JPH056686B2 - - Google Patents

Info

Publication number
JPH056686B2
JPH056686B2 JP58214478A JP21447883A JPH056686B2 JP H056686 B2 JPH056686 B2 JP H056686B2 JP 58214478 A JP58214478 A JP 58214478A JP 21447883 A JP21447883 A JP 21447883A JP H056686 B2 JPH056686 B2 JP H056686B2
Authority
JP
Japan
Prior art keywords
joint
movement
robot
target position
joints
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58214478A
Other languages
Japanese (ja)
Other versions
JPS60108283A (en
Inventor
Katsushi Nishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21447883A priority Critical patent/JPS60108283A/en
Publication of JPS60108283A publication Critical patent/JPS60108283A/en
Publication of JPH056686B2 publication Critical patent/JPH056686B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は、多関節型ロボツトの駆動制御方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a drive control method for an articulated robot.

技術の背景 最近、各種製造産業において、多自由度を有す
る多関節型ロボツトが使用されている。この場
合、各関節(各軸)を動かして、それらの動きの
合成により手先の位置決めを行なう。
Background of the Technology Recently, articulated robots with multiple degrees of freedom have been used in various manufacturing industries. In this case, each joint (each axis) is moved and the position of the hand is determined by combining these movements.

従来技術と問題点 従来、このような多関節ロボツトの手先の動き
の軌跡に一定の特別の要求(たとえば、直線状に
動かすとか、あるいは円弧状に動かすとかの要
求)をしない場合には、各関節にそれぞれ勝手な
速度を与えて駆動していた。このような従来方式
においては、手先の目標位置までの移動距離に対
して、短い距離しか移動しない関節はそれだけ早
く動きが終了し、一方、長い距離を移動しなけれ
ばならない軸はそれだけ遅く動きが終了すること
になる。
Conventional technology and problems Conventionally, when there are no specific special requirements for the movement trajectory of the hand of such an articulated robot (for example, a request for movement in a straight line or in an arc), each It was driven by giving each joint its own speed. In such conventional methods, joints that move only a short distance end their movement earlier than the distance traveled by the hand to reach the target position, while axes that have to move a long distance end their movement that much more slowly. It will end.

したがつて、各関節の動きがそれぞれ異なり、
全体として統一がとれないため、手先の目標位置
に対して各関節がどのように動くか予測できない
という欠点があつた。
Therefore, each joint moves differently,
The drawback was that it was impossible to predict how each joint would move relative to the target position of the hand because it could not be unified as a whole.

発明の目的 本発明の目的は、上記従来の駆動方式の欠点を
克服し、多関節型ロボツトの手先に軌跡制御が要
求されない場合においても、各関節の動きを滑ら
かに統一して疑似軌跡制御を可能にする、改善さ
れた多関節型ロボツトの駆動制御方法を提供する
ことにある。
Purpose of the Invention The purpose of the present invention is to overcome the drawbacks of the conventional drive method described above, and to smoothly unify the movements of each joint to perform pseudo-trajectory control even when trajectory control is not required for the hands of an articulated robot. An object of the present invention is to provide an improved drive control method for an articulated robot.

発明の構成 この目的を達成するため、本発明は、多関節型
ロボツトの手先を目標位置まで移動したときの各
関節の位置を目標として各関節を駆動して多自由
度を有する多関節型ロボツトの駆動を制御する多
関節型ロボツトの駆動制御方法において、各関節
の現在位置と目標位置とに基づいて各関節の移動
量を計算し、該移動量を各関節の最高移動速度に
よつて除算して各関節の移動時間を求め、該求め
た移動時間のうちの最大の移動時間の関節の最大
移動速度によつて他の関節の前記移動距離を除算
して他の関節の移動速度を修正し、該修正した移
動速度を使用して、手先が目標位置に到達したと
き各関節がそれぞれ同時に各目標位置に到達する
ように最も時間のかかる関節に合わせて各関節を
動作させ、ロボツト全体を駆動するようにしたこ
とを特徴とするものである。
Structure of the Invention In order to achieve this object, the present invention provides a multi-joint robot having multiple degrees of freedom by driving each joint with the target position of each joint when the hand of the multi-joint robot moves to a target position. In a drive control method for an articulated robot, the amount of movement of each joint is calculated based on the current position and target position of each joint, and the amount of movement is divided by the maximum movement speed of each joint. The movement time of each joint is determined by calculating the movement time of each joint, and the movement speed of other joints is corrected by dividing the movement distance of other joints by the maximum movement speed of the joint with the maximum movement time among the movement times determined. Then, using the corrected movement speed, each joint is moved according to the joint that takes the longest time so that when the hand reaches the target position, each joint reaches each target position at the same time, and the entire robot is moved. It is characterized by being driven.

