JPH0566179B2 - - Google Patents

Info

Publication number
JPH0566179B2
JPH0566179B2 JP60291419A JP29141985A JPH0566179B2 JP H0566179 B2 JPH0566179 B2 JP H0566179B2 JP 60291419 A JP60291419 A JP 60291419A JP 29141985 A JP29141985 A JP 29141985A JP H0566179 B2 JPH0566179 B2 JP H0566179B2
Authority
JP
Japan
Prior art keywords
oxygen
palladium
coo
reaction
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60291419A
Other languages
Japanese (ja)
Other versions
JPS62149345A (en
Inventor
Rikuo Yamada
Hirotoshi Tanimoto
Kazumi Murakami
Naruhito Takamoto
Hiroyuki Kako
Yoshio Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60291419A priority Critical patent/JPS62149345A/en
Publication of JPS62149345A publication Critical patent/JPS62149345A/en
Publication of JPH0566179B2 publication Critical patent/JPH0566179B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸素錯体を用いるパラジウムの酸化再
生法に係り、特に酸素錯体を用いてPd(0)を速
やかに酸化再生する方法に関する。 (従来の技術) 従来、工業的に実施されている各種オレフイン
の酸化反応としてはヘキスト・ワツカ法がある
(特公昭36−1475号、同36−7869号)。この方法で
は触媒であるPd(2)Cl2とCu(2)Cl2を塩酸水
溶液(PH:0〜2)に溶解させた複合触媒が用い
られている。例えば、エチレンの酸化反応で説明
するならば、まず、Pd(2)Cl2によつてエチレ
ンを酸化しアセトアルデヒドを生成する。その反
応は次式で示される。 CH2=CH2+Pd(2)Cl2+H2O→CH3CHO+
Pd(0)↓+2HCl (1) ここで環元されたPd(0)を多量のCu(2)Cl2
でPd(2)Cl2に酸化再生する。 Pd(0)+2Cu(2)Cl2→Pd(2)Cl2+2Cu(1)
Cl2 (2) このとき副生した難溶性のCu(1)ClはHClの
共存下、次式に従い酸素酸化されCu(2)Cl2
戻される。 2Cu(1)Cl+1/2O2+2HCl→2Cu(2)Cl2
H2O (3) また、酢酸溶媒中で酢酸ナトリウムの存在下、
エチレンと酢酸から酢酸ビニルを合成する方法も
Pd(2)Cl2を酸化剤として用いている(J.J.
Moiseau et al.,Doklady.Akad.Nauk SSSR.,
133,377(1960)。 この化学量論的アセトキシ化はPd(2)Cl2
再生できるレドツクス系の共存で触媒プロセスと
なる(反応式(2)および(3))。 このようにオレフインの酸化反応ではPd(2)
塩としてPd(2)Cl2が用いられ、一方、オレフ
インの酸化的カボニル化、芳香族化合物の酸化ま
たは酸化的カルボニル化反応にもPd(2)Cl2
用いられているが、一般に反応条件が厳しくな
り、また反応率も低いという問題がある(田村、
触媒、21、168、379(1979))。 そこで、酢酸溶媒中でPd(2)(CHCOO)2を用
いて芳香族化合物の酸化(R.van Helden et
al.,Rec.Trav.Chim.Pays−Bas.,1263(1965)
または酸化的カルボニル化を行なう試みも検討さ
れていが、量論反応であり、Pd(0)の酸化再生
が困難であるという課題がある。 (発明が解決しようとする問題点) 本発明の目的は、酢酸溶媒中、温和な条件下で
Pd(0)を酸化再生する方法を提供することにあ
る。 〔問題点を解決するための手段) 要するに本発明は、遷移金属に配位して活性化
された酸素により、酢酸溶媒中で還元されたPd
(0)をPd(2)(CH3COO)2に酸化再生する方法
である。すなわち、本発明は、パラジウムPd
(0)を酢酸溶媒中で酸化剤により酸化再生する
方法において、酸化剤として酸素と配位結合する
ことにより酸素錯体を形成し得る錯体
(MmXn・Ll)(式中、Mは周期律第族、第
〜族または第族の鉄族に属する遷移金属、X
は、Cl-、Br-、I-のハロゲンイオンまたはBF4 -
PF6 -、SO4 2-等の陰イオン、配位子Lは有機リン
化合物、ニトリル類、m,nは原子価バランスに
よつて定まる定数、lは配位数を示す)を用いる
ことを特徴とする。 本発明者らは先に、酸素が遷移金属錯体に配位
結合することにより生成する酸素錯体がPd(0)
を効率よくPd(2)Cl2へと酸化再生する能力を
有することを見出し、含水混合溶媒中、温和な条
件下でオレフインを酸化するプロセスを提案した
(特願昭59−122600号、同60−8862号)。 本発明者らは還元したPd(0)を酸化再生しPd
(2)(CH3COO)2とするために、上記酸素錯体
および溶媒として酢酸を用いて検討した結果、後
述の実施例で述べるように酸素錯体によりPd
(0)は速やかに酸化されてPd(2)(CH3COO)2
となることを見出し、本発明に到達したものであ
る。すなわち、その代表例で述べるならばこの反
応は下式(5)のようになる。 Pd(0)+1/2(Cu(1)Cl・L12・O2
2CH3COOH+L1+L2→Pd(2)(CH3COO)2×
L1・L2+Cu(1)Cl・L1+H2O (5) ここでL1,L2は例えばL1=hmpaまたはベンゾ
ニトリル(PhCN)、L2=PhCNである。 さらに反応の特徴をより詳しく説明すると、
(5)式に示すPd(0)のPd(2)(CH3COO)2
L1・L2への酸化再生反応の70℃における速度は、
前述の反応式(2)によるCu(2)Cl2による再
生速度の約10倍の大きさであつた。なお、酢酸溶
媒中、Pd(0)はCu(2)(CH3COO)2によつては
酸化再生されないことが確認された((6)式)。 Pd(0)+2Cu(2)(CH3COO)2→Pd(2)
(CH3COO)2+2Cu(1)(CH3COO) (6) 上述のごとき酸素錯体を形成する錯体を一般式
MmXn・Llで示した場合、Cu(1)Cl・hmpaは
m=1、n=1、l=1の場合に相当する。ま
た、例えば、Ti(3)あるいはV(3)を中心金
属とし、陰イオンをCl-とした場合、生成錯体は、
Ti(3)Cl3・hmpa、V(3)Cl3・hmpaであり、
いずれの場合もm=1、n=3、l=1に相当す
る。 反応式(5)で生成するCu(1)Cl・L1は空気
から選択的に酸素を吸収して酸素錯体に戻ること
は言うまでもない。(特願昭59−122600号)。した
がつて上記酸素錯体を酢酸溶媒中で用いるならば
Pd(0)のPd(2)(CH3COO)2への再生を効率よ
く行なえることになる。 以上のように、本発明においては、環元した
Pd(0)が酸素錯体中の活性化された酸素で酸化
再生されるため、例えば常圧ないしは僅かな加圧
下、80℃以下のような温和な条件で短時間に高選
択的、高収率でオレフインの酸化的カルボニル
化、芳香族化合物の酸化または酸化的カルボニル
