JPH0566935B2 - - Google Patents

Info

Publication number
JPH0566935B2
JPH0566935B2 JP13109385A JP13109385A JPH0566935B2 JP H0566935 B2 JPH0566935 B2 JP H0566935B2 JP 13109385 A JP13109385 A JP 13109385A JP 13109385 A JP13109385 A JP 13109385A JP H0566935 B2 JPH0566935 B2 JP H0566935B2
Authority
JP
Japan
Prior art keywords
isophorone
crude
distillation
liquid
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13109385A
Other languages
Japanese (ja)
Other versions
JPS61289055A (en
Inventor
Kozo Kawahashi
Giichi Shimada
Masaharu Uragami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP13109385A priority Critical patent/JPS61289055A/en
Publication of JPS61289055A publication Critical patent/JPS61289055A/en
Publication of JPH0566935B2 publication Critical patent/JPH0566935B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、イソホロンの精製方法に関するも
のである。イソホロンはアセトンのアルカリ縮合
により得られることは公知である。しかし、この
場合、イソホロンの他に二次生成物が生じ、その
うちのあるもの、例えばメシチルオキシドは蒸溜
により容易に除去し得るが、他のものはイソホロ
ンからの分離が困難な沸点を有している。特にイ
ソホロンより僅かに揮発性を有し、蒸溜による分
離が非常に困難な化合物であるイソホロンの異性
体のβ−イソホロンが存在する。 この化合物は、黄色に着色しており、商品とし
て価値のある無色のイソホロンを得ることができ
ない。又、この物質の存在により貯蔵中の黄色の
漸進的な増大及び酸度の増加が促進される。 従つて、この2次生成物を除去し、無色澄明
で、かつ、これらの性質を貯蔵中も失わない製品
イソホロンを得る方法を開発することが要求され
ている。 本発明は、この要求に十分応えることができる
簡便、かつ実際的な方法を提供するものである。 (従来技術) 特開昭52−51342号明細書には、反応蒸溜塔底
部から得たイソホロン粗液中に存在するアルカリ
触媒を中和するために無機の強酸を添加し、PHを
5から9、好ましくは6.5から7.5の範囲内に押え
ることにより、精製蒸溜中のβ−イソホロンの生
成を抑えて、最終生成物の純度を向上する方法が
記載されている。 しかし、この方法では、中和に伴う無機塩の析
出による配管の詰まりを生じる。この欠点は水洗
による塩の除去により避け得るが、その為に処理
工程が多くなり、処理は極めて煩雑なものとな
る。又、無機酸の添加による機器腐食の問題もあ
る。 特開昭54−115350号明細書にはイソホロン粗
液、イソホロン粗液から低沸点成分であるアセト
ンと水を除去した粗液、イソホロン粗液から触媒
であるアルカリ物質を除去した粗液、又は製品イ
ソホロンを強酸性陽イオン交換樹脂を用い80から
120℃の温度で処理を施し、イオン交換樹脂を含
んでいる排液をアルカリ性薬剤で中和、水洗した
後、減圧蒸溜することにより無色で、かつ安定な
イソホロンを製造する方法が記載されている。 しかし、この方法では、イオン交換樹脂で処理
した後の排出処理液をアルカリ性薬剤で中和し、
中和した混合物に緩衝剤を加え、水を用いて傾斜
させて洗浄する必要があり、処理工程が煩雑とな
り、経済性も損われ、実際的とは言い難い。 (技術的課題) 本発明者等は、これ等の問題点に鑑みて、鋭
意、実験・検討を重ね、蒸溜前のイソホロン粗液
中に残存するアルカリ物質がβ−イソホロンの副
生に重要な影響を及ぼす事実を見い出し、本発明
へと結実させた。 即ち、実験結果は第1表の通り。
(Industrial Application Field) This invention relates to a method for purifying isophorone. It is known that isophorone can be obtained by alkaline condensation of acetone. However, in this case, secondary products are formed in addition to isophorone, some of which, for example mesityl oxide, can be easily removed by distillation, while others have boiling points that make separation from isophorone difficult. ing. In particular, there is an isophorone isomer, β-isophorone, which is slightly more volatile than isophorone and is a compound that is very difficult to separate by distillation. This compound is colored yellow, making it impossible to obtain colorless isophorone of commercial value. The presence of this substance also promotes a gradual increase in yellow color and an increase in acidity during storage. Therefore, there is a need to develop a method to remove this secondary product and obtain a product isophorone that is clear and colorless and does not lose these properties during storage. The present invention provides a simple and practical method that can fully meet this need. (Prior art) In JP-A-52-51342, in order to neutralize the alkali catalyst present in the isophorone crude liquid obtained from the bottom of the reaction distillation column, an inorganic strong acid is added to adjust the pH from 5 to 9. , preferably within the range of 6.5 to 7.5, thereby suppressing the production of β-isophorone during purification distillation and improving the purity of the final product. However, in this method, pipes become clogged due to precipitation of inorganic salts accompanying neutralization. This drawback can be avoided by removing the salt by washing with water, but this increases the number of processing steps and makes the processing extremely complicated. There is also the problem of equipment corrosion due to the addition of inorganic acids. JP-A No. 54-115350 describes crude isophorone liquid, crude liquid obtained by removing low boiling point components acetone and water from crude isophorone liquid, crude liquid or products obtained by removing alkali substances as catalysts from crude isophorone liquid. Isophorone from 80% using strongly acidic cation exchange resin
It describes a method for producing colorless and stable isophorone by treating it at a temperature of 120°C, neutralizing the waste liquid containing ion exchange resin with an alkaline agent, washing it with water, and then distilling it under reduced pressure. . However, in this method, the discharged treated liquid after being treated with an ion exchange resin is neutralized with an alkaline chemical.
It is necessary to add a buffer to the neutralized mixture and wash it by tilting it with water, which complicates the treatment process and impairs economic efficiency, making it difficult to say that it is practical. (Technical Issue) In view of these problems, the present inventors have conducted extensive experiments and studies, and have determined that the alkaline substances remaining in the crude isophorone solution before distillation are important for the by-product of β-isophorone. We have discovered a fact that has an impact, and have culminated in the present invention. That is, the experimental results are as shown in Table 1.

