JPH0566209A - Method for detecting defect on surface or inside of structure - Google Patents

Method for detecting defect on surface or inside of structure

Info

Publication number
JPH0566209A
JPH0566209A JP22801891A JP22801891A JPH0566209A JP H0566209 A JPH0566209 A JP H0566209A JP 22801891 A JP22801891 A JP 22801891A JP 22801891 A JP22801891 A JP 22801891A JP H0566209 A JPH0566209 A JP H0566209A
Authority
JP
Japan
Prior art keywords
defect
temperature
width
detecting
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22801891A
Other languages
Japanese (ja)
Inventor
Yoshizo Okamoto
芳三 岡本
Tomohisa Ito
友久 伊藤
Iku Owa
幾 大輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Chemical Industry Co Ltd
Original Assignee
Nitto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Chemical Industry Co Ltd filed Critical Nitto Chemical Industry Co Ltd
Priority to JP22801891A priority Critical patent/JPH0566209A/en
Publication of JPH0566209A publication Critical patent/JPH0566209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To judge the width and the depth of a defect and to enhance the detecting accuracy by estimating the actual width and the depth of the object surface of the defect in the same direction based on the temperature distribution in the direction of the object surface which is obtained with the temperature signal from an infrared- ray radiometer. CONSTITUTION:A running truck 3 is provided on the roof of a building 1 in order to heat an outer wall 1A. A gondola 7 is suspended through a winch 5 and a piece of wire 6 which are provided at the tip of an arm 4 extending from the truck 3. A hot-gas blowing means 8 is provided at the gondola 7. In this constitution, the suspending position of the gondola 7 and the position of the running truck 3 are adjusted. The height and the position of the horizontal direction of the gondola 7 are set. The surface of the outer wall 1A is heated with the hot-gas blowing means 8. The observing direction of an infrared-ray radiometer 2 is made to agree with the part of the outer wall 1A. The infrared-ray radiant energy from the part is detected. The detected signal is analyzed with an image analyzing device 20. The presence or absence of the defective part or its place in the region of the outer wall 1A is judged. The width and the depth of the defect can be also estimated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビルなどの構造物の表
面または内部欠陥、たとえばクラックの幅や深さを定量
的に検知する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitatively detecting the width or depth of a surface or internal defect of a structure such as a building, such as a crack.

【0002】[0002]

【従来の技術】構造物の長年の使用により、外壁にクラ
ックが生じたり、タイルの浮き上がりなどが生じると、
漏水や外壁またはタイルの剥落の危険性を生じる。した
がって、従来、これらを検知するために、木製ハンマー
などにより表面を叩いてその音により、作業員が判断す
る方法が知られている。
2. Description of the Related Art When a crack is generated on an outer wall or a tile is raised due to long-term use of a structure,
Risk of water leakage and flaking of exterior walls or tiles. Therefore, conventionally, in order to detect these, there has been known a method in which a worker hits the surface with a wooden hammer or the like and the operator judges based on the sound.

【0003】しかし、これでは作業性が悪いばかりでな
く、信頼性に欠けるものである。
However, this not only results in poor workability, but also lacks reliability.

【0004】そこで、作業性に優れ、信頼性が高い欠陥
の検出方法が模索されてきた。その一つに、構造物表面
からの放射エネルギーを赤外線放射計により検出して構
造物の欠陥の有無または個所を検知する方法がある。
Therefore, a method of detecting a defect which has excellent workability and high reliability has been sought. One of them is a method of detecting radiant energy from the surface of a structure with an infrared radiometer to detect the presence or absence of a defect or the location of the structure.

【0005】[0005]

【発明が解決しようとする課題】なるほど、この方法
は、基本的に優れた方法であることは知られており、そ
の改良についても、種々の提案がなされている。
It is known that this method is basically an excellent method, and various improvements have been proposed.

【0006】しかし、構造物の表面からの放射エネルギ
ーを検出して、たとえばCRT表示装置に表示したとし
ても、検査員が目視により、欠陥であるか否かを判断す
るのみで、実際の欠陥の性状との関係は判断できなかっ
た。また、その欠陥の有無の判断すら検査員の感に頼る
ことが多く、したがって検査ミスを生じ易く、誤って正
常部を修理のために剥離することもある。
However, even if the radiant energy from the surface of the structure is detected and displayed on, for example, a CRT display device, the inspector only visually determines whether or not the defect is present, and the actual defect is detected. The relationship with the property could not be determined. Further, even if it is judged whether or not there is a defect, the inspector often relies on the feeling of the inspector, so that an inspection error is likely to occur and the normal portion may be erroneously peeled for repair.