化反応を実施することが可能になる。 本発明において、酸素錯体を形成し得る錯体触
媒としてのMmXn・LlにおけるMとしては、周
期律第族のCu、Ag、第族のTi、Zr、第族
のV、Nb、第族のCr、Mo、W、第族の
Mn、第族のFe、Co等の遷移金属が好ましく、
Cu(1)、Ti(3)、V(3)がより好ましい。ま
た、XとしてはCl-、Br-、I-のバロゲン化物イ
オン、BF4 -、PF6 -、SO4 2-等の陰イオンが好ま
しく、Cl-、Br-、I-がより好ましい。配位子と
しては、ニトリル類、リン酸の誘導体であるトリ
フエニルホスフインオキシド、ヘキサメチルホス
ホルアミド、およびリン酸とメタノール、エタノ
ール等の反応からできるモノ、ジまたはトリエス
テル、さらにメチルホスホン酸ジメチル、ジメチ
ルホスフイン酸メチル、または亜リン酸の誘導体
である、亜リン酸とメタノール、エタノール等の
反応からできるモノ、ジまたはトリエステルおよ
びフエニル亜ホスホン酸エステル、ジメチルホス
フイン酸エステル、トリエチルホスフイン、トリ
フエニルホスフイン等で代表される機リン化合物
が好ましいものとして挙げられ、特に、アセトニ
トリル、ベンゾニトリル、ヘキサメチルホスホル
アミド(hmpa)が好ましい。 一方、Pd(2)(CH3COO)2錯体の配位子とし
ては、アセトニトリル、プロピオニトリル、ベン
ゾニトリル等のニトリル類、および上述の有機リ
ン化合物、さらには、フツ化トルエン、ベンゾト
リフロライド等の有機フツ素化合物が好ましいも
のとして上げられる。 なお、反応系の溶媒としては酢酸のほかに錯体
触媒を溶解するとともに、生成する化合物との分
離が容易で、かつ、触媒溶液の粘度を下げ物質移
動を促進するものを添加することが好ましく、例
えば、ヘプタン、トルエン、メチルシクロヘキサ
ン、ジオキサン、プロピレンカーボネート、クロ
ロベンゼン、N−メチルピロリドン、テトラヒド
ロフランおよびエチレングリコールモノメチルエ
ーテル、エチレングリコールジブチルエーテル、
ジリチレングリコールモノメチルエーテル等のエ
ーテル類などの各種溶媒から選ばれた少なくとも
1種の溶媒、またはこれらの混合物を添加する
か、さらには、配位子そのものを酢酸と混合して
用いることもできる。 また、酸素錯体の安定性を増すために、スルホ
ラン、ジメチルスルホラン、ジメチルスルホキシ
ド、ジメチルホルムアミド、トリメチルメタン、
ジメチルスルホン等の電子供与性化合物を共存さ
せることが好ましい。 以上、酸素錯体を用いてPd(0)を酢酸溶媒中
でPd(2)(CH3COO)2に酸化再生する方法を述
べたが、次に本発明を実施例によりさらに詳細に
説明する。 (実施例) 実施例 1 内容積200mlの反応容器にCu(1)Clを5g
(0.05モル)、ベンゾニトリルを61.5g(0.6モル)、
スルホランを3.8g(0.04モル)、酢酸を5.8g
(0.1モル)およびエチレングリコールモノメチル
エーテルを28.7g(0.38モル)仕込み、Cu(1)
Cl・PhCN錯体溶液100mlを調製した。反応容器
内を脱気し、30℃、常圧下で空気を導入し、酸素
錯体0.125mol/lの溶液とした。その後、40℃
に加熱し窒素ガスを通気したが、反応器の気相部
に残存していた酸素と物理溶解していた酸素が除
かれたのみで、液中の酸素錯体からの結合酸素の
脱離は認められず、酸素の吸収反応は不可逆的で
あることがわかつた。これは実プロセスにおける
安全性の面で有利である。系内を完全に窒素で置
換した後、反応容器内を70℃に保ち予めPd(2)
(CH3COO)2を水素で還元したPd(0)12.5mM相
当を反応器に速やかに導入し、Pd(0)の再生反
応を吸収スペクトルで追跡した。Pd(0)は2分
で完全に酸化再生され、Pd(2)(CH3COO)2
与えたことがスペクトルで確認された。 実施例 2〜6 実施例1において、第1表のような条件下で実
験を行なつたところ、2分後のPd(2)
(CH3COO)2の再生率は、第1表の最右欄のよう
になつた。 【表】 これらの結果から、Pd(0)再生速度を大にす
るには、酸素錯体濃度を大とすればよく、このた
めにはCu(1)Cl濃度を大にすればよいことがわ
かる。またCH3COOH濃度は1M以上あることが
好ましい。反応は温度にはあまり依存しないよう
であり、H2O濃度5Mまでは再生速度に代わりは
ないことがわかつた。 実施例 8 実施例1において、エチレングリコールモノメ
チルエーテルの代わりにhmpaを30.8g(0.17モ
ル)を用いるほかは1と同様の操作を行つたとこ
ろ、2分でPd(0)再生率は100%であつた。 実施例 9 実施例1においてCu(1)Clの代わりにTi(3)
Cl30.5Mを用いるほかは同様の実験を行つたとこ
ろ、2分でPd(0)再生率は50%であつた。 実施例 10 実施例1においてCu(1)Clの代わりにV(3)
Cl30.5Mを用いるほかは同様の実験を行つたとこ
ろPd(0)再生率は2分で55%であつた。 比較例 1 内容積200mlの反応容器にCu(2)
(CH3COO)21.82g(0.01モル)をCH3COOH100
mlに溶解し、反応容器内を脱気し、窒素ガスを通
気して1atmとした。反応容器内を70℃に保ち予
めPd(2)(CH3COO)2を水素で還元されたPd
(0)12.5mM相当を反応容器に速やかに導入し、
Pd(0)の再生反応を吸収スペクトルで追跡し
た。第1図にPd(2)(CH3COO)2の可視吸収ス
ペクトルを示したが、Pd(2)(CH3COO)2濃度
の増大につれて395nmの吸光度が増大し、極大吸
収をもつことがわかつた。また第2図にCu(2)
(CH3COO)2の可視吸収スペクトルを示したが、
379nmと680nmに2つの極大ピークを持つことが
わかつた。したがつて再生反応が進むとすれば、
反応式(6)によりPd(2)(CH3COO)2が増大し、
Cu(2)(CH3COO)2が減少する。すなわち、
395nmの吸収が増大し、680nmの吸収が減少する
はずである。再生反応は反応液をCH3COOHで
10倍に希釈して吸収スペクトルを測定して行つた
ので、再生反応が全く進まなければ、第2図の
Cu(2)(CH3COO)2=1.0×10Mの吸収スペクト
ルと重なるはずである。第3図に反応時間2分〜
17時間の反応吸収スペクトルを示したがいずれの
スペクトルもCu(2)(CH3COO)2=1.0×10-2M
のスペクトルと一致しており、反応は進まないこ
とがわかつた。ちなみに、図中の点線はPd(0)
が全てPd(2)(CH3COO)2に再生したと仮定し
た場合のスペクトルである。 以上のように、Pd(0)は、酢酸溶媒中Cu(2)
(CH3COO)2では再生されないが、酸素錯体を用
いることによつて効率よく再生されることがわか
つた。 (発明の効果) 本発明によれば、遷移金属錯体に配位して活性
化された酸素によつて還元されたPd(0)を酢酸
溶媒中で温和な条件下で速やかにPd(2)
(CH3COO)2に再生することができる。これによ
つて、従来Pd(0)の再生効率の悪かつたPd(2)
(CH3COO)2を用いるオレフインの酸化的カルボ
ニル化、芳香族化合物の酸化あるいは酸化的カル
ボニル化反応を温和な条件で実施することが可能