【表】 普通、アセトンのアルカリ触媒によるアルドー
ル縮合で合成されたイソホロン粗液中の未反応の
アセトンは回収され、分液分離した後に蒸溜精製
し、イソホロンが得られる。このとき、アルカリ
物質は水溶液として分液分離されるが油層中にア
ルカリ物質が残存し、蒸溜塔内にアルカリ物質が
混入するため、蒸溜中にイソホロンが異性化して
β−イソホロンとなるものと推定される。そし
て、われわれの技術思想の基礎はここに存する。 (問題点を解決するための手段) ところで、本発明の方法は、アセトンのアルカ
リ縮合によつて得られたイソホロン粗液(油層)
を室温で弱酸性陽イオン交換樹脂に接触させて、
処理したイソホロン中の残存アルカリ物質濃度を
20pm以下とした後、減圧蒸溜することを特徴と
するイソホロンの精製方法である。 本発明で処理される原料は、アセトンのアルカ
リ触媒によるアルドール縮合反応器から流出する
反応混合物から、先ず未反応のアセトン、次いで
大部分の反応水を除去したイソホロン粗液と呼ば
れる有機層(油層)が対象となる。 本発明で使用される弱酸性陽イオン交換樹脂
は、イソホロンに対する耐溶剤性に秀れ、溶液中
のナトリウム等のアルカリイオンを吸着する樹脂
であれば使用し得る。 ここで、強酸性陽イオン交換樹脂は目的とする
イソホロンの分解を促がすので、好ましくない。
又、この弱酸性陽イオン交換樹脂(H型)は再生
処理の容易な利点もある。 例えば、三菱化成社のダイヤイオンWK10、ダ
イヤイオンWK11、ダイヤイオンWK20、ロー
ム・アンド・ハース社のアンバーライトIRC−
50、アンバーライトIRC−75、アンバーライト
IRC−84、ダウケミカル社からダウエツクスCCR
−2の商品名で市販されている樹脂を用いて本発
明を実施し得るが、もちろん、この名称の樹脂に
限定されるものではなく、他の同様な特性を有す
るものは、いずれも使用し得る。 イオン交換樹脂の使用量は、単位時間に処理す
べきイソホロン粗液の量によつて決まるものであ
り、通常イソホロン粗液のイオン交換樹脂層の滞
留時間が0.003時間から0.30時間、好ましくは0.03
時間から0.15時間の範囲から選ばれる。 処理温度は通常、室温(20〜50℃)から選ばれ
る。ここで50℃以上の高温では使用するイオン交
換樹脂の耐用性、更には目的とするイソホロンの
安定性に不安があり、適当でない。操作方法は固
定床あるいは移動床いずれの方式も採用し得る。 次いで、上記処理を施した該油層は公知の減圧
蒸溜に付される。操作方法はバツチあるいは脱低
沸に継ぐ脱高沸の連続、いずれの方式も採用で
き、例えばバツチ蒸溜操作では減圧15〜30Torr、
塔段20〜30N及び還流比RR=2〜4程度が適当
である。 (発明の効果) 本発明によるイソホロン粗液(油層)の処理を
施し、油層中のアルカリ物質濃度は許容限度まで
除去すると、後続の蒸溜中にβ−イソホロンの生
成は認められず、無色で、かつ安定な製品イソホ
ロンが得られる。 (実施例) 以下、本発明の方法を、実施例及び比較例を挙
げてさらに詳しく説明する。 実施例 1 A イオン交換処理 処理原料はアセトンのアルカリ縮合から得られ
たイソホロン粗液(油層)(組成は蒸溜前=仕込
液に同じ)を対象とした。 ダイヤイオンWK11(三菱化成社商品名)を充
填して容積が40c.c.(10φ×500H)のイオン交換
樹脂塔に、室温にて該イソホロン粗液を流速300
c.c./Hrで通してイオン交換処理液を得た。
(2Hr) 原子吸光分析により、イオン交換処理前のイソ
ホロン粗液には、60ppmのナトリウムイオンが検
出されたが、処理後では2ppmまで下がつていた。 B 減圧蒸溜 装置:オルダーシヨウ塔20N(40φ)、圧力:15
〜30Torr、還流比:RR=2〜4を用いて、イオ
ン交換処理を施したイソホロン粗液をバツチ蒸溜
に付した。 蒸溜前と蒸溜後の全体の組成変化を調べた結果
を第2表に示す。 試料は水素炎イオン化インデエクターを備えた
ガスクロマトグラフイを用いて分析し、組成は重
量%で記載した。
[Table] Normally, unreacted acetone in the crude isophorone solution synthesized by aldol condensation of acetone with an alkali catalyst is recovered, separated and purified by distillation to obtain isophorone. At this time, the alkaline substance is separated as an aqueous solution, but since the alkali substance remains in the oil layer and enters the distillation column, it is assumed that isophorone isomerizes and becomes β-isophorone during distillation. be done. And here lies the foundation of our technological philosophy. (Means for Solving the Problems) By the way, the method of the present invention is based on the isophorone crude liquid (oil layer) obtained by alkali condensation of acetone.
is brought into contact with a weakly acidic cation exchange resin at room temperature,
The concentration of residual alkaline substances in the treated isophorone
This is a method for purifying isophorone, which is characterized by reducing the temperature to 20 pm or less and then distilling it under reduced pressure. The raw material to be treated in the present invention is an organic layer (oil layer) called crude isophorone liquid, which is obtained by first removing unreacted acetone and then removing most of the reaction water from the reaction mixture flowing out of an aldol condensation reactor using acetone as an alkali catalyst. is the target. The weakly acidic cation exchange resin used in the present invention may be any resin that has excellent solvent resistance to isophorone and adsorbs alkali ions such as sodium in the solution. Here, strongly acidic cation exchange resins are not preferred because they promote decomposition of the target isophorone.
