JPH0566378A - Optical device - Google Patents

Optical device

Info

Publication number
JPH0566378A
JPH0566378A JP3227871A JP22787191A JPH0566378A JP H0566378 A JPH0566378 A JP H0566378A JP 3227871 A JP3227871 A JP 3227871A JP 22787191 A JP22787191 A JP 22787191A JP H0566378 A JPH0566378 A JP H0566378A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal element
interference fringes
deformation
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3227871A
Other languages
Japanese (ja)
Inventor
Atsushi Amako
淳 尼子
Hirotsuna Miura
弘綱 三浦
Tomio Sonehara
富雄 曽根原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3227871A priority Critical patent/JPH0566378A/en
Publication of JPH0566378A publication Critical patent/JPH0566378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To easily measure the shape or deformation of an unspecific body by utilizing the free programmability of a liquid crystal element. CONSTITUTION:Interference fringes which feature the body shape are formed on the image pickup surface of a camera 108 through the liquid crystal element 104 by using a laser light source 100 and a Michelson interferometer. The output of the camera 108 is converted from analog to digital and inputted to a computer 109. The interference fringe information inputted to the computer 109 is outputted to and displayed on the liquid crystal element 104 through a driving circuit 111 and the quantization and image processing of the fringe information are performed. Consequently, a hologram featuring the body shape is recorded on the liquid crystal element 104. If the body deforms, the shape of a body wave front also deforms, so interference fringes are obtained between the body wave fronts reproduced from the hologram before and after the deformation. The interference fringes are analyzed by a fringe scanning method to find the quantity of deformation of the body outside a surface. A TV monitor 110 displays the interference fringes showing the deformation of the body in real time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶素子を応用した光
学装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device to which a liquid crystal element is applied.

【0002】[0002]

【従来の技術】物体形状あるいはその変化を計測する手
段として、ホログラフィ干渉計が広く利用されてきた。
ホログラフィ干渉計には、基準形状あるいは変形前の物
体形状を記録、再生する手段が必要であり、通常ホログ
ラムが用いられている。
2. Description of the Related Art Holographic interferometers have been widely used as means for measuring the shape of an object or its change.
The holographic interferometer requires a means for recording and reproducing the reference shape or the object shape before deformation, and usually a hologram is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、計測の対象が
変わるたびにホログラムを作り直さなければならず、こ
のために多くの工数を費やしていた。
However, the hologram has to be recreated every time the object of measurement changes, and a lot of man-hours are spent for this purpose.

【0004】本発明はこのような問題点を解決するもの
であって、その目的は、簡便な手段により物体形状を高
精度に計測できる汎用的な光学装置を提供するところに
ある。
The present invention solves such a problem, and an object thereof is to provide a general-purpose optical device capable of measuring an object shape with high accuracy by a simple means.

【0005】[0005]

【課題を解決するための手段】本発明の第1の光学装置
は、コヒーレント光源と、干渉計と、前記干渉計で得ら
れた干渉縞を入力する撮像素子と、前記干渉計の参照波
光路または物体波光路のどちらか一方に配置された、参
照波面と物体波面の間に位相差を与えるための液晶素子
と、前記干渉計の参照波面と物体波面が交叉する空間に
配置された、干渉縞を表示するための液晶素子と、前記
複数の液晶素子のアドレス手段と、前記撮像素子と前記
干渉縞を表示するため液晶素子を接続する回路を備えて
成ることを特徴とする。
A first optical device of the present invention is a coherent light source, an interferometer, an image pickup device for inputting interference fringes obtained by the interferometer, and a reference wave optical path of the interferometer. Alternatively, a liquid crystal element for providing a phase difference between the reference wavefront and the object wavefront, which is disposed in either one of the object wave optical paths, and the interference disposed in the space where the reference wavefront and the object wavefront of the interferometer intersect. It is characterized by comprising a liquid crystal element for displaying stripes, addressing means for the plurality of liquid crystal elements, and a circuit for connecting the image pickup element and the liquid crystal element for displaying the interference fringes.

