JPH0565926B2 - - Google Patents

Info

Publication number
JPH0565926B2
JPH0565926B2 JP11592584A JP11592584A JPH0565926B2 JP H0565926 B2 JPH0565926 B2 JP H0565926B2 JP 11592584 A JP11592584 A JP 11592584A JP 11592584 A JP11592584 A JP 11592584A JP H0565926 B2 JPH0565926 B2 JP H0565926B2
Authority
JP
Japan
Prior art keywords
magnetic recording
present
magnetic
recording medium
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11592584A
Other languages
Japanese (ja)
Other versions
JPS60261016A (en
Inventor
Koichi Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11592584A priority Critical patent/JPS60261016A/en
Publication of JPS60261016A publication Critical patent/JPS60261016A/en
Publication of JPH0565926B2 publication Critical patent/JPH0565926B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高密度磁気記録に適する磁気記録媒体
に関する。 従来例の構成とその問題点 近年、磁気記録の高密度化は狭トラツク化と、
同時に記録波長の短縮化により進められてきてい
るが、記録波長が短かくなり、1μm以下になり、
スペーシング損失が大きく影響するようになるた
め、表面粗さに制約が生じ、最大でも500Å以下
にする必要が生じると共に、短波長での損失を減
らすために磁気記録媒体は、磁気記録層を薄膜化
することと、強磁性金属で構成することが不可欠
となつてきたため、かかる媒体の開発が各方面で
進められるようになつた。 その中にあつて、現在最も磁気テープとしての
性能にまとまりのあるものは、斜め蒸着法により
得られたCo系の部分酸化膜を磁気記録層とする
ものであるが、高密度化を進める前提となる合金
系ヘツドとの相性が必ずしも十分とはいえない。 即ち、耐湿テスト後の磁気テープをセンダスト
合金ヘツドや、アモルフアス合金ヘツドで記録再
生すると、フエライトヘツドで記録再生するよう
に安定に再生出力が得られないことがあり、改良
が望まれていた。 発明の目的 本発明は上記事情に鑑みなされたものであり、
高密度領域で安定した再生出力を得ることができ
る磁気記録媒体を提供することを目的とする。 発明の構成 本発明の磁気記録媒体は、部分酸化膜を磁気記
録層とし、且つ表面にCrが偏在していることを
特徴とし、高密度領域での再生出力が安定してい
るものである。 実施例の説明 以下図面を参照しながら本発明を説明する。 第1図は、本発明の磁気記録媒体の部分拡大断
面図、第2図は本発明の磁気記録媒体を得るため
に用いた蒸着装置の要部構成図でる。 第1図で1は高分子基板、2はミミズ状隆起
層、3は磁気記録層を構成する強磁性薄膜で、部
分酸化された微結晶4と、Crが偏析した微結晶
5とから成つている。 第2図で、6は円筒状キヤン、7は基板、8は
送り出し軸、9は巻取り軸、10は蒸発源容器、
11は蒸着材料で、12はCr供給用イオン源、
13はマスクで、14は模式的に示した入射角
90°からθmmまでの蒸気流である。 本発明で用いることの出来る高分子基板は、ポ
リエチレンテレフタレート等のポリエステル類、
ポリプロピレン等のポリオレフイン類、セルロー
ストリアセテート等のセルロース誘導体、ポリア
ミドイミド、ポリアミド、ポリエーテルスルフオ
ン、ポリパラバニツク酸、ポリイミド等で、あら
かじめミミズ状の塗布層を一方又は両面に配した
ものも含まれる。 本発明に用いることの出来る磁気記録層は、
Co,Co−Ni,Co−Fe,Co−B,Co−Cu,Co
−Cd,Co−Cr,Co−F,Co−Ge,Co−Hf,
Co−La,Co−Mn,Co−Mo,Co−Mg,Co−
P,Co−Ru,Co−Rh,Co−Sn,Co−Si,Co−
Sm,Co−Ta,Co−Ti,Co−V,Co−W,Co
−Zn,Co−Ni−Fe,Co−Ni−P,Co−Ni−
Mg等の部分酸化膜であつて、第1図に模式的に
示したように、一部は、Crが高濃度で含まれて
いることを要件とするものである。Crの高濃度
部分は記録波長、記録トラツク幅のスケールでみ
れば均一であつて、さらに微視的にみると不均一
であることが必要である。 即ち、後述するように、Crの高濃度部は、環
境変化に強く、一定の研摩性を保持できるものと
予測される効果を常に得るためには、恐らく、上
面からみて、比率的に1/100から1/10000を占
めていればよいものと思われる。 このことから逆に、全てが、Crの高濃度部、
例えば、イオン注入等で表面にCrを全面に打ち
込んで得た媒体は、磁気ヘツドを摩耗させる速度
が大きすぎて、かえつて実用性を阻害することが
起る。 かかる媒体を得るひとつの方法は、第2図の装
置を用いるものである。 第2図に示したように蒸着材料11の中に、イ
オン源12よりクロムイオンを注入しフラツシユ
蒸発させ、且つ、基板温度をあげて、クロムの表
面易動度を大きくしてやることで実験的に良好な
媒体を得ることのできる条件を見出し、くり返せ
ば良い。 本発明の効果は、磁気テープ表面の硬さが微視
的に異なることの作用と、クロムの特に酸化状態
にあるクロムの研摩作用の大きさがあいまつて生
れているものと推察されるが、その効果は特に、
磁気テープが恐らく、磁束量の変化では認められ
ない程度の腐食を受けても、再生出力低下現象を
引き起さない点で顕著である。 以下、さらに具体的に一実施例を説明する。 (実施例) 第2図で、円筒状キヤン(直径50cm)の直下に
26cm離して電子ビーム蒸発源を配して、かつ、蒸
発面に立てた法線から46°傾斜した軸に光軸を有
する走査型のデコオプラズマトロン型のクロムイ
オン源を配し、マスクは、θminが44度になる位
置にセツトした。 厚み15μmのポリイミドフイルムを20m/min
で移動させながら、Co−Ni(Ni20wt%)を1×
10-6Torrの酸素中で0.1μm電子ビーム蒸着した。 それと同時に、10mAのCr+ビームを蒸発面の
中心に照射し、Crをフラツシユ蒸発させた。Cr+
ビームは、パルス走査し、ランダムに磁気テープ
面で面分布するように調節した。 基板温度は160℃から240℃の範囲で調節した。 得られた8mm幅の磁気テープを0.6μmの波長を
記録し、各環境に保存してから再生した時の再生
出力の最も低かつた値を夫々のテープ、ヘツド系
での初期値をO〔dB〕として相対比較した。Cr高
濃度部はX線分析により面積比率で、全表面を1
として比率で示した。 テープの条件と結果を表にまとめて示したが、
用いた比較テープは、Cr+イオンを照射しなかつ
たもので、測定したテープの長さは1巻80mで、
夫々の条件で5巻ずつテストして一番結果の悪か
つたもので代表させた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a magnetic recording medium suitable for high-density magnetic recording. Conventional structure and its problems In recent years, the increase in density of magnetic recording has led to narrower tracks and
At the same time, progress has been made to shorten the recording wavelength, but the recording wavelength has become shorter, becoming less than 1 μm.
As spacing loss becomes a major influence, surface roughness is restricted and needs to be less than 500 Å at the most.In order to reduce loss at short wavelengths, magnetic recording media require a thin magnetic recording layer. As it has become essential to use magnetic media and to construct it from ferromagnetic metals, development of such media has proceeded in various fields. Among these, the one that currently has the most consistent performance as a magnetic tape is one that uses a Co-based partial oxide film obtained by oblique evaporation as a magnetic recording layer, but this is a prerequisite for increasing density. It cannot be said that the compatibility with the alloy head is necessarily sufficient. That is, when a magnetic tape after a moisture resistance test is recorded and reproduced using a sendust alloy head or an amorphous alloy head, a stable reproduction output may not be obtained as when recording and reproduction is performed using a ferrite head, and an improvement has been desired. Purpose of the invention The present invention has been made in view of the above circumstances, and
