JPH0566532B2 - - Google Patents
Info
- Publication number
- JPH0566532B2 JPH0566532B2 JP22872984A JP22872984A JPH0566532B2 JP H0566532 B2 JPH0566532 B2 JP H0566532B2 JP 22872984 A JP22872984 A JP 22872984A JP 22872984 A JP22872984 A JP 22872984A JP H0566532 B2 JPH0566532 B2 JP H0566532B2
- Authority
- JP
- Japan
- Prior art keywords
- gain
- wavelength
- output
- sample
- photometric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005259 measurement Methods 0.000 claims description 14
- 238000005375 photometry Methods 0.000 claims description 14
- 229920006395 saturated elastomer Polymers 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 230000003595 spectral effect Effects 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 claims 2
- 238000004611 spectroscopical analysis Methods 0.000 claims 1
- 239000000523 sample Substances 0.000 description 16
- 238000004458 analytical method Methods 0.000 description 11
- 238000004445 quantitative analysis Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000504 luminescence detection Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012764 semi-quantitative analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
【発明の詳細な説明】
イ 産業上の利用分野
本発明は波長走査機能を有する発光分光分析装
置による元素の半定量分析方法に関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for semi-quantitative analysis of elements using an emission spectrometer having a wavelength scanning function.
ロ 従来の技術
波長走査機能を有する発光分光分析装置を用い
ると、組成未知の試料の元素の定性分析ができ
る。しかし発光分析の場合、吸光分析と異り、測
光系に入射する光量の変化幅が大へん大きく、測
光系のゲインの設定が適当でないと増幅器が飽和
してしまい、定量的な測定ができなくなる。B. Prior Art Using an emission spectrometer having a wavelength scanning function, it is possible to qualitatively analyze the elements of a sample of unknown composition. However, in the case of luminescence analysis, unlike absorption analysis, the range of variation in the amount of light incident on the photometry system is very large, and if the gain of the photometry system is not set appropriately, the amplifier will become saturated and quantitative measurements will not be possible. .
従来分析試料中の元素濃度が或る程度予想でき
ている場合は、測光系のゲインの調整は予想され
る最高元素濃度の標準試料で測定を行い、光電子
増倍管の感度を調節して測光系の増幅器が飽和し
ないようにゲインを設定していた。しかし全く濃
度が未知の試料を分析するときは、予め測光系の
ゲインを設定する目安がないから、増幅器の飽和
を避けるため最高濃度を高めに予測して、つまり
ゲインを低目に設定することになる。所がこのよ
うにすると微小濃度の場合、検出が困難となる。
別の方法としてゲインを適当に設定し、増幅器が
飽和しなければ、そのまゝデータを採り、飽和す
ればゲインを下げるやり方もあるが、ゲインを変
える前と後との測定データの関係が判らなければ
定量を行うことができない。と云うのは光電子増
倍管を用いた測光系では測光系のゲインは光電子
増倍管の感度を変えて調節するのでゲインそのも
のは直接には分らず、直接分るのは光電子増倍管
に印加する負高電圧であるから、この負高電圧と
測定データとの間の関係が既知であれば、負高電
圧を途中で変えても、前後のデータを統一的に処
理することができるが、光電子増倍管の特徴は
個々に大きく異つているので、製品としての分析
装置の公称特性として光電子増倍管に印加する負
高電圧と測光系のゲインとの関係を表示しておく
ことができないのである。光電子増倍管の感度を
固定しておいて増幅器のゲインを調節するように
すれば、調節つまみの目盛に測光系のゲインが何
倍と云う表示をすることが可能となり、途中でゲ
インを変えても前後のデータを統一的に扱い定量
的な分析を行うことが可能となるが、このように
すると光電子増倍管の出力電流が過大になる場合
が発生するので、増幅器によつて測光系のゲイン
を変えるやり方は好ましくない。 Conventionally, when the element concentration in the analysis sample can be predicted to some extent, the gain of the photometry system is measured by measuring with a standard sample with the highest expected element concentration, and the sensitivity of the photomultiplier tube is adjusted to perform photometry. The gain was set to prevent the system amplifier from becoming saturated. However, when analyzing a sample whose concentration is completely unknown, there is no guideline for setting the gain of the photometric system in advance, so to avoid saturation of the amplifier, it is necessary to predict the maximum concentration higher, that is, set the gain lower. become. However, in this case, detection becomes difficult in the case of minute concentrations.