【0006】本発明の第2の光学装置は、前記第1の光
学装置において、複数の液晶素子が、いずれも、光波の
位相のみを変調する液晶素子であることを特徴とする。
A second optical device of the present invention is characterized in that, in the first optical device, each of the plurality of liquid crystal elements is a liquid crystal element that modulates only a phase of a light wave.

【0007】本発明の第3の光学装置は、前記第1ない
し第2の光学装置において、干渉縞を出力するための液
晶素子がマトリクス駆動型液晶素子であることを特徴と
する。
A third optical device of the present invention is characterized in that, in the first and second optical devices, the liquid crystal element for outputting interference fringes is a matrix drive type liquid crystal element.

【0008】本発明の第4の光学装置は、前記第1ない
し第2の光学装置において、干渉縞を出力するための液
晶素子が光アドレス型液晶素子であることを特徴とす
る。
A fourth optical device of the present invention is characterized in that, in the first and second optical devices, the liquid crystal element for outputting interference fringes is a photo-addressable liquid crystal element.

【0009】[0009]

【実施例】以下では実施例にもとづき、本発明の内容に
ついて詳しく説明する。
EXAMPLES The contents of the present invention will be described in detail below based on examples.

【0010】(実施例1)図1に本実施例の光学装置の
構成を示す。レーザ光源100とマイケルソン型干渉計
(図中aは参照波、bは物体波)により、物体形状の特
徴を有する干渉縞を、液晶素子(A)104を介してカ
メラ108の撮像面上に形成する。参照波面にチルトを
つけるには、液晶素子(B)105を回転させる。カメ
ラ108の出力は、A/D変換され、コンピュータ10
9へ取り込まれる。この間、液晶素子(A)104およ
び液晶素子(B)105にはバイアス電圧のみを印加し
て、素子を通過する光波に位相変調がかからないように
する。
(Embodiment 1) FIG. 1 shows the configuration of an optical device of this embodiment. The laser light source 100 and the Michelson type interferometer (a in the drawing is a reference wave and b is an object wave) cause interference fringes having an object shape characteristic to be formed on the image pickup surface of the camera 108 via the liquid crystal element (A) 104. Form. In order to tilt the reference wavefront, the liquid crystal element (B) 105 is rotated. The output of the camera 108 is A / D converted, and the computer 10
9 is taken in. During this time, only the bias voltage is applied to the liquid crystal element (A) 104 and the liquid crystal element (B) 105 so that the light wave passing through the elements is not subjected to phase modulation.

【0011】つぎに、コンピュータ109へ取り込まれ
た干渉縞情報を、駆動回路111を介して、液晶素子
(A)104へ出力、表示する。表示された干渉縞の回
折効率を高めるために、液晶素子(A)104の特性お
よび処理時間に配慮しながら、縞情報の量子化や画像処
理を行う。これで、物体形状の特徴を有するホログラム
を液晶素子(A)104へ記録したことになる。物体が
変形すると物体波面の形も変化するので、ホログラムか
ら再生された変形前の物体波面と、変形後の物体波面の
あいだで干渉縞が得られる。この干渉縞を縞走査法(た
とえば、谷田貝豊彦:応用光学 光計測入門(丸善、1
988)、p.131参照)で解析すると、物体の面外
変形量が求まる。縞走査法には、図1の液晶素子(B)
105を位相シフタとして用いる。図中の112は液晶
素子(B)105の駆動回路である。 図1の構成で、
液晶素子(A)104とカメラ108の撮像面は、レン
ズ106を介して互いに共役な関係にある。また、不要
な回折波を除くために、レンズ106の焦点近傍に、空
間フィルタ107が配置されている。図中101、10
2は、それぞれビームエクスパンダ、コリメートレンズ
である。103は、波面を振幅分割するために用いたハ
ーフミラーである。110はTVモニタであり、物体の
変形をあらわす干渉縞を実時間で表示する。
Next, the interference fringe information fetched by the computer 109 is output to and displayed on the liquid crystal element (A) 104 via the drive circuit 111. In order to improve the diffraction efficiency of the displayed interference fringes, the fringe information is quantized and the image processing is performed while considering the characteristics of the liquid crystal element (A) 104 and the processing time. Thus, the hologram having the object shape feature is recorded in the liquid crystal element (A) 104. Since the shape of the object wavefront changes when the object deforms, interference fringes are obtained between the object wavefront before deformation reconstructed from the hologram and the object wavefront after deformation. The fringe scanning method is applied to this interference fringe (for example, Toyohiko Yatagai: Introduction to Applied Optical Measurement (Maruzen, 1
988), p.131), the amount of out-of-plane deformation of the object can be obtained. The fringe scanning method uses the liquid crystal element (B) of FIG.
105 is used as a phase shifter. Reference numeral 112 in the figure denotes a drive circuit for the liquid crystal element (B) 105. With the configuration of FIG.
The liquid crystal element (A) 104 and the imaging surface of the camera 108 are in a mutually conjugate relationship via the lens 106. Further, a spatial filter 107 is arranged near the focus of the lens 106 in order to remove unnecessary diffracted waves. 101, 10 in the figure
Reference numerals 2 are a beam expander and a collimating lens, respectively. Reference numeral 103 is a half mirror used for amplitude division of the wavefront. 110 is a TV monitor, which displays the interference fringes representing the deformation of the object in real time.