An object of the present invention is to provide a magnetic recording medium that can obtain stable reproduction output in a high density area. Structure of the Invention The magnetic recording medium of the present invention is characterized in that the magnetic recording layer is a partial oxide film, and Cr is unevenly distributed on the surface, and the reproduction output in a high density region is stable. DESCRIPTION OF EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a partially enlarged sectional view of the magnetic recording medium of the present invention, and FIG. 2 is a diagram showing the main part of a vapor deposition apparatus used to obtain the magnetic recording medium of the present invention. In Figure 1, 1 is a polymer substrate, 2 is a worm-shaped raised layer, and 3 is a ferromagnetic thin film constituting a magnetic recording layer, which is composed of partially oxidized microcrystals 4 and Cr-segregated microcrystals 5. There is. In FIG. 2, 6 is a cylindrical can, 7 is a substrate, 8 is a delivery shaft, 9 is a winding shaft, 10 is an evaporation source container,
11 is a vapor deposition material, 12 is an ion source for supplying Cr,
13 is a mask, and 14 is an incident angle schematically shown.
Steam flow from 90° to θmm. Polymer substrates that can be used in the present invention include polyesters such as polyethylene terephthalate,
Also included are polyolefins such as polypropylene, cellulose derivatives such as cellulose triacetate, polyamideimide, polyamide, polyether sulfon, polyparabanic acid, polyimide, etc., which have a worm-shaped coating layer placed on one or both sides in advance. The magnetic recording layer that can be used in the present invention is
Co, Co-Ni, Co-Fe, Co-B, Co-Cu, Co
-Cd, Co-Cr, Co-F, Co-Ge, Co-Hf,
Co−La, Co−Mn, Co−Mo, Co−Mg, Co−
P, Co-Ru, Co-Rh, Co-Sn, Co-Si, Co-
Sm, Co-Ta, Co-Ti, Co-V, Co-W, Co
−Zn, Co−Ni−Fe, Co−Ni−P, Co−Ni−
Partially oxidized films such as Mg are required to contain a high concentration of Cr, as schematically shown in FIG. It is necessary that the high concentration portion of Cr be uniform when viewed on the scale of recording wavelength and recording track width, but non-uniform when viewed microscopically. That is, as will be described later, in order to always obtain the expected effect of being resistant to environmental changes and maintaining a certain level of abrasiveness, the high Cr concentration area must probably be reduced to 1/2% in proportion when viewed from the top. It seems to be sufficient if it accounts for 1/10000 to 100. From this, conversely, all of the high concentration areas of Cr,
For example, a medium obtained by implanting Cr into the entire surface by ion implantation or the like wears out the magnetic head at an excessively high rate, which may actually impede its practical use. One method of obtaining such a medium is with the apparatus of FIG. As shown in FIG. 2, chromium ions were injected into the vapor deposition material 11 from the ion source 12 and flash evaporated, and the substrate temperature was raised to increase the surface mobility of chromium. All you have to do is find the conditions under which a good medium can be obtained and repeat the process. It is presumed that the effects of the present invention are due to a combination of the microscopic difference in hardness of the magnetic tape surface and the abrasive action of chromium, especially in its oxidized state. The effect is especially
This is remarkable in that even if the magnetic tape undergoes corrosion to a degree that cannot be recognized by changes in the amount of magnetic flux, no reduction in reproduction output occurs. An example will be described in more detail below. (Example) In Figure 2, directly below the cylindrical can (diameter 50 cm)
An electron beam evaporation source was placed 26 cm apart, and a scanning deco-oplasmatron type chromium ion source was placed with its optical axis tilted 46° from the normal to the evaporation surface. , was set at a position where θmin was 44 degrees. Polyimide film with a thickness of 15μm at 20m/min
Co−Ni (Ni20wt%) was
0.1 μm electron beam evaporation in oxygen at 10 -6 Torr. At the same time, a 10 mA Cr + beam was irradiated to the center of the evaporation surface to flash evaporate the Cr. Cr +
The beam was pulse-scanned and adjusted so that it was randomly distributed over the magnetic tape surface. The substrate temperature was controlled in the range of 160°C to 240°C. The obtained 8 mm wide magnetic tape was recorded with a wavelength of 0.6 μm, and when it was stored in each environment and played back, the lowest value of the playback output was determined as the initial value of each tape and the head system was determined as O. relative comparison was made as [dB]. The area ratio of the high Cr concentration area was determined by X-ray analysis to be 1% of the entire surface.
It is expressed as a ratio. The tape conditions and results are summarized in a table,
The comparison tape used was one that was not irradiated with Cr + ions, and the length of the tape measured was 80 m per roll.
Five volumes were tested under each condition, and the one with the worst results was used as a representative.