Another method is to set the gain appropriately, collect data as is if the amplifier does not saturate, and lower the gain if it does, but it is difficult to understand the relationship between the measured data before and after changing the gain. Without it, quantification cannot be performed. This is because in a photometry system that uses a photomultiplier tube, the gain of the photometry system is adjusted by changing the sensitivity of the photomultiplier tube, so the gain itself cannot be directly determined, and the gain can only be determined directly by the photomultiplier tube. Since it is a negative high voltage that is applied, if the relationship between this negative high voltage and the measured data is known, even if the negative high voltage is changed midway through, the data before and after can be processed uniformly. Since the characteristics of individual photomultiplier tubes vary greatly, it is recommended to display the relationship between the negative high voltage applied to the photomultiplier tube and the gain of the photometry system as a nominal characteristic of the analytical device as a product. It cannot be done. If you fix the sensitivity of the photomultiplier tube and adjust the gain of the amplifier, you can display the gain of the photometry system on the scale of the adjustment knob, and you can change the gain midway through the process. However, in this case, the output current of the photomultiplier tube may become excessive, so the photometry system is It is not desirable to change the gain of
結局従来は元素濃度未知の試料の定量分析は、
分析試料を発光させて波長走査を行い、測光系の
出力が飽和したら光電子増倍管の負高電圧を下げ
て飽和を解消し、次にその状態で元素濃度既知の
標準試料の測定を行い、このとき幸い測光系が飽
和しなければ、先に得られた分析試料の測定デー
タと標準試料の測定データから分析試料の元素濃
度が求められる。しかし標準試料測定において測
光系が飽和したら測光系のゲインを更に下げて飽
和を解消し、そのまゝのゲインで再度分析試料の
測光を行わねばならない。従つて発光分析におけ
る未知試料の定量分析は大へん面倒であつた。 In the end, conventional quantitative analysis of samples with unknown elemental concentrations was
The analysis sample is made to emit light and the wavelength is scanned. When the output of the photometric system is saturated, the negative high voltage of the photomultiplier tube is lowered to eliminate saturation. Next, in this state, a standard sample with known element concentration is measured. At this time, if the photometric system is fortunately not saturated, the element concentration of the analysis sample can be determined from the previously obtained measurement data of the analysis sample and the measurement data of the standard sample. However, when the photometric system becomes saturated during standard sample measurement, the gain of the photometric system must be further lowered to eliminate saturation, and photometry of the analytical sample must be performed again with the same gain. Therefore, quantitative analysis of unknown samples using luminescence spectroscopy has been extremely troublesome.
ハ 発明が解決しようとする問題点
本発明は発光分光分析装置で、上述したような
何回も測定操作を繰返すと云う従来方法の面倒さ
非能率を解消し、一回の測定操作で未知試料につ
いて、標準試料との比較可能な測定データが得ら
れるような測定方法を得ようとするものである。C. Problems to be Solved by the Invention The present invention is an emission spectrometer that eliminates the troublesomeness and inefficiency of the conventional method of repeating the measurement operation many times as described above, and allows the measurement of unknown samples in a single measurement operation. The aim is to develop a measurement method that can obtain measurement data that can be compared with standard samples.