【0012】本実施例の液晶素子(A)104には、マ
トリクス駆動型液晶素子を用いた。この液晶素子は、各
画素にTFT(薄膜トランジスタ)素子を備え、画素間
のクロストークが小さく、かつ充分な階調性を備えてい
る。液晶分子の初期配向はホモジニアスであり、2π以
上の連続的な位相変調が可能である(第51回応用物理
学会講演予稿集26a−H−10参照)。他方、液晶素
子(B)105にはベタ電極構造の素子を用いた。液晶
素子(A)104と同じく、液晶分子の初期配向はホモ
ジニアスであり、2π以上の連続的かつ線形的な位相変
調が可能である。液晶素子(B)105は、参照波が入
射する面には反射防止膜が、反対側の面には反射増加膜
が付加されている。
As the liquid crystal element (A) 104 of this embodiment, a matrix drive type liquid crystal element is used. This liquid crystal element includes a TFT (thin film transistor) element in each pixel, has small crosstalk between pixels, and has sufficient gradation. The initial alignment of the liquid crystal molecules is homogeneous, and continuous phase modulation of 2π or more is possible (refer to the 51st Proceedings of the Applied Physics Society 26a-H-10). On the other hand, as the liquid crystal element (B) 105, an element having a solid electrode structure was used. Similar to the liquid crystal element (A) 104, the initial alignment of liquid crystal molecules is homogeneous, and continuous and linear phase modulation of 2π or more is possible. In the liquid crystal element (B) 105, an antireflection film is added to the surface on which the reference wave is incident, and a reflection increasing film is added to the opposite surface.

【0013】本実施例によれば、変形前の物体形状を参
照波面として記録する手段に、液晶素子を用いることに
より、参照波面データを変更するだけで不特定の物体の
形状あるいは変形を計測できるという新たな効果が生ま
れる。すなはち、液晶素子のプログラム自在性を活用し
た、汎用性のある装置を実現できる。
According to the present embodiment, by using a liquid crystal element as a means for recording the object shape before deformation as the reference wavefront, the shape or deformation of an unspecified object can be measured only by changing the reference wavefront data. A new effect is born. That is, it is possible to realize a versatile device that utilizes the programmability of the liquid crystal element.

【0014】(実施例2)図2に本実施例の光学装置の
構成を示す。この構成の特徴は、変形前の物体形状をホ
ログラム記録する手段として、光アドレス型液晶素子を
用いた点にある。物体の変形をあらわす干渉縞を発生さ
せる方法、ならびに、この干渉縞の解析の方法は、実施
例1の場合と同じである。
(Embodiment 2) FIG. 2 shows the configuration of the optical device of this embodiment. The feature of this configuration is that an optically addressable liquid crystal element is used as a means for hologram recording the object shape before deformation. The method of generating the interference fringes representing the deformation of the object and the method of analyzing the interference fringes are the same as those in the first embodiment.