This weakly acidic cation exchange resin (H type) also has the advantage of being easy to regenerate. For example, Mitsubishi Kasei's Diaion WK10, Diamondion WK11, Diamondion WK20, Rohm and Haas' Amberlight IRC-
50, Amberlight IRC-75, Amberlight
IRC-84, Dowex CCR from Dow Chemical Company
Although the present invention can be carried out using a resin commercially available under the trade name 2, it is of course not limited to the resin with this name, and any other resin having similar properties may be used. obtain. The amount of ion exchange resin used is determined by the amount of isophorone crude liquid to be treated per unit time, and usually the residence time of the isophorone crude liquid in the ion exchange resin layer is 0.003 to 0.30 hours, preferably 0.03 hours.
Selected from a range of 0.15 hours. The treatment temperature is usually selected from room temperature (20-50°C). Here, a high temperature of 50° C. or higher is not suitable because there are concerns about the durability of the ion exchange resin used and furthermore the stability of the target isophorone. As for the operation method, either a fixed bed method or a moving bed method can be adopted. Next, the oil layer subjected to the above treatment is subjected to a known vacuum distillation. The operation method can be either batch or continuous high boiling removal followed by low boiling removal. For example, batch distillation requires a reduced pressure of 15 to 30 Torr,
It is appropriate that the column plate size is 20 to 30N and the reflux ratio RR is about 2 to 4. (Effect of the invention) When the isophorone crude liquid (oil layer) is treated according to the present invention and the concentration of alkaline substances in the oil layer is removed to the permissible limit, the formation of β-isophorone is not observed during the subsequent distillation, and it is colorless. And stable product isophorone can be obtained. (Examples) Hereinafter, the method of the present invention will be explained in more detail by giving Examples and Comparative Examples. Example 1 A Ion exchange treatment The raw material to be treated was a crude isophorone liquid (oil layer) obtained from alkali condensation of acetone (composition is the same as that of the charging liquid before distillation). The isophorone crude liquid was poured into an ion exchange resin column filled with Diaion WK11 (trade name of Mitsubishi Kasei Corporation) with a volume of 40 c.c. (10φ x 500H) at a flow rate of 300 at room temperature.
An ion exchange treatment solution was obtained by passing at cc/hr.
(2Hr) By atomic absorption spectrometry, 60ppm of sodium ions were detected in the crude isophorone solution before ion exchange treatment, but this had dropped to 2ppm after treatment. B Vacuum distillation equipment: Older distillation tower 20N (40φ), pressure: 15
The isophorone crude liquid subjected to ion exchange treatment was subjected to batch distillation using ~30 Torr and reflux ratio: RR = 2 to 4. Table 2 shows the results of examining the overall compositional changes before and after distillation. Samples were analyzed using gas chromatography equipped with a flame ionization indicator, and compositions were reported in weight percent.