ニ 問題点を解決するための手段
測光系のゲインを適当に決めた一定の基準値に
設定し、分析試料について波長走査を行い測光出
力を記録し、測光出力が飽和してもそのまゝ波長
走査して第1図Aのような記録を得る。この記録
において、飽和範囲ab間の中央にピーク波長が
あると仮定して、その点cの波長で測光系の飽和
が解消するように測光系のゲインを下げ、そのゲ
インでもとの飽和域a,bの外側でa,bに近い
波長位置d或はeで測光データを採る。このゲイ
ンで波長走査をすれば第1図Bのような記録が得
られるわけであるが、今の場合必要なのは第1図
A及びBにおけるd又はeの波長での測光出力Ia
とIbとの比及びピーク波長cにおける第1図Bの
測光出力Dbであつて、基準ゲインに対する分析
試料の波長cにおける測光出力Daは
Da=Ia/Ib×Db ……(1)
で求まる。D. Means to solve the problem Set the gain of the photometric system to a certain standard value that is appropriately determined, perform wavelength scanning on the analysis sample, record the photometric output, and even if the photometric output is saturated, the wavelength will remain unchanged. A record as shown in FIG. 1A is obtained by scanning. In this recording, assuming that there is a peak wavelength in the center between the saturation ranges a and b, the gain of the photometry system is lowered so that the saturation of the photometry system is eliminated at the wavelength at that point c, and with that gain, the peak wavelength is returned to the original saturation range a. , b, and at a wavelength position d or e near a, b. If wavelength scanning is performed with this gain, a record like that shown in Figure 1B can be obtained, but in this case, what is needed is the photometric output Ia at wavelength d or e in Figure 1 A and B.
and Ib and the photometric output Db in FIG. 1B at the peak wavelength c, and the photometric output Da at the wavelength c of the analysis sample with respect to the reference gain is determined by Da=Ia/Ib×Db (1).
ホ 作用
上述した方法によつて任意の試料の測定結果を
基準ゲインにおける測定値に規格化することがで
きる。標準試料も他の任意の試料も全て上述した
方法で測定値を規格化しておくと、相互に統一的
に直接比較でき、定量分析が簡単になる。上の説
明で基準ゲインと云うのは具体的には光電子増倍
管に印加する負高電圧の或る値を基準に決めてお
くものであり、ハの項で述べた操作はコンピユー
タによる自動制御でソフト的に実行される。E. Effect By the method described above, the measurement result of any sample can be normalized to the measurement value at the reference gain. If the measured values of both the standard sample and any other sample are normalized using the method described above, they can be compared directly and uniformly, making quantitative analysis easier. In the above explanation, the reference gain is specifically determined based on a certain value of the negative high voltage applied to the photomultiplier tube, and the operation described in section C is automatically controlled by a computer. It is executed by software.
ヘ 実施例
第2図は本発明の一実施例を示す。Sは試料を
発光させる光源、Mは分光器、Pは光電子増倍
管、Aは増幅器で、Aの出力が前述した測光出力
であり、A/Dコンバータ1を介してコンピユー
タ2に読込まれ、コンピユータ2は読込んだ測光
出力のデータをメモリ3に格納する。Hは負高電
圧発生回路で、コンピユータ2からの制御信号に
よつて負高電圧を発生し、光電子増倍管Pに印加
している。Drは駆動装置で分光器Mの波長走査
機構を駆動する。Drはコンピユータ2によつて
制御されている。Embodiment FIG. 2 shows an embodiment of the present invention. S is a light source that causes the sample to emit light, M is a spectrometer, P is a photomultiplier tube, and A is an amplifier. The output of A is the photometric output described above, which is read into the computer 2 via the A/D converter 1 The computer 2 stores the read photometric output data in the memory 3. H is a negative high voltage generating circuit which generates a negative high voltage according to a control signal from the computer 2 and applies it to the photomultiplier tube P. Dr drives the wavelength scanning mechanism of the spectrometer M with a drive device. Dr is controlled by computer 2.