【表】 表より明らかなように、本発明品は、従来品に
比べて極めて、短波長再生出力は安定している。
他の材料の組み合わせでも、本発明の実施例に示
したものと同等の安定性を確認した。 勿論、磁化容易軸の方向とも関係なかつたし、
他の薄膜ヘツドや、リング型ヘツド以外のシング
ルポール型などでも同様にその結果は確認され
た。 発明の効果 本発明の磁気記録媒体は、Crの高濃度部分を
偏在させた強磁性金属の部分酸化膜を磁気記録層
とすることで、磁気ヘツドによらず、短波長出力
を安定に再生できるもので、その実用的効果は大
きい。
[Table] As is clear from the table, the short wavelength reproduction output of the product of the present invention is extremely stable compared to the conventional product.
Stability equivalent to that shown in the examples of the present invention was confirmed with other combinations of materials. Of course, it has nothing to do with the direction of the axis of easy magnetization,
Similar results were confirmed with other thin-film heads and single-pole heads other than ring-type heads. Effects of the Invention The magnetic recording medium of the present invention can stably reproduce short wavelength output regardless of the magnetic head by using a partially oxidized film of ferromagnetic metal with unevenly distributed Cr concentration parts as the magnetic recording layer. It has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の磁気記録媒体の部分拡大断
面図、第2図は本発明の磁気記録媒体を得るのに
用いた蒸着装置の要部構成図である。 1……高分子基板、4……部分酸化された微結
晶、5……Cr高濃度微結晶。
FIG. 1 is a partially enlarged sectional view of the magnetic recording medium of the present invention, and FIG. 2 is a diagram showing the main part of a vapor deposition apparatus used to obtain the magnetic recording medium of the present invention. 1...Polymer substrate, 4...Partially oxidized microcrystal, 5...Cr high concentration microcrystal.