【0007】そこで、本発明の主たる課題は、単に欠陥
の有無のみを判断するのでなく、一歩進んでその欠陥の
幅および深さを判断できるようにするとともに、検知精
度をより高めることにある。
Therefore, the main object of the present invention is to not only judge the presence or absence of a defect but also to make a step forward to judge the width and depth of the defect and further improve the detection accuracy.

【0008】[0008]

【課題を解決するための手段】上記課題は、構造物表面
からの放射エネルギーを赤外線放射計により検出して構
造物の欠陥を検知する方法において、前記赤外線放射計
からの放射温度信号から得られる対象面方向の温度分布
に基づいて、前記欠陥の対象面の同方向の実幅と深さを
推定することで解決できる。
The above-mentioned object is obtained from a radiation temperature signal from the infrared radiometer in a method of detecting a defect of the structure by detecting the radiant energy from the surface of the structure with an infrared radiometer. This can be solved by estimating the actual width and depth of the defect in the target surface in the same direction based on the temperature distribution in the target surface direction.

【0009】また、前記温度分布を示す曲線における変
曲点間の幅に係数(=1/2〜1/4)を乗算して欠陥
部の実幅とすることが適切である。
Further, it is appropriate to multiply the width between the inflection points in the curve showing the temperature distribution by a coefficient (= 1/2 to 1/4) to obtain the actual width of the defective portion.

【0010】さらに、太陽光による自然加熱または対象
面を人為的に加熱したときの加熱過程または加熱停止に
よる於冷状態の冷却過程における、欠陥部分の表面温度
Tcと無欠陥部分の表面温度Tsとの温度差ΔTcの変
化度合いに基づいて、欠陥の深さを推定することができ
る。この場合、前記温度差ΔTcの加熱開始からの温度
差変化曲線において、加熱開始時点から温度差上昇率が
安定する時点までの時間差に基づいて欠陥の深さを推定
することが好ましい。
Further, the surface temperature Tc of the defective portion and the surface temperature Ts of the non-defect portion during the natural heating by sunlight or the heating process when the target surface is artificially heated or the cooling process in the cold state by stopping the heating. The depth of the defect can be estimated based on the degree of change in the temperature difference ΔTc. In this case, in the temperature difference change curve from the start of heating of the temperature difference ΔTc, it is preferable to estimate the depth of the defect based on the time difference from the start of heating to the time when the rate of increase in temperature difference stabilizes.

【0011】[0011]

【作用】本発明者は、後述する種々の実験結果から、赤
外線放射計からの放射温度信号から得られる対象面方向
の温度分布を示す曲線における変曲点間の幅が、内部欠
陥の対象面の同方向の実幅(実幅寸法)と相関があるこ
とを知見した。また、前記変曲点間の幅に係数(=1/
2〜1/4)を乗算して欠陥部の実幅とすることが適切
であることも知見した。
From the results of various experiments to be described later, the present inventor has found that the width between the inflection points in the curve showing the temperature distribution in the direction of the target surface obtained from the radiation temperature signal from the infrared radiometer is the target surface of the internal defect. It was found that there is a correlation with the actual width (actual width dimension) in the same direction. In addition, the width of the inflection point has a coefficient (= 1 /
It was also found that it is appropriate to multiply by 2 to 1/4) to obtain the actual width of the defective portion.

【0012】さらに、欠陥の深さについては、太陽光に
よる自然昇温であれ、対象面を人為的に加熱して、その
加熱または冷却過程における、欠陥部分の表面温度Tc
と無欠陥部分の表面温度Tsとの温度差ΔTcの変化度
合いに基づいて、欠陥の深さを推定することができる。
この場合、前記温度差ΔTcの加熱開始からの温度差変
化曲線において、加熱開始時点から温度差上昇率が安定
する時点までの時間差に基づいて欠陥の深さを推定する
ことが望ましい。なお、本発明において、欠陥の幅と
は、その方向を問われない。
Further, regarding the depth of the defect, the surface temperature Tc of the defect portion in the heating or cooling process of artificially heating the target surface, even if it is a natural temperature rise by sunlight,
The defect depth can be estimated based on the degree of change of the temperature difference ΔTc between the surface temperature Ts of the defect-free portion and the surface temperature Ts.
In this case, in the temperature difference change curve from the start of heating of the temperature difference ΔTc, it is desirable to estimate the depth of the defect based on the time difference from the start of heating to the time when the rate of increase in temperature difference stabilizes. In the present invention, the width of the defect does not matter in its direction.

【0013】[0013]

【実施例】以下本発明を図面を参照しながら具体的に説
明する。まず、本発明の欠陥検出装置の概要を説明する
と、図1において、1は構造物としてのビルで、その外
壁1Aを睨む赤外線放射計2が地上に設置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. First, the outline of the defect detection apparatus of the present invention will be described. In FIG. 1, reference numeral 1 is a building as a structure, and an infrared radiometer 2 that gazes at an outer wall 1A thereof is installed on the ground.