【0015】本実施例の光アドレス型液晶素子201
は、ネマティック液晶をホモジニアス配向したものであ
り、実施例1で用いたマトリクス駆動型液晶素子と同様
に、連続的な位相変調を行う。光アドレス型液晶素子2
01は、50本/mm以上の空間分解能をもっている。こ
の液晶素子への信号のアドレスは、信号発生器203で
行う。信号発生器203はレーザスキャニング機構を備
え、カメラ108の出力からA/D変換、画像処理して
得られた2次元データを液晶素子201へ書き込む。な
お、2次元データを液晶素子201へ書き込む手段とし
て、CRT表示体や液晶表示体を用いることもできる。
Photo-addressable liquid crystal element 201 of this embodiment
Is a nematic liquid crystal that is homogeneously aligned, and performs continuous phase modulation similarly to the matrix drive type liquid crystal element used in the first embodiment. Photo-addressable liquid crystal element 2
01 has a spatial resolution of 50 lines / mm or more. A signal generator 203 addresses a signal to the liquid crystal element. The signal generator 203 has a laser scanning mechanism, and writes the two-dimensional data obtained by A / D conversion and image processing of the output of the camera 108 to the liquid crystal element 201. A CRT display body or a liquid crystal display body can be used as a means for writing the two-dimensional data into the liquid crystal element 201.

【0016】本実施例によれば、光アドレス型液晶素子
を用いることによって、参照波面が忠実に再生され、
画素配列に起因する高次回折波が発生しなくなる。こ
れらの理由により、実施例1に比べて計測精度が向上す
る。
According to this embodiment, the reference wavefront is reproduced faithfully by using the photo-addressable liquid crystal element.
Higher-order diffracted waves due to the pixel arrangement are not generated. For these reasons, the measurement accuracy is improved compared to the first embodiment.

【0017】(実施例3)図3に本実施例の光学装置の
構成を示す。レーザ光源100とフィゾー型干渉計によ
り、物体形状の特徴を有する干渉縞をカメラの撮像面上
に形成する。参照波面にチルトをつけるには、液晶素子
(B)304を回転させる。カメラ108の出力は、A
/D変換され、コンピュータ109へ取り込まれる。こ
の間、液晶素子(A)104と液晶素子(B)304に
はバイアス電圧のみを印加して、素子を通過する光波に
位相変調がかからないようにする。図3の構成で、液晶
素子(A)104とカメラ108の撮像面は、レンズ1
06を介して互いに共役な関係にある。また、不要な回
折波を除くために、レンズ106の焦点近傍に、空間フ
ィルタ107が配置されている。
(Embodiment 3) FIG. 3 shows the configuration of an optical device of this embodiment. The laser light source 100 and the Fizeau interferometer form interference fringes having an object shape feature on the imaging surface of the camera. To tilt the reference wavefront, the liquid crystal element (B) 304 is rotated. The output of the camera 108 is A
/ D converted and taken into the computer 109. During this time, only the bias voltage is applied to the liquid crystal element (A) 104 and the liquid crystal element (B) 304 so that the light wave passing through the elements is not phase-modulated. In the configuration of FIG. 3, the liquid crystal element (A) 104 and the imaging surface of the camera 108 are the lens 1
It is in a mutually conjugate relationship via 06. Further, a spatial filter 107 is arranged near the focus of the lens 106 in order to remove unnecessary diffracted waves.