となる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for oxidizing and regenerating palladium using an oxygen complex, and particularly to a method for rapidly oxidizing and regenerating Pd(0) using an oxygen complex. (Prior Art) As an example of the oxidation reaction of various olefins that has been carried out industrially in the past, there is the Hoechst-Watzka method (Japanese Patent Publications Nos. 36-1475 and 36-7869). This method uses a composite catalyst in which catalysts Pd(2)Cl 2 and Cu(2)Cl 2 are dissolved in an aqueous hydrochloric acid solution (PH: 0 to 2). For example, to explain the oxidation reaction of ethylene, first, ethylene is oxidized by Pd(2)Cl 2 to produce acetaldehyde. The reaction is shown by the following formula. CH 2 = CH 2 + Pd (2) Cl 2 + H 2 O → CH 3 CHO+
Pd(0)↓+2HCl (1) Here, the ring element Pd(0) is mixed with a large amount of Cu(2)Cl 2
Pd(2) is oxidized and regenerated into Cl 2 . Pd (0) + 2Cu (2) Cl 2 → Pd (2) Cl 2 + 2Cu (1)
Cl 2 (2) At this time, poorly soluble Cu(1)Cl produced as a by-product is oxidized with oxygen according to the following formula in the coexistence of HCl and returned to Cu(2)Cl 2 . 2Cu(1)Cl+1/2O 2 +2HCl→2Cu(2)Cl 2 +
H 2 O (3) also in the presence of sodium acetate in acetic acid solvent,
There is also a method to synthesize vinyl acetate from ethylene and acetic acid.
Pd(2) Cl2 is used as an oxidizing agent (JJ
Moiseau et al., Doklady.Akad.Nauk SSSR.
133, 377 (1960). This stoichiometric acetoxylation becomes a catalytic process in the presence of a redox system that can regenerate Pd(2)Cl 2 (reaction equations (2) and (3)). In this way, in the oxidation reaction of olefin, Pd(2)
Pd(2)Cl 2 is used as a salt, while Pd(2)Cl 2 is also used for oxidative carbonylation of olefins, oxidation of aromatic compounds, or oxidative carbonylation reactions, but generally the reaction conditions are There is a problem that the response rate is becoming more difficult and the response rate is low (Tamura,
Catalyst, 21 , 168, 379 (1979)). Therefore, we investigated the oxidation of aromatic compounds using Pd(2)(CHCOO) 2 in acetic acid solvent (R. van Helden et al.
al., Rec.Trav.Chim.Pays−Bas. 8 , 1263 (1965)
Alternatively, attempts to perform oxidative carbonylation have been considered, but this is a stoichiometric reaction and has the problem that oxidative regeneration of Pd(0) is difficult. (Problems to be Solved by the Invention) The purpose of the present invention is to solve the problem under mild conditions in an acetic acid solvent.
An object of the present invention is to provide a method for oxidizing and regenerating Pd(0). [Means for Solving the Problems] In short, the present invention provides Pd reduced in an acetic acid solvent by oxygen activated by coordinating to a transition metal.
This is a method of oxidizing and regenerating (0) to Pd(2) (CH 3 COO) 2 . That is, the present invention provides palladium Pd
In the method of oxidizing and regenerating (0) with an oxidizing agent in an acetic acid solvent, the oxidizing agent is a complex (MmXn・Ll) that can form an oxygen complex by coordinating with oxygen (where M is a member of the periodic group , a transition metal belonging to the iron group of group ~ or group X
is a halogen ion of Cl - , Br - , I - or BF 4 - ,
Anions such as PF 6 - and SO 4 2- , the ligand L is an organic phosphorus compound, nitriles, m and n are constants determined by the valence balance, and l indicates the coordination number) are used. Features. The present inventors previously demonstrated that the oxygen complex formed by coordinate bonding of oxygen to a transition metal complex is Pd(0).
