. An optical information recording medium on which information is recorded using a method, wherein the recording layer is composed of celluloid and a light absorbing agent. 2. The optical information recording medium according to claim 1, wherein the light absorber is at least one selected from the group consisting of pigments and dyes. 3. The optical information recording medium according to claim 1, wherein the base material is made of a plastic material. 4. The optical information recording medium according to claim 1, wherein a metal layer is interposed between the recording layer and the substrate. 5. The optical information recording medium according to claim 4, wherein the metal layer is a thin film of aluminum. 6. The optical information recording medium according to claim 1, wherein a metal layer is formed on the outer surface of the recording layer on the side opposite to the substrate. 7. The optical information recording medium according to claim 6, wherein the metal layer is a thin film of aluminum.
JP59037291A 1984-03-01 1984-03-01 Optical information-recording medium Granted JPS60183191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59037291A JPS60183191A (en) 1984-03-01 1984-03-01 Optical information-recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59037291A JPS60183191A (en) 1984-03-01 1984-03-01 Optical information-recording medium

Publications (2)

Publication Number Publication Date
JPS60183191A JPS60183191A (en) 1985-09-18
JPH0567437B2 true JPH0567437B2 (en) 1993-09-24

Family

ID=12493602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59037291A Granted JPS60183191A (en) 1984-03-01 1984-03-01 Optical information-recording medium

Country Status (1)

Country Link
JP (1) JPS60183191A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2969638B2 (en) * 1988-12-29 1999-11-02 ソニー株式会社 Optical recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102348A (en) * 1981-12-12 1983-06-17 Tdk Corp Optical recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102348A (en) * 1981-12-12 1983-06-17 Tdk Corp Optical recording medium

Also Published As

Publication number Publication date
JPS60183191A (en) 1985-09-18

Similar Documents

Publication Publication Date Title
US5491003A (en) Method for manufacturing an optical recording film composed of a metal and an oxide which can undergo an oxidation-reduction reaction upon exposure to a laser beam
JP3451752B2 (en) Optical recording medium
EP0289352A2 (en) Optical recording medium and process for making an optical recording medium
JPS6290291A (en) Optical recording medium
US4845515A (en) Recording material utilizing multilayer Bi/Se film
JPS62173294A (en) Optical information recording medium
JPH0567437B2 (en)
EP0294969B1 (en) Recording medium for optical data storage
JPS61268487A (en) Photo-recording medium
JPS59104996A (en) Optical recording medium
JPS6357290A (en) Optical recording medium
JPH0378074B2 (en)
KR940008406B1 (en) Optical recording medium & process for producing the same
JPS6357288A (en) Optical recording medium
JPS6357287A (en) Optical recording medium
JPH0322224A (en) Optical information recording method and information recording medium
Matsui Optical recording systems
JPS62207686A (en) Optical information-recording medium
JPS62207685A (en) Optical information-recoding medium
JPS62187091A (en) Optical information recording medium
JPH01253479A (en) Optical recording medium
JPS6362794A (en) Optical recording medium
JPS62201288A (en) Light information recording medium
JPS62201289A (en) Light information recording medium
JPS615441A (en) Optical recording and reading out method