【0018】本実施例の液晶素子(A)104ならびに
(B)304は、どちらも、施例1で使用したものと同
じである。液晶素子(A)104と(B)304は、共
通の光軸上に配置されていて、レンズ301とレンズ3
03で構成される共焦点結像系によって、互いに共役な
関係で結ばれている。この共焦点結像系の横倍率は目的
に合わせて、自由に選ぶことができる。レンズ301と
303の間には、空間フィルタ302を配置して、不要
な光波を除いている。物体の変形をあらわす干渉縞を発
生させる方法は、実施例1あるいは実施例2と同じであ
る。また、縞走査法で物体の変形量を算出する過程で
は、位相シフトを物体波面に与える点だけが実施例1あ
るいは実施例2と異なる。
Both the liquid crystal elements (A) 104 and (B) 304 of this embodiment are the same as those used in the first embodiment. The liquid crystal elements (A) 104 and (B) 304 are arranged on a common optical axis, and the lens 301 and the lens 3 are arranged.
The confocal image forming system 03 is connected to each other in a conjugate relationship. The lateral magnification of this confocal imaging system can be freely selected according to the purpose. A spatial filter 302 is arranged between the lenses 301 and 303 to remove unnecessary light waves. The method of generating the interference fringes representing the deformation of the object is the same as in the first or second embodiment. Further, the process of calculating the deformation amount of the object by the fringe scanning method is different from the first or second embodiment only in that a phase shift is given to the object wavefront.

【0019】本実施例によれば、共通光路型の光学配置
を採用することによって、空気ゆらぎ等の外乱に影響さ
れにくくなるため、実施例1に比べて計測精度が一段と
向上する。
According to the present embodiment, by adopting the common optical path type optical arrangement, it is less likely to be affected by disturbance such as air fluctuation, so that the measurement accuracy is further improved as compared with the first embodiment.

【0020】(実施例4)図4に本実施例の光学装置の
構成を示す。この構成の特徴は、変形前の物体形状のホ
ログラムを記録する手段として、光アドレス型液晶素子
を用いた点にある。
(Embodiment 4) FIG. 4 shows the configuration of the optical device of this embodiment. The feature of this configuration is that an optically addressable liquid crystal element is used as a means for recording the hologram of the object shape before deformation.

【0021】本実施例の液晶素子(A)203は、実施
例2で使用したものと同じである。他方、液晶素子
(B)304は、実施例3で使用したものと同じであ
る。液晶素子(A)203と液晶素子(B)304が共
焦点結像系によって互いに共役な関係で結ばれている点
も、実施例3の構成と同じである。この他の構成につい
ても、液晶素子(A)203のアドレス手段が異なる点
をのぞいては実施例3の構成と共通である。
The liquid crystal element (A) 203 of this embodiment is the same as that used in the second embodiment. On the other hand, the liquid crystal element (B) 304 is the same as that used in Example 3. The point that the liquid crystal element (A) 203 and the liquid crystal element (B) 304 are connected by a confocal imaging system in a mutually conjugate relationship is also the same as the configuration of the third embodiment. Other configurations are also the same as the configurations of the third embodiment except that the address means of the liquid crystal element (A) 203 is different.

【0022】物体の変形をあらわす干渉縞を発生させる
方法は、実施例1ないし実施例3の場合と同じである。
また、縞走査法で物体の変形量を算出する過程も、実施
例3と同じである。
The method of generating the interference fringes representing the deformation of the object is the same as in the first to third embodiments.
The process of calculating the deformation amount of the object by the stripe scanning method is also the same as in the third embodiment.

【0023】本実施例によれば、共通光路型の干渉計を
採用することと、光アドレス型液晶素子を用いることに
よって、外乱に影響されにくくなり、参照波面が忠
実に再生され、画素配列に起因する高次回折波が発生
しなくなる。これらの理由により、実施例1ないし実施
例3に比べて計測精度が一段と向上する。
According to the present embodiment, by adopting the common optical path type interferometer and using the photo-addressable liquid crystal element, it becomes difficult to be affected by disturbance, the reference wave front is reproduced faithfully, and the pixel array is formed. Higher-order diffracted waves due to this are not generated. For these reasons, the measurement accuracy is further improved as compared with the first to third embodiments.

