JPH0566563B2 - - Google Patents

Info

Publication number
JPH0566563B2
JPH0566563B2 JP59180623A JP18062384A JPH0566563B2 JP H0566563 B2 JPH0566563 B2 JP H0566563B2 JP 59180623 A JP59180623 A JP 59180623A JP 18062384 A JP18062384 A JP 18062384A JP H0566563 B2 JPH0566563 B2 JP H0566563B2
Authority
JP
Japan
Prior art keywords
light guide
lens
light
substrate
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59180623A
Other languages
Japanese (ja)
Other versions
JPS6159406A (en
Inventor
Tetsuo Horimatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18062384A priority Critical patent/JPS6159406A/en
Publication of JPS6159406A publication Critical patent/JPS6159406A/en
Publication of JPH0566563B2 publication Critical patent/JPH0566563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光伝送技術に関し、特にプレーナ型光
ガイドと光源との光結合構造及びその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to optical transmission technology, and particularly to an optical coupling structure between a planar light guide and a light source, and a method for manufacturing the same.

光伝送手段として光フアイバが主に用いられて
いるが、近年は、例えばニオブ酸リチウム
(LiNbO3)や石英(SiO2)などの誘電体または
ガリウムひ素(GaAs)などの半導体からなる基
板の表面に形成されたプレーナ型光ガイドが実用
化されている。一方、かかる光ガイドを用いて伝
送する光の光源としては、発光ダイオード
(LED)や半導体レーザダイオード(LD)など
が一般に用いられている。
Optical fibers are mainly used as optical transmission means , but in recent years , optical fibers have been A planar light guide formed in On the other hand, light-emitting diodes (LEDs), semiconductor laser diodes (LDs), and the like are generally used as light sources for light transmitted using such light guides.

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

上記のようなプレーナ型光ガイドと光源との光
結合は、従来、両者の間の空間に球レンズなどを
配置し、これで光源からの出射光を集光して光ガ
イドの端面に導入するように構成されている。し
かしこの構造では、光源とレンズ間ならびにレン
ズと光ガイド間のそれぞれに高精度の光軸調整が
必要で、組立作業が煩雑であるという問題があ
る。また、レンズの介在によつてそれだけ媒質間
の境界面が多くなり、フレネル損失が大きいとい
う問題がある。
Conventionally, optical coupling between a planar light guide and a light source as described above is achieved by placing a ball lens or the like in the space between the two, which condenses the light emitted from the light source and introduces it to the end face of the light guide. It is configured as follows. However, this structure requires highly accurate optical axis adjustment between the light source and the lens and between the lens and the light guide, making assembly work complicated. Furthermore, the presence of the lens increases the number of interfaces between the media, resulting in a problem of large Fresnel loss.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決するために、プレー
ナ型光ガイドと光源との光結合構造において、光
源からの出射光を光ガイドに導入するための集光
レンズを光ガイドに対して非対称に該光ガイドの
端面に一体形成したものである。
In order to solve the above problems, the present invention provides an optical coupling structure between a planar light guide and a light source, in which a condensing lens for introducing light emitted from the light source into the light guide is arranged asymmetrically with respect to the light guide. It is integrally formed on the end face of the light guide.

また、本発明はこのようなプレーナ型光ガイド
の端面に集光レンズを光軸非対称に一体形成する
方法を提供するものであり、この方法は透明で且
つ通常は比較的粘性の高い液状であるレンズ材料
中に前記基板の光ガイド端面側のエツジを浸し、
次に基板を垂直に引き上げ、このとき該基板エツ
ジの端面及びその近傍の基板側面に残つて滴状に
垂下したレンズ材料を硬化させることにより前記
集光レンズを形成するものである。
The present invention also provides a method for integrally forming a condensing lens asymmetrically on the optical axis on the end face of such a planar light guide, and this method uses transparent and usually relatively highly viscous liquid. immersing the edge of the light guide end of the substrate in a lens material;
Next, the substrate is vertically pulled up, and the condensing lens is formed by curing the lens material that remains on the end surface of the substrate edge and the side surface of the substrate in the vicinity and hangs down in the form of drops.

〔作用〕[Effect]

本発明による光結合構造では、光ガイド端面に
一体形成された集光レンズが、集光レンズと光ガ
イド間の光軸調整を不要となし、また媒質間境界
面の数を減らす如く作用する。
In the optical coupling structure according to the present invention, the condenser lens integrally formed on the end face of the light guide eliminates the need for adjusting the optical axis between the condenser lens and the light guide, and acts to reduce the number of interfaces between media.