【0014】赤外線放射計2はその上下左右角度に調整
自在に設置されている。また、外壁1Aを加熱するため
に、ビル1の屋上に屋上走行台車3が設けられ、それか
ら張り出したアーム4の先端に設けられた吊り下げウイ
ンチ5およびワイヤー6を介してゴンドラ7が吊り下げ
られ、このゴンドラ7に熱ガス吹付手段8が設けられて
いる。
The infrared radiometer 2 is installed so as to be vertically and horizontally adjustable. Further, in order to heat the outer wall 1A, a roof traveling carriage 3 is provided on the roof of the building 1, and a gondola 7 is suspended through a suspension winch 5 and a wire 6 provided at the tip of an arm 4 protruding from the roof. The gondola 7 is provided with hot gas spraying means 8.

【0015】熱ガス吹付手段8は、好ましくは図2に示
すように、ゴンドラ7中に外壁1Aの面に平行な方向に
敷設された走行レール9に沿って横行自在とされる。こ
の横行には、熱ガス吹付台車10に設けられた横行用駆
動モーター11によりレール9に接触するローラー12
を回転させることにより行われる。13A、13Bは横
行用ストッパーである。他方、熱ガス吹付手段8を外壁
1Aに接離させるために、図3に示すように、前記熱ガ
ス吹付台車10の基台10A上に敷設された前後進用レ
ール14上に副台車10Bが前後進用駆動モーター15
により前後進自在とされている。この前後進に際して
は、たとえば図示のように、副車輪16を回転させるこ
とにより行われる。仮想線で図示されている17は横行
用車輪である。さらに、ある高さ範囲全体を加熱するた
めに、熱ガス吹付手段8は、上下に首振り自在とされて
いる。この首振りは、首振り用モーター18により、熱
ガス吹付手段8の支持軸8aを回転させることにより行
われるように構成されている。
As shown in FIG. 2, the hot gas spraying means 8 is preferably traversable along a running rail 9 laid in the gondola 7 in a direction parallel to the surface of the outer wall 1A. In this traverse, a roller 12 that comes into contact with the rail 9 by a traverse drive motor 11 provided in the hot gas blowing carriage 10 is provided.
By rotating. Reference numerals 13A and 13B are traverse stoppers. On the other hand, in order to bring the hot gas blowing means 8 into and out of contact with the outer wall 1A, as shown in FIG. Forward / reverse drive motor 15
It is supposed to be able to move forward and backward. This forward / backward movement is performed, for example, by rotating the auxiliary wheel 16 as illustrated. Reference numeral 17 shown by an imaginary line is a traverse wheel. Furthermore, in order to heat the entire height range, the hot gas blowing means 8 can be swung vertically. The swinging is performed by rotating the support shaft 8a of the hot gas blowing means 8 by the swinging motor 18.

【0016】一方、地上に配置された赤外線放射計2
も、外壁1Aに平行な走行レール19に沿って平行移動
させることが望ましい。さらに、赤外線放射計2による
検出信号は、信号処理装置を備えた画像解析装置20に
入力し、さらにその信号をCRT表示装置21などの表
示装置に表示したり、フレキシブルディスクなどに記録
するようになっている。
On the other hand, an infrared radiometer 2 placed on the ground
Also, it is desirable to translate the traveling rail 19 parallel to the outer wall 1A. Further, the detection signal from the infrared radiometer 2 is input to an image analysis device 20 equipped with a signal processing device, and the signal is further displayed on a display device such as a CRT display device 21 or recorded on a flexible disk or the like. Is becoming

【0017】このように構成された装置においては、所
定の高さおよび水平方向位置にゴンドラ7が、その吊り
下げ位置および屋上走行台車位置を調節することにより
設定される。次いで、熱ガス吹付手段8により、外壁1
A表面に熱ガスが吹き付けられ加熱される。この当該外
壁1A部分に一致するように赤外線放射計2の視方向が
調節され、熱ガス吹付手段8による加熱開始時点からま
たは所定時間経過後から、外壁1Aからの赤外線放射エ
ネルギーを赤外線放射計2により検出する。この検出信
号は画像解析装置20により画像解析し、主に現在の赤
外線放射計2の視方向信号から判断した当該外壁1A領
域の欠陥部分の有無またはその個所を、判断する。
In the apparatus thus constructed, the gondola 7 is set at a predetermined height and horizontal position by adjusting the hanging position and the roof traveling vehicle position. Then, by the hot gas spraying means 8, the outer wall 1
Hot gas is blown onto the surface A to heat it. The visual direction of the infrared radiometer 2 is adjusted so as to coincide with the outer wall 1A portion, and the infrared radiant energy from the outer wall 1A is transferred from the outer wall 1A after the start of heating by the hot gas blowing means 8 or after a lapse of a predetermined time. To detect. This detection signal is subjected to image analysis by the image analysis device 20, and the presence or absence of a defective portion in the outer wall 1A region or its location mainly determined from the current viewing direction signal of the infrared radiometer 2 is determined.