発明の実施例 以下、図によつて本発明を具体的に説明する。Examples of the invention Hereinafter, the present invention will be specifically explained with reference to the drawings.

第1図は、本発明の駆動制御方法の全体的な構
成を示すブロツク図である。
FIG. 1 is a block diagram showing the overall structure of the drive control method of the present invention.

すなわち、同図に示すように、各関節1から現
在位置の情報を得て、演算部2で目標位置までの
移動距離・移動速度を計算し、各関節1に駆動命
令を与える。その際、各関節の目標位置はメモリ
3に記憶されているので、目標位置までの移動距
離は、目標位置における各関節の値から現在位置
における各関節の値を減算することにより求めら
れる。
That is, as shown in the figure, information on the current position is obtained from each joint 1, the calculation unit 2 calculates the moving distance and moving speed to the target position, and gives a drive command to each joint 1. At this time, since the target position of each joint is stored in the memory 3, the movement distance to the target position is obtained by subtracting the value of each joint at the current position from the value of each joint at the target position.

第2図は、本発明の制御対象の一実施例である
6自由度(6軸)を有する多関節型ロボツトの概
念図である。
FIG. 2 is a conceptual diagram of an articulated robot having six degrees of freedom (six axes), which is an embodiment of the controlled object of the present invention.

同図において、θ1,θ4およびθ6は回転型軸(ア
クチユエータ)であり、θ2,θ3およびθ5は屈曲型
軸(アクチユエータ)である。そして、Hがロボ
ツトの手先である。
In the figure, θ 1 , θ 4 and θ 6 are rotating shafts (actuators), and θ 2 , θ 3 and θ 5 are bending shafts (actuators). And H is the robot's minion.

第3図は、本発明の駆動制御方法を説明するた
めのフローチヤートである。
FIG. 3 is a flowchart for explaining the drive control method of the present invention.

まず、Aで、各関節θ1〜θ6の目標位置までの各
移動距離L1〜L6を計算する。計算方法について
は、第1図の説明で既に述べた。
First, at A, the moving distances L 1 to L 6 of each joint θ 1 to θ 6 to the target position are calculated. The calculation method has already been described in the explanation of FIG.

次に、Bで、各関節θ1〜θ6の移動時間T1〜T6
を計算する。これは、各関節の移動距離をそれぞ
れ各関節の定められた最高移動速度で除算するこ
とにより求まる。そのうちの最大値をTmaxとす
る(C)。
Next, at B, the movement time T 1 to T 6 of each joint θ 1 to θ 6
Calculate. This is determined by dividing the moving distance of each joint by the maximum moving speed determined for each joint. The maximum value among them is set as Tmax (C).

そのTmaxに係る関節、すなわち最も時間のか
かる関節θmの移動距離LmをTmaxで除したもの
を、最高移動速度Vmaxとする(D)。
The maximum movement speed Vmax is determined by dividing the movement distance Lm of the joint related to Tmax, that is, the joint θm that takes the longest time, by Tmax (D).

最後に、最大移動時間Tmaxで他の関節θiの移
動距離Liを除すことにより、各移動速度Viが計
算される(E)。
Finally, each movement speed Vi is calculated by dividing the movement distance Li of the other joints θi by the maximum movement time Tmax (E).