【0024】[0024]

【発明の効果】上記の実施例では、本発明を物体の変形
の計測へ応用した時の効果について述べてきた。この他
にも、参照物体に対する被験物体の形状誤差を計測する
用途でも、本発明は大きな効果を示す。
The above embodiments have described the effects when the present invention is applied to the measurement of the deformation of an object. In addition to this, the present invention also shows a great effect in the application of measuring the shape error of the test object with respect to the reference object.

【0025】本発明によれば、液晶素子のプログラム自
在性を活用して、不特定の物体の形状あるいは変形を容
易に計測することができる。本発明の光学装置は、たと
えば部品製造現場におけるオンマシン計測の手段とし
て、幅広く利用できる。
According to the present invention, it is possible to easily measure the shape or deformation of an unspecified object by utilizing the programmability of the liquid crystal element. The optical device of the present invention can be widely used, for example, as a means for on-machine measurement at a component manufacturing site.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の構成を示す平面図であ
る。
FIG. 1 is a plan view showing a configuration of a first embodiment of the present invention.

【図2】 本発明の実施例2の構成を示す平面図であ
る。
FIG. 2 is a plan view showing a configuration of a second embodiment of the present invention.

【図3】 本発明の実施例3の構成を示す平面図であ
る。
FIG. 3 is a plan view showing a configuration of a third embodiment of the present invention.

【図4】 本発明の実施例4の構成を示す平面図であ
る。
FIG. 4 is a plan view showing a configuration of a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100・・・・・・レーザ光源 101・・・・・・ビームエクスパンダ 102・・・・・・コリメートレンズ 103・・・・・・ハーフミラー 104・・・・・・液晶素子(A) 105・・・・・・液晶素子(B) 106・・・・・・レンズ 107・・・・・・空間フィルタ 108・・・・・・カメラ 109・・・・・・コンピュータ 110・・・・・・TVモニタ 111・・・・・・液晶素子(A)の駆動回路 112・・・・・・液晶素子(B)の駆動回路 113・・・・・・物体表面 201・・・・・・液晶素子(A) 202・・・・・・ハーフミラー 203・・・・・・液晶素子(A)の信号発生器 301・・・・・・レンズ 302・・・・・・空間フィルタ 303・・・・・・レンズ 304・・・・・・液晶素子(B) 305・・・・・・ミラー 401・・・・・・ハーフミラー Laser source 101 Beam expander 102 Collimator lens 103 Half mirror 104 Liquid crystal element (A) 105 Liquid crystal element (B) 106 Lens 107 Spatial filter 108 Camera 109 Computer 110 · TV monitor 111 ··· liquid crystal element (A) drive circuit 112 ··· liquid crystal element (B) drive circuit 113 ··· object surface 201 ··· liquid crystal Element (A) 202 ... Half mirror 203. Signal generator of liquid crystal element (A) 301 .. Lens 302 .. Spatial filter 303 ..・ ・ ・ Lens 304 ・ ・ ・ ・ ・ ・ Liquid crystal element (B 305 ...... mirror 401 ...... half mirror