また、本発明による集光レンズの一体形成方法
によれば、基板エツジから垂下するレンズ材料の
表面張力が理想的な形状の集光レンズを容易に形
成可能とする。
Furthermore, according to the method for integrally forming a condenser lens according to the present invention, the surface tension of the lens material hanging down from the edge of the substrate makes it possible to easily form a condenser lens having an ideal shape.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明によるプレーナ型光ガイドと光
源との光結合構造の一実施例の略示側面図であ
る。図中、符号1が光源を示し、これは例えば半
導体レーザダイオードである。また、符号2はプ
レーナ型光ガイド(以下単に「光ガイド」と略
記)を示す。この光ガイド2はLiNbO3の基板3
に形成したものであり、厚さが約0.5mmの基板3
の表面に金属チタン(Ti)を幅数μm、厚さ数百
Åとして所望のパターンに形成し、これを約1000
℃で数時間加熱してTiをLiNbO3中に熱拡散せし
めることにより形成される。この熱拡散により形
成された光ガイド2は他の部分よりわずかに大き
な屈折率を有し、従つて光ガイド2にその端面か
ら光を導入すると、光は光ガイド2内に閉じ込め
られて伝送される。第2図イは光ガイド2及び基
板3の部分斜視図である。
FIG. 1 is a schematic side view of an embodiment of an optical coupling structure between a planar light guide and a light source according to the present invention. In the figure, reference numeral 1 indicates a light source, which is, for example, a semiconductor laser diode. Further, the reference numeral 2 indicates a planar light guide (hereinafter simply abbreviated as "light guide"). This light guide 2 is a LiNbO 3 substrate 3
The substrate 3 has a thickness of approximately 0.5 mm.
Metallic titanium (Ti) is formed into a desired pattern with a width of several μm and a thickness of several hundred Å on the surface of the
It is formed by thermally diffusing Ti into LiNbO 3 by heating at ℃ for several hours. The light guide 2 formed by this thermal diffusion has a slightly larger refractive index than other parts, so when light is introduced into the light guide 2 from its end face, the light is confined within the light guide 2 and transmitted. Ru. FIG. 2A is a partial perspective view of the light guide 2 and the substrate 3.

次に符号4は、光源1からの出射光5を光ガイ
ド2に導入するための集光レンズを示し、このレ
ンズ4は光ガイド2の端面に一体形成されてい
る。第2図ロはレンズ4を一体形成した状態の部
分斜視図である。
Next, reference numeral 4 denotes a condensing lens for introducing the emitted light 5 from the light source 1 into the light guide 2, and this lens 4 is integrally formed on the end surface of the light guide 2. FIG. 2B is a partial perspective view of a state in which the lens 4 is integrally formed.

このレンズ4は第3図に示すようなデイツプ法
によつて形成可能である。まず、符号10はレン
ズ材料11が入つた槽を示す。レンズ材料11と
しては、透明で且つ通常は比較的粘性の高い液状
であり、そして例えば熱あるいは光などの手段に
よつて硬化する性質のもの、例えば米国の
Summers Laboratories社の「Optical Cement
UV−71」などを用いる。これは紫外線照射によ
つて硬化する。そして第3図イに示す如く、この
レンズ材料11中に、第2図イに示したような基
板3の光ガイド2の端面側のエツジを浸す。そし
て数秒後に、第3図ロに示す如く基板3を垂直に
そつと引き上げる。このとき、基板3に付着した
レンズ材料は、重力と表面張力との作用により基
板エツジに符号4aで示す如く滴状に垂下する。
これに紫外線を照射して硬化させれば、第2図ロ
に示す如く基板3のエツジ沿つてほぼ一様な断面
形状の集光レンズ4が一体形成される。
This lens 4 can be formed by the dip method as shown in FIG. First, reference numeral 10 indicates a tank containing lens material 11. The lens material 11 is transparent and usually has a relatively high viscosity liquid, and has a property of curing by means such as heat or light, such as those made in the United States.
“Optical Cement” by Summers Laboratories
UV-71" etc. are used. This is cured by UV irradiation. Then, as shown in FIG. 3A, the edge of the light guide 2 of the substrate 3 as shown in FIG. 2A is dipped into this lens material 11. After a few seconds, the substrate 3 is gently pulled up vertically as shown in FIG. 3B. At this time, the lens material attached to the substrate 3 hangs down to the edge of the substrate in the form of drops as shown by reference numeral 4a due to the effects of gravity and surface tension.
By irradiating this with ultraviolet rays and curing it, a condensing lens 4 having a substantially uniform cross-sectional shape is integrally formed along the edge of the substrate 3, as shown in FIG. 2B.