discovered that it has the ability to efficiently oxidize and regenerate olefin into Pd( 2 )Cl2, and proposed a process for oxidizing olefin under mild conditions in a water-containing mixed solvent (Japanese Patent Application No. 122600/1986, 60 −8862). The present inventors oxidized and regenerated the reduced Pd(0) to produce Pd
(2) In order to obtain (CH 3 COO) 2 , we investigated using the above oxygen complex and acetic acid as a solvent.
(0) is quickly oxidized to Pd(2) (CH 3 COO) 2
The present invention was achieved by discovering that. That is, if we describe it as a typical example, this reaction will be as shown in the following formula (5). Pd(0)+1/2(Cu(1)Cl・L 1 ) 2・O 2 +
2CH 3 COOH+L 1 +L 2 →Pd(2)(CH 3 COO) 2 ×
L 1 ·L 2 +Cu (1) Cl ·L 1 +H 2 O (5) Here, L 1 and L 2 are, for example, L 1 =hmpa or benzonitrile (PhCN), and L 2 =PhCN. To further explain the characteristics of the reaction in more detail,
Pd(2) (CH 3 COO) 2 of Pd(0) shown in formula (5)
The rate of oxidative regeneration reaction to L 1 and L 2 at 70℃ is:
The regeneration rate was about 10 times higher than the regeneration rate by Cu(2)Cl 2 according to reaction formula (2) described above. In addition, it was confirmed that Pd(0) is not oxidized and regenerated by Cu(2)(CH 3 COO) 2 in an acetic acid solvent (formula (6)). Pd(0)+2Cu(2)(CH 3 COO) 2 →Pd(2)
(CH 3 COO) 2 +2Cu(1) (CH 3 COO) (6) The complex that forms the above oxygen complex is expressed by the general formula
When expressed as MmXn·Ll, Cu(1)Cl·hmpa corresponds to the case where m=1, n=1, and l=1. For example, when Ti(3) or V(3) is the central metal and the anion is Cl - , the complex formed is
Ti(3) Cl3・hmpa, V(3) Cl3・hmpa,
In either case, m=1, n=3, and l=1. Needless to say, Cu(1)Cl·L 1 produced in reaction formula (5) selectively absorbs oxygen from the air and returns to an oxygen complex. (Special Application No. 122600, 1982). Therefore, if the above oxygen complex is used in an acetic acid solvent,
This allows efficient regeneration of Pd(0) to Pd(2)(CH 3 COO) 2 . As described above, in the present invention, the ring element
Since Pd(0) is oxidized and regenerated by the activated oxygen in the oxygen complex, high selectivity and high yield can be achieved in a short period of time under mild conditions such as normal pressure or slightly increased pressure and temperatures below 80°C. It becomes possible to carry out oxidative carbonylation of olefins, oxidation of aromatic compounds or oxidative carbonylation reactions. In the present invention, M in MmXn/Ll as a complex catalyst capable of forming an oxygen complex includes Cu, Ag of the periodic group, Ti, Zr of the group, V, Nb of the group, Cr of the group, Mo, W, of the tribe
Transition metals such as Mn, group Fe, Co, etc. are preferred;
More preferred are Cu(1), Ti(3), and V(3). Further, as X, balogenide ions such as Cl - , Br - and I - , anions such as BF 4 - , PF 6 - and SO 4 2- are preferable, and Cl - , Br - and I - are more preferable. Ligands include nitriles, phosphoric acid derivatives such as triphenylphosphine oxide, hexamethylphosphoramide, mono-, di-, or triester formed from the reaction of phosphoric acid with methanol, ethanol, etc., and dimethyl methylphosphonate. , methyl dimethylphosphinate, or derivatives of phosphorous acid, mono-, di-, or triester formed from the reaction of phosphorous acid with methanol, ethanol, etc., and phenylphosphonite, dimethylphosphinate, triethylphosphine. , triphenylphosphine, and