このようにして求められた各移動速度Viおよ
びVmaxを、各関節θiおよびθmに与えることに
より、手先Hの目標位置がどんなところにあろう
とも、最も時間のかかる関節θnに合わせて他の
関節θiが追従して移動するので、各関節の目標位
置において移動がそれぞれ同時に終了し、滑らか
な軌跡が得られる。
By giving the movement speeds Vi and Vmax obtained in this way to each joint θi and θm, no matter where the target position of the hand H is, other joints can be moved according to the joint θn that takes the most time. Since θi follows and moves, the movement of each joint ends at the same time at the target position, and a smooth trajectory is obtained.

第4図は、本発明の効果を説明するための一実
施例態様よりなる多関節型ロボツトの側面図であ
る。
FIG. 4 is a side view of an articulated robot according to an embodiment for explaining the effects of the present invention.

同図に示すように、この場合のロボツトは、一
つの回転軸10と一つの直進軸(スライデイング
軸)20とから構成されている。なお、直進軸2
0の先端部に手先Hが設けられている。
As shown in the figure, the robot in this case is comprised of one rotating shaft 10 and one linear shaft (sliding shaft) 20. In addition, the linear axis 2
A hand H is provided at the tip of 0.

いま、実線で示すような位置にあり、破線で示
す目標位置まで移動するとすると、従来は30で
示すような乱れた軌跡を手先Hが描いていたが、
本発明の駆動制御方式によれば、40で示すよう
な滑らかな軌跡を手先Hが描くことができる。
If you are currently at the position shown by the solid line and move to the target position shown by the broken line, conventionally the hand H would draw a turbulent trajectory as shown at 30.
According to the drive control method of the present invention, the hand H can draw a smooth trajectory as shown at 40.

なお、上記態様は、回転軸10の移動量が少な
く、直進軸20の移動量が多い場合であつたが、
その他の場合にも、同様にして本発明を適用する
ことができる。
Note that in the above embodiment, the amount of movement of the rotary shaft 10 is small and the amount of movement of the linear shaft 20 is large; however,
The present invention can be similarly applied to other cases.

発明の効果 以上説明したように、本発明によれば、最も時
間のかかる関節の移動に合わせて他の関節の移動
を制御して、各関節が同時に各目標位置に到達す
るように構成されているので、ロボツトの手先の
軌跡を滑らかにすることができる。
Effects of the Invention As explained above, according to the present invention, the movement of the other joints is controlled in accordance with the movement of the joint that takes the most time, so that each joint reaches each target position at the same time. This makes it possible to smooth the trajectory of the robot's hands.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の全体の構成を示すブロツク
図、第2図は本発明の一実施例よりなる多関節型
ロボツトの概念図、第3図は第2図のロボツトの
駆動制御フローチヤート、および第4図は本発明
の一実施様態よりなるロボツトの側面図である。 θ1,θ4,θ6……回転型関節、θ2,θ3,θ5……屈
曲型関節、10……回転軸、20……直進軸、H
……手先、30……従来の手先の軌跡、40……
本発明による場合の手先の軌跡。
FIG. 1 is a block diagram showing the overall configuration of the present invention, FIG. 2 is a conceptual diagram of an articulated robot according to an embodiment of the present invention, and FIG. 3 is a drive control flowchart of the robot shown in FIG. FIG. 4 is a side view of a robot according to an embodiment of the present invention. θ 1 , θ 4 , θ 6 ... rotation type joint, θ 2 , θ 3 , θ 5 ... bending type joint, 10 ... rotary axis, 20 ... linear axis, H
...Stooge, 30...Traditional hand trajectory, 40...
The trajectory of the hand according to the present invention.

Claims (1)