【表】 実施例 2 A イオン交換処理 イオン交換樹脂の充填容積を2c.c.(10φ×
25H)、そしてイソホロン粗液の流速を500c.c./
Hrに変更した以外、実施例1と同様に処理した。 イオン交換処理前のイソホロン粗液には60ppm
のナトリウムイオンが検出されたが、処理後では
20ppmまで下がつていた。 B 減圧蒸溜 実施例1と同様に処理した。結果を第3表に示
す。
[Table] Example 2 A Ion exchange treatment The filling volume of ion exchange resin was 2c.c. (10φ×
25H), and the flow rate of isophorone crude liquid was set to 500c.c./
The process was carried out in the same manner as in Example 1 except that Hr was used. 60ppm for isophorone crude solution before ion exchange treatment
of sodium ions were detected, but after treatment,
It had fallen to 20ppm. B. Vacuum distillation The same procedure as in Example 1 was carried out. The results are shown in Table 3.

【表】 比較例 B 減圧蒸溜 イオン交換処理を施さないイソホロン粗液を、
直接用いた以外、実施例1と同様に処理した。結
果を第4表に示す。
[Table] Comparative Example B Vacuum distillation Crude isophorone liquid without ion exchange treatment,
It was treated in the same manner as in Example 1 except that it was used directly. The results are shown in Table 4.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アセトンのアルカリ縮合によつて得られたイ
ソホロン粗液(油層)を室温で弱酸性陽イオン交
換樹脂に接触させて、処理したイソホロン中の残
存アルカリ物質濃度を20ppm以下とした後、減圧
蒸溜することを特徴とするイソホロンの精製方
法。
1. Contact the isophorone crude liquid (oil layer) obtained by alkaline condensation of acetone with a weakly acidic cation exchange resin at room temperature to reduce the concentration of residual alkaline substances in the treated isophorone to 20 ppm or less, and then distill under reduced pressure. A method for purifying isophorone, characterized by:
JP13109385A 1985-06-17 1985-06-17 Purification of isophorone Granted JPS61289055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13109385A JPS61289055A (en) 1985-06-17 1985-06-17 Purification of isophorone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13109385A JPS61289055A (en) 1985-06-17 1985-06-17 Purification of isophorone