the like are preferred, with acetonitrile, benzonitrile, and hexamethylphosphoramide (hmpa) being particularly preferred. On the other hand, as ligands for the Pd(2)(CH 3 COO) 2 complex, nitriles such as acetonitrile, propionitrile, and benzonitrile, and the above-mentioned organic phosphorus compounds, as well as toluene fluoride and benzotriflo Preferred examples include organic fluorine compounds such as Ride. As the solvent for the reaction system, in addition to acetic acid, it is preferable to add a solvent that dissolves the complex catalyst, is easily separated from the produced compound, and also reduces the viscosity of the catalyst solution and promotes mass transfer. For example, heptane, toluene, methylcyclohexane, dioxane, propylene carbonate, chlorobenzene, N-methylpyrrolidone, tetrahydrofuran and ethylene glycol monomethyl ether, ethylene glycol dibutyl ether,
At least one solvent selected from various solvents such as ethers such as dilythylene glycol monomethyl ether, or a mixture thereof may be added, or the ligand itself may be mixed with acetic acid. In addition, to increase the stability of the oxygen complex, sulfolane, dimethylsulfolane, dimethylsulfoxide, dimethylformamide, trimethylmethane,
It is preferable to coexist with an electron-donating compound such as dimethylsulfone. The method of oxidizing and regenerating Pd(0) to Pd(2)(CH 3 COO) 2 in an acetic acid solvent using an oxygen complex has been described above, and the present invention will now be explained in more detail with reference to Examples. (Example) Example 1 5g of Cu(1)Cl in a reaction vessel with an internal volume of 200ml
(0.05 mol), 61.5 g (0.6 mol) of benzonitrile,
3.8g (0.04mol) of sulfolane, 5.8g of acetic acid
(0.1 mol) and 28.7 g (0.38 mol) of ethylene glycol monomethyl ether, Cu (1)
100 ml of Cl/PhCN complex solution was prepared. The inside of the reaction vessel was degassed and air was introduced at 30°C under normal pressure to form a solution containing an oxygen complex of 0.125 mol/l. Then 40℃
Although the reactor was heated to a temperature of It was found that the oxygen absorption reaction was irreversible. This is advantageous in terms of safety in the actual process. After completely replacing the inside of the system with nitrogen, the inside of the reaction vessel was kept at 70℃ and preliminarily filled with Pd(2).
(CH 3 COO) 2 equivalent to 12.5 mM of Pd(0) reduced with hydrogen was quickly introduced into the reactor, and the regeneration reaction of Pd(0) was followed by absorption spectrum. The spectrum confirmed that Pd(0) was completely oxidized and regenerated in 2 minutes to give Pd(2)(CH 3 COO) 2 . Examples 2 to 6 In Example 1, when experiments were conducted under the conditions shown in Table 1, Pd(2) after 2 minutes
The reproduction rate of (CH 3 COO) 2 was as shown in the rightmost column of Table 1. [Table] These results show that to increase the Pd(0) regeneration rate, the oxygen complex concentration should be increased, and for this purpose, the Cu(1)Cl concentration should be increased. . Further, it is preferable that the CH 3 COOH concentration is 1M or more. It was found that the reaction did not seem to be very dependent on temperature, and there was no change in regeneration rate up to a H 2 O concentration of 5M. Example 8 The same procedure as in Example 1 was performed except that 30.8 g (0.17 mol) of hmpa was used instead of ethylene glycol monomethyl ether, and the Pd(0) regeneration rate was 100% in 2 minutes. It was hot. Example 9 Ti(3) instead of Cu(1)Cl in Example 1