〔発明の効果〕〔Effect of the invention〕

本発明の光結合構造によれば、集光レンズ4が
光ガイド2の端面に一体形成されているので、光
源1と光ガイド2(もしくは集光レンズ4)間の
光軸調整のみを行えば良く、組立が非常に容易で
ある。また、同じく集光レンズの一体形成によ
り、光ガイド2と集光レンズ4間に他の媒質が介
在しないのでそれだけ媒質間の境界面の数が少な
く、フレネル損失が小さい。
According to the optical coupling structure of the present invention, since the condenser lens 4 is integrally formed on the end face of the light guide 2, only the optical axis adjustment between the light source 1 and the light guide 2 (or the condenser lens 4) is required. Good and very easy to assemble. Furthermore, since the condensing lens is integrally formed, no other medium is interposed between the light guide 2 and the condensing lens 4, which reduces the number of interfaces between the media and reduces Fresnel loss.

更に、本発明の方法によれば光ガイド2への集
光レンズ4の一体形成が非常に簡単であり、しか
も理想的なレンズ形状を得ることができる。特
に、本発明の方法で形成されるレンズは、基板面
内方向にはレンズ作用を持たない。しかるに、光
源として主に用いられる半導体レーザダイオード
の場合、その出射光は活性層の接合面と平行な方
向(つまり基板面内方向)には拡がりが小さく、
接合面と直角な方向への拡がりが大きい軸非対称
であり、従つて図示のような集光レンズは光結合
の上で極めて有利である。しかし、発光ダイオー
ドのように出射光が軸対称のものにも実用上十分
有効であることは云うまでもない。また、本発明
に方法で形成される集光レンズ4は第1図に示す
ように基板3の中心線に関し対称形であるが、実
際にレンズとして用いられるのは光ガイド2の方
に偏つた領域である。これは、光ガイド2は片側
が基板3に接し、反対側は空気に接していて全反
射が相違する点を考慮すると、理想的なレンズ作
用が得られる。尚、特殊なレンズ形状を得たい場
合には、第3図ロで説明した紫外線照射による滴
状レンズ材料4aの硬化の際、半硬化の状態でこ
れを所望の形状に整形することも可能である。
Furthermore, according to the method of the present invention, it is very easy to integrally form the condenser lens 4 to the light guide 2, and moreover, an ideal lens shape can be obtained. In particular, the lens formed by the method of the present invention does not have a lens effect in the in-plane direction of the substrate. However, in the case of a semiconductor laser diode, which is mainly used as a light source, the emitted light has a small spread in the direction parallel to the bonding surface of the active layer (that is, in the direction in the substrate plane).
It is axially asymmetrical with a large extent in the direction perpendicular to the cementing surface, and therefore the condensing lens as shown is extremely advantageous in terms of optical coupling. However, it goes without saying that the present invention is sufficiently effective in practice even for devices whose emitted light is axially symmetrical, such as a light emitting diode. Furthermore, although the condensing lens 4 formed by the method of the present invention is symmetrical with respect to the center line of the substrate 3 as shown in FIG. It is an area. This is because one side of the light guide 2 is in contact with the substrate 3 and the other side is in contact with the air, so that an ideal lens effect can be obtained, considering that total reflection is different. Incidentally, if it is desired to obtain a special lens shape, it is also possible to shape the droplet-shaped lens material 4a into the desired shape in a semi-cured state when the droplet-shaped lens material 4a is cured by ultraviolet irradiation as explained in FIG. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるプレーナ型光ガイドと光
源の光結合構造の一実施例の略示側面図、第2図
は光ガイド及び基板の部分斜視図であつてイが集
光レンズ形成前の状態、ロが集光レンズ形成後の
状態をそれぞれ示す図、第3図は本発明による集
光レンズ一体形成方法を示す図である。 1……光源、2……光ガイド、3……基板、4
……集光レンズ、4a……滴状レンズ材料、5…
…光、10……レンズ材料槽、11……レンズ材
料。
FIG. 1 is a schematic side view of an embodiment of the optical coupling structure between a planar light guide and a light source according to the present invention, and FIG. 2 is a partial perspective view of the light guide and the substrate, and FIG. FIG. 3 is a diagram showing a method for integrally forming a condenser lens according to the present invention. 1...Light source, 2...Light guide, 3...Substrate, 4
...Condensing lens, 4a...Droplet lens material, 5...
...Light, 10... Lens material tank, 11... Lens material.