【特許請求の範囲】 1 多関節型ロボツトの手先を目標位置まで移動
したときの各関節の位置を目標として各関節を駆
動して多自由度を有する多関節型ロボツトの駆動
を制御する多関節型ロボツトの駆動制御方法にお
いて、 各関節の現在位置と目標位置とに基づいて各関
節の移動量を計算し、 該移動量を各関節の最高移動速度によつて除算
して各関節の移動時間を求め、 該求めた移動時間のうちの最大の移動時間の関
節の最大移動速度によつて他の関節の前記移動距
離を除算して他の関節の移動速度を修正し、 該修正した移動速度を使用して、手先が目標位
置に到達したとき各関節がそれぞれ同時に各目標
位置に到達するように最も時間のかかる関節に合
わせて各関節を動作させ、ロボツト全体を駆動す
る ことを特徴とする多関節型ロボツトの駆動制御
方法。
[Scope of Claims] 1. A multi-joint robot that controls the drive of a multi-joint robot having multiple degrees of freedom by driving each joint with the position of each joint as a target when the hand of the multi-joint robot moves to a target position. In a drive control method for a type robot, the amount of movement of each joint is calculated based on the current position and target position of each joint, and the amount of movement is divided by the maximum movement speed of each joint to calculate the movement time of each joint. Calculate the movement speed of the other joints by dividing the movement distance of the other joints by the maximum movement speed of the joint during the maximum movement time among the movement times determined, and correct the movement speed of the other joints, and calculate the corrected movement speed. is used to drive the entire robot by moving each joint according to the joint that takes the longest time so that when the hand reaches the target position, each joint reaches the target position at the same time. Drive control method for articulated robot.
JP21447883A 1983-11-15 1983-11-15 Method of controlling drive of multi-joint type robot Granted JPS60108283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21447883A JPS60108283A (en) 1983-11-15 1983-11-15 Method of controlling drive of multi-joint type robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21447883A JPS60108283A (en) 1983-11-15 1983-11-15 Method of controlling drive of multi-joint type robot

Publications (2)

Publication Number Publication Date
JPS60108283A JPS60108283A (en) 1985-06-13
JPH056686B2 true JPH056686B2 (en) 1993-01-27

Family

ID=16656378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21447883A Granted JPS60108283A (en) 1983-11-15 1983-11-15 Method of controlling drive of multi-joint type robot

Country Status (1)

Country Link
JP (1) JPS60108283A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716062B2 (en) * 1986-09-30 1998-02-18 富士電機株式会社 Origin return method for moving members
JP2643683B2 (en) * 1990-10-29 1997-08-20 三菱電機株式会社 Robot control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139810A (en) * 1981-02-20 1982-08-30 Shin Meiwa Ind Co Ltd Controlling method of industrial robot and its device
JPS58143981A (en) * 1982-02-19 1983-08-26 株式会社日立製作所 Method of controlling industrial robot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139810A (en) * 1981-02-20 1982-08-30 Shin Meiwa Ind Co Ltd Controlling method of industrial robot and its device
JPS58143981A (en) * 1982-02-19 1983-08-26 株式会社日立製作所 Method of controlling industrial robot

Also Published As

Publication number Publication date
JPS60108283A (en) 1985-06-13

Similar Documents

Publication Publication Date Title
US4594671A (en) Velocity method of controlling industrial robot actuators
JPS6223322B2 (en)
JPS59107884A (en) Control system of robot
JPWO2002066210A1 (en) Robot controller
JP2020142347A (en) Robot device, control method, article manufacturing method, program and recording medium
JPH0254566B2 (en)
JPH056686B2 (en)
JPH035605B2 (en)
JPH0677205B2 (en) Robot control method
JPS61159391A (en) Method of controlling industrial robot
JPS6016385A (en) Method of controlling robot
JPS61159390A (en) Method of controlling industrial robot
JPH0468646B2 (en)
JPH08118270A (en) Control for industrial robot and device therefor
JP3444313B2 (en) Industrial robot controller
JPS6348205U (en)
JPH0274185A (en) Controller of motor
JPS6125210A (en) Industrial joint robot
JPS60117303A (en) Teaching method for teaching reproduction type robot
KR970001658B1 (en) Joint position interpolation of rotational multi-link robot
JPH07295651A (en) Acceleration and deceleration controller for robot
JP3930956B2 (en) Trajectory control apparatus and trajectory control method for a multi-degree-of-freedom SCARA robot in one plane, and a computer-readable recording medium recording a trajectory control program for a single-degree multi-DOF SCARA robot
JPS59120371A (en) Method for controlling driving of welding torch
JPS5929800Y2 (en) Welding gun wrist drive device
JPS61156406A (en) Control method of industrial robot