第3図はコンピユータ2の動作の要部のフロー
チヤートである。装置をスタートさせると、基準
負高電圧の指示信号を負高電圧発生回路Hに出力
し、光電子増倍管Pに基準負高圧を印加(イ)し、分
光器を指定された波長範囲で駆動し、第1図Aの
データをサンプリングしてメモリ3に格納(ロ)す
る。第1図Aのデータとは波長とそれに対応する
測光出力である。指定範囲の波長走査が終了した
らステツプ(ハ)で測光出力が飽和していたか否かチ
エツクする。飽和していなければ(YES)、基準
負高圧でのデータが得られているわけだから動作
は終了する。(ハ)のステツプがNOのとき、前記ニ
項で述べた所により、スペクトル線のピーク位置
つまり第1図のc点の波長を算出(ニ)し、飽和範囲
の外側で飽和域に最も近いサンプリング点第1図
dの測光データIaをメモリ3から索出し、レジス
タに記憶しておく(ホ)。次に波長c点で負高電圧を
測光出力が飽和値以下になる迄調節する(ヘ)。そし
てそのときの測光出力第1図BのDbを読込む(ト)。
次に第1図のd点の波長において測光出力Ibを採
取(チ)し、先に取出してあるIaのデータとDaのデ
ータを用い前記(1)式の演算を行つてDaを算出(リ)
し、Daを規格化された分析データとして記憶(ヌ)
して動作を終る。 FIG. 3 is a flowchart of the main part of the operation of the computer 2. When the device is started, a reference negative high voltage instruction signal is output to the negative high voltage generation circuit H, a reference negative high voltage is applied to the photomultiplier tube P (A), and the spectrometer is driven in the specified wavelength range. Then, the data shown in FIG. 1A is sampled and stored in the memory 3 (b). The data in FIG. 1A are wavelengths and their corresponding photometric outputs. When the wavelength scanning of the specified range is completed, it is checked in step (c) whether the photometric output is saturated. If it is not saturated (YES), the operation ends because data is obtained at the reference negative high pressure. When step (c) is NO, calculate the peak position of the spectral line, that is, the wavelength of point c in Figure 1, as described in section d above (d), and calculate the wavelength that is outside the saturation range and is closest to the saturation range. The photometric data Ia at the sampling point d in FIG. 1 is retrieved from the memory 3 and stored in the register (e). Next, adjust the negative high voltage at the wavelength point c until the photometric output falls below the saturation value (f). Then, read the photometric output Db in Figure 1B at that time (g).
Next, collect the photometric output Ib at the wavelength of point d in Figure 1, and use the data Ia and Da that were taken out earlier to calculate Da by calculating the equation (1) above. )
and store Da as standardized analysis data (nu)
to end the operation.
以上は一個のスペクトルピークについて述べた
が、複数のピークについても、個々のピークにつ
いて順次上述した動作を繰返して行けばよい。 Although the above description has been made regarding one spectral peak, the above-described operation may be repeated for each peak in sequence for a plurality of peaks as well.
ト 効果
本発明によれば標準試料も分析試料も全て規格
化された測定データが得られるので、直ちに相互
比較ができ、定量分析が簡単になると共に、濃度
差の大きい試料でも一律に即ち濃度ランクによつ
て、一々測光系の測定を切換えると云つた面倒さ
なしに分析を行うことができ、オペレータの操作
上の負担が軽減される。Effects According to the present invention, standardized measurement data for both standard samples and analysis samples can be obtained, so mutual comparisons can be made immediately, quantitative analysis is simplified, and concentration ranks can be uniformly determined even for samples with large concentration differences. Accordingly, analysis can be performed without the trouble of switching the measurements of the photometric system every time, and the operational burden on the operator is reduced.
第1図は本発明方法を説明するグラフ、第2図
は本発明の一実施例の装置のブロツク図、第3図
は同実施例におけるコンピユータの動作の要部の
フローチヤートである。
FIG. 1 is a graph explaining the method of the present invention, FIG. 2 is a block diagram of an apparatus according to an embodiment of the present invention, and FIG. 3 is a flowchart of essential parts of the operation of a computer in the same embodiment.