【0018】本発明においては、前記赤外線放射計2に
よって得た信号を次のように信号処理して、当該欠陥の
幅および深さを検知する。 <実験1>すなわち、予め厚み80mm、幅200 mm、長さ20
0 mmのモルタルサンプル板の中央部分に縦方向に沿って
幅b50mm、深さh13mm(背面から67mmまで)の空洞を人
工的に形成し、実際にビルの外壁1Aに、その表面が面
一となるように埋設し、熱ガス(熱流束量q=0.4 W/
cm2 )を用いて6分間強制加熱し、加熱停止から14分
後までの間2分間隔の冷却過程で、対象サンプルからの
放射エネルギーの放射温度分布を地上で調べたところ、
図4に示す結果が得られた。この結果は、第1には、加
熱を開始して2分後には欠陥部と正常部との温度差(分
布)が明瞭に現れないが、4分後特に6分後には明瞭に
現れること、第2にたとえば6分後の温度分布を示す曲
線における変曲点間の幅b’=105.3 mmは、欠陥部の実
幅b=50mmの約2倍であることが判明した。
In the present invention, the signal obtained by the infrared radiometer 2 is processed as follows to detect the width and depth of the defect. <Experiment 1> That is, the thickness is 80 mm, the width is 200 mm, and the length is 20 in advance.
A cavity with a width of b50 mm and a depth of h13 mm (from the back to 67 mm) was artificially formed in the central portion of a 0 mm mortar sample plate, and the surface was actually flush with the outer wall 1A of the building. And heat gas (heat flux q = 0.4 W /
cm 2 ), forcibly heating for 6 minutes, and during the cooling process at 2 minute intervals from the stop of heating to 14 minutes later, the radiation temperature distribution of the radiant energy from the target sample was investigated on the ground,
The results shown in FIG. 4 were obtained. The result is that, firstly, the temperature difference (distribution) between the defective portion and the normal portion does not appear clearly after 2 minutes from the start of heating, but clearly after 4 minutes, especially after 6 minutes, Second, for example, it was found that the width b '= 105.3 mm between the inflection points in the curve showing the temperature distribution after 6 minutes is about twice the actual width b = 50 mm of the defective portion.

【0019】<実験2および3>同様に、幅bのみを20
mmおよび10mmに代えた以外は同一の条件にて放射温度分
布を調べたところ、図5および図6にそれぞれ示す結果
を得た。この各場合の変曲点間の幅b’はそれぞれ72.2
mm、35mmであり、実幅b=20mm、10mmの3.61倍、3.5 倍
であった。いずれにしても、これらの結果の相関から、
実幅の変化に変曲点間の幅b’の変化が対応する。した
がって、逆に変曲点間の幅b’を知ることにより、係数
1/2〜1/4を乗じて実際の欠陥の幅を推定できる。
なお、詳述はしないが、構造物の実幅bが50mmであるこ
とは稀であり、通常は30mm以下であることからして、変
曲点間の幅b’に係数(=1/3〜1/4)を乗算して
実幅bとするのが実際的である。
<Experiments 2 and 3> Similarly, only the width b is 20
When the radiation temperature distribution was examined under the same conditions except that mm and 10 mm were used, the results shown in FIGS. 5 and 6 were obtained. The width b'between the inflection points in each case is 72.2
mm, 35 mm, and actual widths b = 20 mm, 3.61 times and 3.5 times 10 mm. In any case, from the correlation of these results,
The change in the width b ′ between the inflection points corresponds to the change in the actual width. Therefore, conversely, by knowing the width b'between the inflection points, the actual width of the defect can be estimated by multiplying the coefficient by 1/2 to 1/4.
Although not described in detail, since the actual width b of the structure is rarely 50 mm and is usually 30 mm or less, the width b ′ between the inflection points has a coefficient (= 1/3). It is practical to multiply by 1/4) to obtain the actual width b.

【0020】<実験4>一方、実験1と同一の条件の下
で、欠陥部分の表面温度Tcと無欠陥部分の表面温度T
sとの温度差ΔTc(=Tc−Ts)を調べたところ、
図7に示す結果を得た。この温度差は加熱停止2分後に
最大となり、やがて減少して行くことが判明した。
<Experiment 4> On the other hand, under the same conditions as in Experiment 1, the surface temperature Tc of the defect portion and the surface temperature T of the non-defect portion.
When the temperature difference ΔTc (= Tc−Ts) from s was examined,
The results shown in FIG. 7 were obtained. It was found that this temperature difference reached its maximum 2 minutes after the heating was stopped and then gradually decreased.