Publications (2)

Publication Number Publication Date
JPS61289055A JPS61289055A (en) 1986-12-19
JPH0566935B2 true JPH0566935B2 (en) 1993-09-22

Family

ID=15049810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13109385A Granted JPS61289055A (en) 1985-06-17 1985-06-17 Purification of isophorone

Country Status (1)

Country Link
JP (1) JPS61289055A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877354A (en) * 1997-12-03 1999-03-02 Aristech Chemical Corporation Process for making isophorone with improved color and color stability

Also Published As

Publication number Publication date
JPS61289055A (en) 1986-12-19

Similar Documents

Publication Publication Date Title
US4766254A (en) Method for maximizing yield and purity of bisphenol A
EP0618185A1 (en) Process for the removal of corrosion metal contaminants from liquid compositions
EP0764146B1 (en) Phenol with low levels of methylbenzofuran
EP0343382B1 (en) Method for the production of bis-phenols
GB2112394A (en) Purification of carbonylation products
EP0025641B1 (en) Process for purifying a crude ketone containing small amounts of aldehydes
US4351966A (en) Phenol recovery from bisphenol-A waste streams
CN107469862B (en) Two-step countercurrent extraction and purification method of rhodium/diphosphonite catalyst
JP2752602B2 (en) Separation method of oxidation catalyst for trimellitic acid production
EP1395540A2 (en) Process for purifying phenol
JPH04308548A (en) Method of purifying carboxylic acid
EP0135295B1 (en) Purification of tertiary butyl hydroperoxide containing primary and secondary alkyl hydroperoxide contaminants
JPH0566935B2 (en)
US2993916A (en) Purification of ethylene oxide
US3029292A (en) Phenol purification
EP0101620B1 (en) Production of low color refined isophorone
JPH0572896B2 (en)
EP0061057B1 (en) Process for the production of formaldehyde
JP2956174B2 (en) Method for producing bisphenol A
JPH01106832A (en) Method of removing formaldehyde from solution of 2-butindiol-1,4
SU1077876A1 (en) Process for purifying phenol from microimpurities
US3766277A (en) Recovery of pentaerythritol using tert butyl alcohol
DE1668952C (en) Process for the production of pure phenols from crude phenols, which were obtained from the cleavage of hydroperoxides of alkyl aromatic hydrocarbons
JPH0761968B2 (en) Diacetone alcohol purification method
GB2051793A (en) Process for producing sebacic acid