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】物体形状あるいは物体形状の変化を計測す
る技術に関し、コヒーレント光源と、干渉計と、前記干
渉計で得られた干渉縞を入力する撮像素子と、前記干渉
計の参照波光路または物体波光路のどちらか一方に配置
された、参照波面と物体波面の間に位相差を与えるため
の液晶素子と、前記干渉計の参照波面と物体波面が交叉
する空間に配置された、干渉縞を表示するための液晶素
子と、前記複数の液晶素子のアドレス手段と、前記撮像
素子と前記干渉縞を表示するため液晶素子を接続する回
路を備えて成ることを特徴とする光学装置。
1. A technique for measuring an object shape or a change in an object shape, comprising a coherent light source, an interferometer, an image sensor for inputting interference fringes obtained by the interferometer, and a reference wave optical path of the interferometer. A liquid crystal element for providing a phase difference between the reference wavefront and the object wavefront, which is arranged in either one of the object wave optical paths, and interference fringes arranged in a space where the reference wavefront and the object wavefront of the interferometer intersect. An optical device comprising: a liquid crystal element for displaying a liquid crystal display, addressing means for the plurality of liquid crystal elements, and a circuit connecting the liquid crystal element for displaying the image pickup element and the interference fringes.
【請求項2】前記複数の液晶素子が、いずれも、光波の
位相のみを変調する液晶素子であることを特徴とする請
求項1に記載の光学装置。
2. The optical device according to claim 1, wherein each of the plurality of liquid crystal elements is a liquid crystal element that modulates only a phase of a light wave.
【請求項3】前記、干渉縞を出力するための液晶素子が
マトリクス駆動型液晶素子であることを特徴とする請求
項1ないし2に記載の光学装置。
3. The optical device according to claim 1, wherein the liquid crystal element for outputting the interference fringe is a matrix drive type liquid crystal element.
【請求項4】前記、干渉縞を出力するための液晶素子が
光アドレス型液晶素子であることを特徴とする請求項1
ないし2に記載の光学装置。
4. The liquid crystal element for outputting the interference fringes is an optically addressed liquid crystal element.
The optical device according to any one of items 1 to 3.
JP3227871A 1991-09-09 1991-09-09 Optical device Pending JPH0566378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3227871A JPH0566378A (en) 1991-09-09 1991-09-09 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3227871A JPH0566378A (en) 1991-09-09 1991-09-09 Optical device

Publications (1)

Publication Number Publication Date
JPH0566378A true JPH0566378A (en) 1993-03-19

Family

ID=16867660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3227871A Pending JPH0566378A (en) 1991-09-09 1991-09-09 Optical device

Country Status (1)

Country Link
JP (1) JPH0566378A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153573A (en) * 2004-11-26 2006-06-15 Laserfront Technologies Inc Interferometer
JP2010025922A (en) * 2008-06-20 2010-02-04 Nikon Corp Interference device
US10344724B2 (en) 2015-06-10 2019-07-09 Denso Corporation High-pressure pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153573A (en) * 2004-11-26 2006-06-15 Laserfront Technologies Inc Interferometer
JP2010025922A (en) * 2008-06-20 2010-02-04 Nikon Corp Interference device
US10344724B2 (en) 2015-06-10 2019-07-09 Denso Corporation High-pressure pump

Similar Documents

Publication Publication Date Title
US5497254A (en) Optical apparatus including a liquid crystal modulator
US5426521A (en) Aberration correction method and aberration correction apparatus
US20130070251A1 (en) Systems and Methods of Dual-Plane Digital Holographic Microscopy
US5166742A (en) Optical deformation measuring apparatus by double-writing speckle images into a spatial light modulator
JPH0746045B2 (en) Speckle interferometry deformation measurement method
Zhao et al. An interferometric method for local phase modulation calibration of LC-SLM using self-generated phase grating
Bühl et al. Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra
JPH0566378A (en) Optical device
Prakash et al. Real time out-of-plane vibration measurement/monitoring using Talbot interferometry
CN114812431B (en) High-precision interference detection system and method applied to rapid phase extraction
JP3401793B2 (en) Optical device
JPH0519225A (en) Optical device
CN111562089B (en) Detection method for transmission phase of micro-optical element
Tiwari et al. A compact and lens less digital holography setup for polarimetric analysis of spatial light modulator
Barbosa et al. Mapping of vibration amplitudes by time average holography in Bi12SiO20 crystals
JPH0619255B2 (en) Interferometer and interferometer for aspherical surface measurement by optical spatial light modulator using liquid crystal
JPH06235620A (en) Real-time measuring apparatus for shape of phase
Patorski Moiré methods in interferometry
JPH05323859A (en) Method and instrument for measuring actual time phase of electron beam holography
JPH0519224A (en) Optical device
JP7503972B2 (en) Shape measuring device
Zaperty et al. Multi SLMs holographic display with inclined plane wave illumination
Haist et al. A 14-channel multipoint vibrometry system using dynamic holography
Slangen et al. Nematic liquid crystals light valve calibration and application to phase shifting speckle interferometry
Molin Applications of whole field interferometry in mechanics and acoustics