Claims (1)

【特許請求の範囲】[Claims] 1 Co系の部分酸化膜を磁気記録層とし、且つ
表面の元素分布が不均一で、Crの高濃度部の面
積比率が1/100〜1/10000であることを特徴と
する磁気記録媒体。
1. A magnetic recording medium characterized in that the magnetic recording layer is a Co-based partial oxide film, the element distribution on the surface is non-uniform, and the area ratio of the high concentration portion of Cr is 1/100 to 1/10,000.
JP11592584A 1984-06-06 1984-06-06 Magnetic recording medium Granted JPS60261016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11592584A JPS60261016A (en) 1984-06-06 1984-06-06 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11592584A JPS60261016A (en) 1984-06-06 1984-06-06 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60261016A JPS60261016A (en) 1985-12-24
JPH0565926B2 true JPH0565926B2 (en) 1993-09-20

Family

ID=14674586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11592584A Granted JPS60261016A (en) 1984-06-06 1984-06-06 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60261016A (en)

Also Published As

Publication number Publication date
JPS60261016A (en) 1985-12-24

Similar Documents

Publication Publication Date Title
JPS6148124A (en) Magnetic recording medium
US4690857A (en) Magnetic recording medium
JPH0565926B2 (en)
JPH0518180B2 (en)
JPS60145524A (en) Magnetic recording medium
JPH02179917A (en) Magnetic recording medium
JPH0568005B2 (en)
JPS618719A (en) Magnetic recording medium
JPH0559570B2 (en)
JPS62241122A (en) Magnetic recording medium
JPS6148119A (en) Magnetic recording medium
JPS63121120A (en) Production of magnetic recording medium
JP2001110039A (en) Method of manufacturing magnetic recording medium
JPH0518176B2 (en)
JP2001110042A (en) Method of manufacturing magnetic recording medium
JPH04195924A (en) Manufacturing device for magnetic recording medium
JP2001110037A (en) Method for manufacturing magnetic recording medium
JPS63206909A (en) Magnetic recording medium
JPH079690B2 (en) Magnetic recording medium
JPS60109027A (en) Magnetic recording medium
JP2001110040A (en) Method of manufacturing magnetic recording medium
JPS6126925A (en) Magnetic recording medium
JPS5873019A (en) Manufacture for magnetic recording medium
JPH0666085B2 (en) Method of manufacturing magnetic recording medium
JPH044648B2 (en)