Claims (1)
スペクトルを測定記憶し、その測定においてスペ
クトルピークの測定出力が飽和しているときは、
飽和が解消するまで測光系のゲインを下げ、上記
飽和範囲の外側で飽和範囲の端に近い波長点での
基準ゲインにおける測定出力とゲインを下げた後
の測定出力の比を算出し、ゲインを下げた後のス
ペクトルピークの測定値に上記比を掛算して基準
ゲインにおけるスペクトルピークの測定値を算出
することを特徴とする測定データを規格化する発
光分光分析方法。1 Set the gain of the photometry system to the reference value, measure and store the spectrum of the sample, and when the measurement output of the spectrum peak is saturated in the measurement,
Lower the gain of the photometry system until saturation is eliminated, calculate the ratio of the measured output at the reference gain at a wavelength point outside the saturation range and close to the edge of the saturation range, and the measured output after lowering the gain, and then calculate the gain. 1. An emission spectroscopic analysis method for normalizing measured data, characterized in that a measured value of a spectral peak at a reference gain is calculated by multiplying a measured value of a spectral peak after lowering by the above ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22872984A JPS61107142A (en) | 1984-10-30 | 1984-10-30 | Luminous spectrum analysis for standardizing measured data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22872984A JPS61107142A (en) | 1984-10-30 | 1984-10-30 | Luminous spectrum analysis for standardizing measured data |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61107142A JPS61107142A (en) | 1986-05-26 |
JPH0566532B2 true JPH0566532B2 (en) | 1993-09-22 |
Family
ID=16880893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22872984A Granted JPS61107142A (en) | 1984-10-30 | 1984-10-30 | Luminous spectrum analysis for standardizing measured data |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61107142A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5251729B2 (en) * | 2008-06-20 | 2013-07-31 | 株式会社島津製作所 | Spectrophotometer |
-
1984
- 1984-10-30 JP JP22872984A patent/JPS61107142A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61107142A (en) | 1986-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0063431B1 (en) | Spectroscopic analyzer system | |
EP0091126B1 (en) | Fluorimeter | |
JP2000283841A (en) | Method and device for wavelength calibration of light spectrum analyzer | |
JPS6337224A (en) | Fluorescent spectrophotometer | |
US4946279A (en) | Flourescence spectrophotometer for measuring fluorescent light of a plurality of wavelength conditions | |
JP4324701B2 (en) | Optical emission spectrometer | |
JP2011232106A (en) | Icp optical emission spectrometer | |
JP3207882B2 (en) | Spectral fluorometer spectral correction method and spectral fluorometer with spectrum correction function | |
JPH1048161A (en) | X-ray analyzer | |
JPH0566532B2 (en) | ||
JPH0247542A (en) | Quantitative analysis using x-ray spectroscope | |
JPS6350656B2 (en) | ||
JP2926857B2 (en) | X-ray qualitative analyzer | |
JP2522224B2 (en) | X-ray fluorescence analysis method | |
JP4450750B2 (en) | Fluorescence analyzer | |
JPH04125430A (en) | Multiple wavelength spectrophotometer | |
JPS6126846A (en) | Method for analyzing sample by x-ray microanalyzer | |
JP3624587B2 (en) | Fluorescence measuring device | |
RU2082960C1 (en) | Laser gas analyzer | |
EP0227038A2 (en) | Atomic absorption spectrophotometer | |
JPS638539A (en) | Fluorescence measuring apparatus | |
JP2508604B2 (en) | X-ray fluorescence analyzer | |
JP2003185498A (en) | Spectrophotometer | |
JP2002340822A (en) | Fluorescent x-ray analyzing device | |
JPH0943056A (en) | Instrument for measuring intensity of light |