When a similar experiment was conducted except that Cl 3 0.5M was used, the Pd(0) regeneration rate was 50% in 2 minutes. Example 10 V(3) instead of Cu(1)Cl in Example 1
When a similar experiment was conducted except that Cl 3 0.5M was used, the Pd(0) regeneration rate was 55% in 2 minutes. Comparative example 1 Cu (2) in a reaction vessel with an internal volume of 200ml
(CH 3 COO) 2 1.82g (0.01 mol) CH 3 COOH100
ml, the inside of the reaction vessel was degassed, and nitrogen gas was passed through to 1 atm. The inside of the reaction vessel was kept at 70°C and Pd (2) (CH 3 COO) 2 was reduced with hydrogen in advance.
(0) Immediately introduce the equivalent of 12.5mM into the reaction container,
The regeneration reaction of Pd(0) was followed by absorption spectroscopy. Figure 1 shows the visible absorption spectrum of Pd(2)(CH 3 COO) 2. As the Pd(2)(CH 3 COO) 2 concentration increases, the absorbance at 395 nm increases, indicating that it has a maximum absorption. I understand. In addition, Cu (2) is shown in Figure 2.
The visible absorption spectrum of (CH 3 COO) 2 was shown,
It was found that there are two maximum peaks at 379nm and 680nm. Therefore, if the regeneration reaction proceeds,
According to reaction formula (6), Pd(2)(CH 3 COO) 2 increases,
Cu(2)(CH 3 COO) 2 decreases. That is,
The absorption at 395nm should increase and the absorption at 680nm should decrease. For the regeneration reaction, the reaction solution is diluted with CH 3 COOH.
Since the absorption spectrum was measured after diluting the sample 10 times, if the regeneration reaction did not proceed at all, the result in Figure 2 would be
It should overlap with the absorption spectrum of Cu(2)(CH 3 COO) 2 = 1.0×10M. Figure 3 shows reaction time of 2 minutes ~
The reaction absorption spectra for 17 hours were shown, but both spectra showed Cu(2)(CH 3 COO) 2 = 1.0×10 -2 M
It was found that the reaction did not proceed. By the way, the dotted line in the figure is Pd(0)
This is a spectrum assuming that all of Pd(2)(CH 3 COO) 2 is regenerated. As mentioned above, Pd(0) is converted into Cu(2) in acetic acid solvent.
It was found that (CH 3 COO) 2 does not regenerate it, but it can be regenerated efficiently by using an oxygen complex. (Effects of the Invention) According to the present invention, Pd(0) reduced by oxygen coordinated to a transition metal complex and activated is quickly converted into Pd(2) in an acetic acid solvent under mild conditions.
(CH 3 COO) Can be played to 2 . As a result, Pd(2), which had poor regeneration efficiency of conventional Pd(0),
It becomes possible to carry out the oxidative carbonylation of olefins, the oxidation of aromatic compounds, or the oxidative carbonylation reaction using (CH 3 COO) 2 under mild conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Pd(2)(CH3COO)2の可視吸収ス
ペクトルを示す図、第2図は、Cu(2)
(CH3COO)2の可視吸収スペクトルを示す図、第
3図は、Cu(2)(CH3COO)2によるPd(0)の再
生反応を追跡したスペクトルを示す図である。
Figure 1 shows the visible absorption spectrum of Pd(2)(CH 3 COO) 2 , Figure 2 shows the visible absorption spectrum of Cu(2).
FIG. 3 is a diagram showing the visible absorption spectrum of (CH 3 COO) 2 , and is a diagram showing a spectrum tracing the regeneration reaction of Pd(0) by Cu(2)(CH 3 COO) 2 .