Claims (1)

【特許請求の範囲】 1 誘電体または半導体の基板の表面に形成され
たプレーナ型光ガイドと光源とを結合する光結合
構造であつて、光源からの出射光を該ガイドに導
入するための集光レンズを光ガイドに対して非対
称に該光ガイドの端面に一体形成したことを特徴
とするプレーナ型光ガイド。 2 誘電体または半導体の基板の表面に形成され
たプレーナ型光ガイドに光源からの出射光を導入
するための集光レンズを光軸非対称に光ガイドの
端面に一体形成する方法であつて、透明で且つ通
常は比較的粘性の高い液状であるレンズ材料中に
前記基板の光ガイド端面側のエツジを浸し、次に
基板を垂直に引き上げ、このとき基板エツジの端
面及びその近傍の基板側面に残つて滴状に垂下し
たレンズ材料を硬化させることにより前記集光レ
ンズを形成することを特徴とする方法。
[Scope of Claims] 1. An optical coupling structure for coupling a light source to a planar light guide formed on the surface of a dielectric or semiconductor substrate, the structure including a concentrator for introducing light emitted from the light source into the guide. 1. A planar light guide, characterized in that a light lens is integrally formed on an end face of the light guide asymmetrically with respect to the light guide. 2. A method of integrally forming a condensing lens asymmetrically on the optical axis on the end face of the light guide for introducing light emitted from a light source into a planar light guide formed on the surface of a dielectric or semiconductor substrate, the method comprising: The edge of the light guide end of the substrate is immersed in a lens material, which is usually a liquid with relatively high viscosity, and then the substrate is pulled up vertically. A method characterized in that the condenser lens is formed by curing lens material that hangs down in the form of drops.
JP18062384A 1984-08-31 1984-08-31 Optical coupling structure of planar type light guide and its manufacture Granted JPS6159406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18062384A JPS6159406A (en) 1984-08-31 1984-08-31 Optical coupling structure of planar type light guide and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18062384A JPS6159406A (en) 1984-08-31 1984-08-31 Optical coupling structure of planar type light guide and its manufacture

Publications (2)

Publication Number Publication Date
JPS6159406A JPS6159406A (en) 1986-03-26
JPH0566563B2 true JPH0566563B2 (en) 1993-09-22

Family

ID=16086446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18062384A Granted JPS6159406A (en) 1984-08-31 1984-08-31 Optical coupling structure of planar type light guide and its manufacture

Country Status (1)

Country Link
JP (1) JPS6159406A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194204A (en) * 1987-02-09 1988-08-11 Toshiba Corp Optical device
JPH079492B2 (en) * 1987-04-24 1995-02-01 松下電工株式会社 Manufacturing method of optical circuit board
DE102010024545B4 (en) * 2010-06-22 2022-01-13 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Semiconductor device and method of manufacturing a semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080792A (en) * 1973-11-14 1975-07-01
JPS554049A (en) * 1978-06-23 1980-01-12 Mitsubishi Electric Corp Production of optical transmission path

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080792A (en) * 1973-11-14 1975-07-01
JPS554049A (en) * 1978-06-23 1980-01-12 Mitsubishi Electric Corp Production of optical transmission path

Also Published As

Publication number Publication date
JPS6159406A (en) 1986-03-26

Similar Documents

Publication Publication Date Title
CN100585884C (en) High brightness LED package with compound optical element(s)
CN101088176B (en) High brightness LED package
CN101088173B (en) High brightness LED package with multiple optical elements
EP1921477B1 (en) A light emitting device
KR102066153B1 (en) Wavelength conversion device, light-emitting device and projection system
JP2015106487A (en) Light source device and display device
JPH0521842A (en) Optical device and light emitting diode
JPH11142668A (en) Optical waveguide element for loss absorption and its production
JPH0566563B2 (en)
JP2019079848A (en) Manufacturing method of semiconductor laser device
JP7190889B2 (en) Light-emitting device and light-emitting device module
US10781987B2 (en) Light converting device
JP2021026073A (en) Optical device and manufacturing method of optical device
JPH0744292B2 (en) Mold resin for optical semiconductors
TW201426121A (en) Back light module
JP2001033640A (en) Optical waveguide
JPS6138873B2 (en)
JP2004133117A (en) Resin-sealed optical module
JP2862037B2 (en) Multi-wavelength semiconductor laser provided with low reflectivity film and method of manufacturing the same
JPH0613699A (en) Multibeam semiconductor laser array
JPS571289A (en) Semiconductor light emitting device
JP2008216791A (en) Optical path converting mirror and fabricating method thereof
JP3918638B2 (en) Semiconductor laser device, optical device, and optical waveguide manufacturing method
JPH0314642Y2 (en)
JPS63100790A (en) Semiconductor laser module