【0021】<実験5>かかる温度差を知ることは、種
々の判断に役立つ。すなわち、図8および図9は、ΔT
cと欠陥部の深さhまたは幅bとの相関を後者の1つを
パラメータとして示した実験結果のグラフである。な
お、結果は6分の加熱の後、1分冷却したときの温度差
である。この結果によると、実幅bが小さいほど、かつ
深さhが大きくなるほど温度差ΔTcは小さくなること
が判明する。したがって、熱流速一定の条件では幅のほ
か、この温度差ΔTcにより、欠陥の深さhを推定でき
る。 <実験6>さらに、ある同一の加熱条件の下で、ある同
一欠陥幅であって種々の深さの欠陥部を加熱したときの
放射温度の上昇は、図10に示すようになる。かかる温
度差ΔTcの加熱開始からの温度差変化曲線において、
加熱開始時点から温度差上昇率が安定する時点までの時
間差、たとえば変化率が一定となる点を通る接線と時間
軸との交点までの時間に基づいて欠陥部の深さを判定す
るのがより好適であることを知見した。
<Experiment 5> Knowing such a temperature difference is useful for various judgments. That is, in FIG. 8 and FIG.
6 is a graph of an experimental result showing the correlation between c and the depth h or width b of the defect portion with one of the latter as a parameter. The result is the temperature difference when heating for 6 minutes and then cooling for 1 minute. From this result, it is found that the temperature difference ΔTc becomes smaller as the actual width b becomes smaller and the depth h becomes larger. Therefore, under the condition that the heat flow rate is constant, the depth h of the defect can be estimated by the temperature difference ΔTc in addition to the width. <Experiment 6> Further, under a certain same heating condition, the radiation temperature rises when a defect portion having a certain defect width and various depths is heated, as shown in FIG. In the temperature difference change curve from the start of heating of the temperature difference ΔTc,
It is better to judge the depth of the defect based on the time difference from the start of heating to the time when the rate of rise in temperature difference stabilizes, for example, the time from the intersection of the tangent line passing through the point where the rate of change is constant and the time axis. It was found to be suitable.

【0022】他方、欠陥の判断に際して、構造物表面を
強制的に加熱するのが望ましい。太陽光により加温され
た表面についてその内部欠陥を検出する場合には、前述
のように、熱流束が小さいために、欠陥部と正常部との
間の温度差が顕著に現れるのに、長時間を要する。ま
た、外気の流れの変化や部屋内部の温度変化、さらに対
流などによる外壁内部の温度伝導干渉などの影響を受け
やすく、また、反対側のビルの外壁からの反射光の影響
もある。トンネルなどの太陽光を受けない地下構造物に
ついては検知が困難である。
On the other hand, it is desirable to forcibly heat the surface of the structure when judging defects. When detecting internal defects on a surface heated by sunlight, as described above, the temperature difference between the defective part and the normal part is prominent due to the small heat flux. It takes time. In addition, it is easily affected by changes in the flow of outside air, changes in the temperature inside the room, and thermal conduction interference inside the outside wall due to convection, and the effects of reflected light from the outside wall of the building on the opposite side. It is difficult to detect underground structures such as tunnels that do not receive sunlight.

【0023】したがって、測定対象面を強制的に加熱す
ることが望ましい。さらに、強制的に加熱することによ
り、その加熱過程およびまたは加熱停止後の冷却過程に
おける温度変化を捉え、最適な時点で欠陥の有無を検知
できる。また、加熱手段としては、ハロゲンランプなど
も用いることができるが、このハロゲンランプでは、反
射光の干渉を受けるとともに、熱流束も必ずしも充分で
ない。干渉を受けることがない点で、熱ガス吹き付け機
を用いるのが適している。
Therefore, it is desirable to forcibly heat the surface to be measured. Furthermore, by forcibly heating, it is possible to detect the temperature change in the heating process and / or the cooling process after the heating is stopped, and to detect the presence or absence of a defect at an optimum time. Also, a halogen lamp or the like can be used as the heating means, but this halogen lamp is not always sufficient in heat flux as well as receiving interference of reflected light. It is suitable to use a hot gas blowing machine because it does not suffer interference.

【0024】強制加熱温度としては、40〜100 ℃が好ま
しい。また、加熱速度も問題になるので、構造物表面や
躯体の材質、凹凸などの表面性状、背部における断熱材
の有無またはその材質などとの関連で、熱ガス吹付手段
からの噴出熱量を調整する、対象面との距離をたとえば
前述の前後進機構により調整するなどにより、表面への
単位時間当たりの入熱量を調節できる。強制加熱は、連
続的または間欠的に行うことができる。
The forced heating temperature is preferably 40 to 100 ° C. In addition, since the heating rate also becomes a problem, the amount of heat ejected from the hot gas blowing means is adjusted in relation to the material of the structure and the structure, the surface texture such as unevenness, the presence or absence of a heat insulating material in the back or the material thereof. The amount of heat input to the surface per unit time can be adjusted by adjusting the distance to the target surface by, for example, the forward / backward movement mechanism described above. Forced heating can be performed continuously or intermittently.

【0025】<実験7>他方、条件が揃えば、太陽光に
よる自然加熱での測定も充分行うことができる。図11
は、深さh=13mm、幅b=53mmの人工欠陥に対して、午
前8時から午後8時までの、欠陥部分の表面温度Tc、
無欠陥部分の表面温度Ts、およびそれらの温度差ΔT
c(=Tc−Ts)の経時変化を調べたものである。こ
の結果によれば、日中のみならず、冷却過程としての夕
方でも充分に温度差があり、かつ夕方が温度差が安定し
ていることが判る。
<Experiment 7> On the other hand, if the conditions are met, it is possible to sufficiently perform measurement by natural heating by sunlight. 11
Is the surface temperature Tc of the defect portion from 8:00 am to 8:00 pm for the artificial defect with depth h = 13 mm and width b = 53 mm,
Surface temperature Ts of defect-free portion and temperature difference ΔT between them
It is the result of examining the change with time of c (= Tc-Ts). According to this result, it is understood that there is a sufficient temperature difference not only during the daytime but also in the evening as the cooling process, and the temperature difference is stable in the evening.

【0026】<実験8>この際に、放射温度計からの信
号を画像処理して、幅方向および長さ方向の放射温度分
布の経時変化を調べることにより、欠陥の全体を知るこ
とができる。図12および図13は、深さh=20mm、幅
b=40mmおよび長さ=40mmの人工欠陥を形成したパネル
を、あるビルの3階部分に設置して、幅方向および長さ
方向の放射温度分布の経時変化を調べた結果を示したも
のである。この結果によれば、時間的に午後1時〜2時
ごろおよび午後8時ごろにおいて欠陥を明瞭に判断でき
ることが判る。特に、外壁の昇温過程のみならず、冷却
過程においても、放射温度分布における欠陥部分と非欠
陥部分との温度差が明確に現れる。また、欠陥の幅bの
みでなく、長さ方向についても放射温度分布を調べるこ
とで、欠陥の長さあるいは面積も判断できることが判明
した。 <実験9>太陽光による加熱(昇温)および冷却過程に
おいても、温度差ΔTcと、幅bと、深さhとの関係
は、図14に示す関係があり、これによっても幅および
深さを充分に推定できることが判明した。
<Experiment 8> At this time, the entire defect can be known by image-processing the signal from the radiation thermometer and examining the temporal changes in the radiation temperature distribution in the width direction and the length direction. Figures 12 and 13 show panels with artificial defects with depth h = 20 mm, width b = 40 mm, and length = 40 mm, installed on the third floor of a building and radiated in the width and length directions. It shows the results of examining the change over time in the temperature distribution. According to this result, it can be understood that the defects can be clearly judged from 1:00 to 2:00 pm and 8:00 pm. In particular, the temperature difference between the defect portion and the non-defect portion in the radiation temperature distribution clearly appears not only in the temperature rising process of the outer wall but also in the cooling process. It was also found that the length or area of the defect can be determined by examining the radiation temperature distribution not only in the width b of the defect but also in the length direction. <Experiment 9> The relationship between the temperature difference ΔTc, the width b, and the depth h has the relationship shown in FIG. It has been found that can be sufficiently estimated.

【0027】強制加熱でない場合には、太陽光の熱流
束、気温、気流の流速、放射温度計以外の温度計で直接
測定した壁温度などにより補正することができる。さら
に、いずれの場合にも、表面の材質、凹凸、反射率など
で補正することが好ましい。
If the heating is not forced, it can be corrected by the heat flux of sunlight, the air temperature, the flow velocity of the air flow, the wall temperature directly measured by a thermometer other than the radiation thermometer, and the like. Further, in any case, it is preferable to correct the surface material, unevenness, reflectance and the like.

【0028】本発明は、前述のビルの外壁の診断に限ら
ず、屋根、煙突、ダム、堤防、トンネル、橋梁、道路
(高架道路)、地下鉄などの診断に用いることができ
る。また、欠陥の性状として、亀裂、剥離、浮き上がり
などを検出できる。
The present invention can be used not only for the diagnosis of the outer wall of the building described above, but also for the diagnosis of roofs, chimneys, dams, dikes, tunnels, bridges, roads (overpasses), subways, and the like. Further, cracks, peeling, lifting, and the like can be detected as the property of the defect.

【0029】[0029]

【発明の効果】以上の通り、本発明によれば、単なる欠
陥の有無でなく、一歩進んでその欠陥の幅および深さを
判断できるとともに、信頼性の高いものとなるなどの利
点がもたらされる。
As described above, according to the present invention, not only the presence / absence of a defect but also the width and depth of the defect can be judged one by one and the reliability can be enhanced. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】欠陥検出設備の概要図である。FIG. 1 is a schematic diagram of defect detection equipment.

【図2】そのゴンドラの縦断面図である。FIG. 2 is a vertical sectional view of the gondola.

【図3】熱ガス吹付装置の設置例の概要図である。FIG. 3 is a schematic diagram of an installation example of a hot gas blowing device.

【図4】本発明の実験結果のグラフである。FIG. 4 is a graph of experimental results of the present invention.

【図5】本発明の実験結果のグラフである。FIG. 5 is a graph of experimental results of the present invention.

【図6】本発明の実験結果のグラフである。FIG. 6 is a graph of experimental results of the present invention.

【図7】本発明の実験結果のグラフである。FIG. 7 is a graph of experimental results of the present invention.

【図8】本発明の実験結果のグラフである。FIG. 8 is a graph of experimental results of the present invention.

【図9】本発明の実験結果のグラフである。FIG. 9 is a graph of experimental results of the present invention.

【図10】本発明の実験結果のグラフである。FIG. 10 is a graph of experimental results of the present invention.

【図11】本発明の実験結果のグラフである。FIG. 11 is a graph of experimental results of the present invention.

【図12】本発明の実験結果のグラフである。FIG. 12 is a graph of experimental results of the present invention.

【図13】本発明の実験結果のグラフである。FIG. 13 is a graph of experimental results of the present invention.

【図14】本発明の実験結果のグラフである。FIG. 14 is a graph of experimental results of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】構造物表面からの放射エネルギーを赤外線
放射計により検出して構造物の欠陥を検知する方法にお
いて、 前記赤外線放射計からの放射温度信号から得られる対象
面における温度分布に基づいて、前記内部欠陥の実際の
大きさを推定することを特徴とする構造物の表面または
内部欠陥の検知方法。
1. A method for detecting defects in a structure by detecting radiant energy from the surface of the structure with an infrared radiometer, based on a temperature distribution on a target surface obtained from a radiation temperature signal from the infrared radiometer. A method for detecting a surface or internal defect of a structure, comprising estimating an actual size of the internal defect.
【請求項2】前記温度分布を示す曲線における変曲点間
の幅に係数(=1/2〜1/4)を乗算して欠陥部の実
幅とする請求項1記載の構造物の表面または内部欠陥の
検知方法。
2. The surface of the structure according to claim 1, wherein the width between the inflection points in the curve showing the temperature distribution is multiplied by a coefficient (= 1/2 to 1/4) to obtain the actual width of the defective portion. Or how to detect internal defects.
【請求項3】前期温度分布に示される欠陥部分の表面温
度Tcと無欠陥部分の表面温度Tsとの温度差ΔTcの
変化度合いに基づいて、欠陥の深さを推定する請求項1
記載の構造物の表面または内部欠陥の検知方法。
3. The depth of the defect is estimated based on the degree of change in the temperature difference ΔTc between the surface temperature Tc of the defect portion and the surface temperature Ts of the defect-free portion shown in the temperature distribution in the previous period.
A method for detecting surface or internal defects of the structure described.
【請求項4】構造物表面からの放射エネルギーを赤外線
放射計により検出して構造物の欠陥を検知する方法にお
いて、 対象面を人為的に加熱するとともに、その加熱または冷
却過程における、欠陥部分の表面温度Tcと無欠陥部分
の表面温度Tsとの温度差ΔTcの変化度合いに基づい
て、欠陥の深さを推定することを特徴とする構造物の表
面または内部欠陥の検知方法。
4. A method of detecting a defect of a structure by detecting radiant energy from the surface of the structure by an infrared radiometer, wherein an object surface is artificially heated, and a defect portion in the heating or cooling process is detected. A method of detecting a surface or internal defect of a structure, which comprises estimating a depth of a defect based on a degree of change of a temperature difference ΔTc between a surface temperature Tc and a surface temperature Ts of a defect-free portion.
【請求項5】前記温度差ΔTcの加熱開始からの温度差
変化曲線において、加熱開始時点から温度差上昇率が安
定する時点までの時間差に基づいて欠陥の深さを推定す
る請求項4記載の構造物の表面または内部欠陥の検知方
法。
5. The depth of the defect is estimated on the basis of the time difference from the heating start time to the time when the temperature difference increase rate is stabilized in the temperature difference change curve from the heating start of the temperature difference ΔTc. A method for detecting surface or internal defects in structures.
JP22801891A 1991-09-09 1991-09-09 Method for detecting defect on surface or inside of structure Pending JPH0566209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22801891A JPH0566209A (en) 1991-09-09 1991-09-09 Method for detecting defect on surface or inside of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22801891A JPH0566209A (en) 1991-09-09 1991-09-09 Method for detecting defect on surface or inside of structure

Publications (1)

Publication Number Publication Date
JPH0566209A true JPH0566209A (en) 1993-03-19

Family

ID=16869905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22801891A Pending JPH0566209A (en) 1991-09-09 1991-09-09 Method for detecting defect on surface or inside of structure

Country Status (1)

Country Link
JP (1) JPH0566209A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168816A (en) * 2000-12-04 2002-06-14 Penta Ocean Constr Co Ltd Bridge diagnosing method and apparatus therefor
US6711284B1 (en) 1999-10-25 2004-03-23 Nikon Corporation Image processor for a digital image of an object having a crack
JP2008116451A (en) * 2006-11-03 2008-05-22 General Electric Co <Ge> System and method for locating failure event in sample under load
JP2011133322A (en) * 2009-12-24 2011-07-07 Pasuko:Kk Internal deformation detection support device and internal deformation detection support program
JP2013524229A (en) * 2010-04-08 2013-06-17 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Thermograph test method and test apparatus for carrying out this test method
JP2016166781A (en) * 2015-03-09 2016-09-15 国立大学法人東京海洋大学 Monitoring system and method of scale in pipeline
WO2017130251A1 (en) * 2016-01-29 2017-08-03 パナソニックIpマネジメント株式会社 Thickness measurement method, thickness measurement device, defect detection method, and defect detection device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711284B1 (en) 1999-10-25 2004-03-23 Nikon Corporation Image processor for a digital image of an object having a crack
JP2002168816A (en) * 2000-12-04 2002-06-14 Penta Ocean Constr Co Ltd Bridge diagnosing method and apparatus therefor
JP2008116451A (en) * 2006-11-03 2008-05-22 General Electric Co <Ge> System and method for locating failure event in sample under load
JP2011133322A (en) * 2009-12-24 2011-07-07 Pasuko:Kk Internal deformation detection support device and internal deformation detection support program
JP2013524229A (en) * 2010-04-08 2013-06-17 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Thermograph test method and test apparatus for carrying out this test method
US9194831B2 (en) 2010-04-08 2015-11-24 Institut Dr. Foerster Gmbh & Co. Kg Thermographic test method and testing device for carrying out the test method
JP2016166781A (en) * 2015-03-09 2016-09-15 国立大学法人東京海洋大学 Monitoring system and method of scale in pipeline
WO2017130251A1 (en) * 2016-01-29 2017-08-03 パナソニックIpマネジメント株式会社 Thickness measurement method, thickness measurement device, defect detection method, and defect detection device

Similar Documents

Publication Publication Date Title
WO2019173958A1 (en) Detection method for hollowing of exterior wall decorative surface layer
Garrido et al. Thermographic methodologies used in infrastructure inspection: A review—data acquisition procedures
Tashan et al. Detection of cracks in concrete strengthened with CFRP systems using infra-red thermography
JPH09311029A (en) Detector for peeling of wall face in tunnel
CA2471334A1 (en) Methods for determining the depth of defects
JPH0566209A (en) Method for detecting defect on surface or inside of structure
CN111896629A (en) Rapid detection method for tunnel structure surface layer diseases
Li et al. Application of infrared thermography technique in building finish evaluation
US4826326A (en) Crack sizing
WO2009088091A1 (en) Refractory thickness measuring method, and apparatus therefor
CN108827972A (en) Exterior wall defect method and detection system are detected using active heat source thermal infrared imaging
JP2653532B2 (en) Surface defect inspection equipment
Kurita et al. Active infrared thermographic inspection technique for elevated concrete structures using remote heating system
JPH0566208A (en) Method and apparatus for detecting defect on surface or inside of structure
JPS6298243A (en) Inspection method for external wall of building and the like
Shepard et al. Automated thermographic defect recognition and measurement
JP2003247964A (en) Method of inspecting concrete floor system part
JP7098301B2 (en) Crack detection method
JP6939255B2 (en) Sealing joint inspection method
JP3776794B2 (en) Internal defect detection device for structures
JP2002310966A (en) Peeling inspection instrument for wall surface of tunnel
JP3279781B2 (en) A method for judging the progress of rusting of reinforcing steel in concrete
JP4023988B2 (en) Coke oven wall diagnosis method and apparatus
JP3362587B2 (en) Inspection method for pipe deposits
JP4393877B2 (en) Inspection method for inspecting damaged parts of the water shielding sheet