Claims (1)

【特許請求の範囲】 1 パラジウムPd(0)を酢酸溶媒中で酸化剤に
より酸化再生する方法において、酸化剤として酸
素と配位結合することにより酸素錯体を形成し得
る錯体(MmXn・Ll)(式中、Mは周期律第
族、第〜族または第族の鉄族に属する遷移
金属、Xは、Cl-、Br-、I-のハロゲンイオンま
たはBF4 -、PF6 -、SO4 2-等の陰イオン、配位子
Lは有機リン化合物、ニトリル類、m、nは原子
価バランスによつて決まる定数、lは配位数を示
す)を用いることを特徴とする酸素錯体を用いる
パラジウムの酸化再生法。 2 特許請求の範囲第1項において、前記配位子
Lとしての有機リン化合物は、リン酸または亜リ
ン酸のアルコキシ、アルキルもしくはアミド誘導
体で代表される化合物であることを特徴とする酸
素錯体を用いるパラジウムの酸化再生法。 3 特許請求の範囲第1項または第2項におい
て、塩基性(電子供与性)化合物であるスルホラ
ン、ジメチルスルホラン、ジメチルスルホキシ
ド、ジメチルホルムアミド等を用いることを特徴
とする酸素錯体を用いるパラジウムの酸化再生
法。 4 特許請求の範囲第1項、第2項または第3項
において、酢酸溶媒以外に、配位子L、水、脂肪
族、芳香族、脂環式炭化水素類、含酸素有機化合
物、有機ハロゲン化物、有機フツ素化合物および
複素環化合物から選ばれた少なくとも1種の化合
物を溶媒として併用することを特徴とする酸素錯
体を用いるパラジウムの酸化再生法。
[Claims] 1 In a method of oxidizing and regenerating palladium Pd(0) using an oxidizing agent in an acetic acid solvent, a complex (MmXn・Ll) ( In the formula, M is a transition metal belonging to Group 1 , Group 2 , or Iron group of Periodic Table ; An anion such as - , the ligand L is an organic phosphorus compound, a nitrile, m and n are constants determined by the valence balance, and l indicates the coordination number) is used. Oxidative regeneration method of palladium. 2. Claim 1 provides an oxygen complex characterized in that the organic phosphorus compound as the ligand L is a compound represented by an alkoxy, alkyl or amide derivative of phosphoric acid or phosphorous acid. Palladium oxidation regeneration method used. 3. In claim 1 or 2, the oxidative regeneration of palladium using an oxygen complex characterized by using a basic (electron-donating) compound such as sulfolane, dimethylsulfolane, dimethylsulfoxide, dimethylformamide, etc. Law. 4 In claim 1, 2, or 3, in addition to the acetic acid solvent, ligand L, water, aliphatic, aromatic, alicyclic hydrocarbons, oxygen-containing organic compounds, organic halogens A method for oxidizing and regenerating palladium using an oxygen complex, characterized in that at least one compound selected from compounds, organic fluorine compounds, and heterocyclic compounds is used as a solvent.
JP60291419A 1985-12-24 1985-12-24 Oxidation regeneration method for palladium by using oxygen complex Granted JPS62149345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291419A JPS62149345A (en) 1985-12-24 1985-12-24 Oxidation regeneration method for palladium by using oxygen complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291419A JPS62149345A (en) 1985-12-24 1985-12-24 Oxidation regeneration method for palladium by using oxygen complex

Publications (2)

Publication Number Publication Date
JPS62149345A JPS62149345A (en) 1987-07-03
JPH0566179B2 true JPH0566179B2 (en) 1993-09-21

Family

ID=17768634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291419A Granted JPS62149345A (en) 1985-12-24 1985-12-24 Oxidation regeneration method for palladium by using oxygen complex

Country Status (1)

Country Link
JP (1) JPS62149345A (en)

Also Published As

Publication number Publication date
JPS62149345A (en) 1987-07-03

Similar Documents

Publication Publication Date Title
JP2963528B2 (en) Chromium halogenated coordination complexes for the oxidation of butane to methyl ethyl ketone
CA1339747C (en) Process for producing n-phosphonomethylglycine
JPH05506853A (en) Catalytic system for oxidizing olefins to carbonyl products
JPH05138037A (en) Metal coordination complex containing halogenated ligand to oxidate hydrocarbon
JP2788747B2 (en) Method for producing p-hydroxybenzaldehyde
US4521631A (en) Process for producing acetaldehyde
JPH0739366B2 (en) Method for producing o-hydroxy-benzaldehyde
US4620038A (en) Process for producing methyl ethyl ketone
JPH0566179B2 (en)
EP0150982B1 (en) Process for producing acetone
EP0156498B1 (en) Process for producing acetic acid
KR870002102B1 (en) Preparation process of organic compound containing oxygen from olefin
JPH05246913A (en) Allylic oxidation of olefins
JPS62225251A (en) Method for regenerating palladium by oxidation
US4691053A (en) Process for producing organic compounds by utilizing oxygenic complexes
JPS6348871B2 (en)
JPH0437807B2 (en)
KR870001164B1 (en) Synthesis process for organic compounds used oxygen complex materials
JP2592328B2 (en) Method for producing 2,3,5-trimethylbenzoquinone
JPS611635A (en) Synthesis of methyl ethyl ketone
JPS61221146A (en) Production of difluorobenzophenone
JPH0827055A (en) Palladium-copper complex and production of carbonyl compound by using the same complex
JPS5921855B2 (en) Production method of malonic acid diesters
JPS6330327A (en) Oxidation and regenerating method for palladium by oxygen complex
JPS62142133A (en) Production of formaldehyde

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees