JPH0565812B2 - - Google Patents

Info

Publication number
JPH0565812B2
JPH0565812B2 JP7171184A JP7171184A JPH0565812B2 JP H0565812 B2 JPH0565812 B2 JP H0565812B2 JP 7171184 A JP7171184 A JP 7171184A JP 7171184 A JP7171184 A JP 7171184A JP H0565812 B2 JPH0565812 B2 JP H0565812B2
Authority
JP
Japan
Prior art keywords
controlled
variable
manipulated variable
value
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7171184A
Other languages
Japanese (ja)
Other versions
JPS60216243A (en
Inventor
Masami Takahashi
Itsuo Miura
Shigeo Nishimura
Kozo Tsunoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP7171184A priority Critical patent/JPS60216243A/en
Publication of JPS60216243A publication Critical patent/JPS60216243A/en
Publication of JPH0565812B2 publication Critical patent/JPH0565812B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明はエンジン試験における学習制御方法に
関し、空気Aと燃料Fの混合比である空燃比
(A/F)及び排気ガス再循環率(EGR率)等の
制御量を短時間で設定値に設定し得るよう工夫し
たものである。
[Detailed Description of the Invention] <Technical Field> The present invention relates to a learning control method in engine testing, and relates to an air-fuel ratio (A/F), which is the mixing ratio of air A and fuel F, an exhaust gas recirculation rate (EGR rate), etc. The control variable can be set to the set value in a short time.

<技術的背景と問題点> エンジンの性能試験を行なう場合、例えばA/
F値、EGR率等をパラメータとすることがあり、
この場合には燃料の供給量を制御するポンプモー
タ、EGRバルブ等を制御してA/F値、EGR率
等を所望の値に設定する必要がある。
<Technical background and problems> When performing engine performance tests, for example, A/
F value, EGR rate, etc. may be used as parameters,
In this case, it is necessary to set the A/F value, EGR rate, etc. to desired values by controlling the pump motor, EGR valve, etc. that control the amount of fuel supplied.

この場合、EGR率は一般には排気ガスの成分
により算出され、またA/F値も出力法と呼称さ
れる方法の場合には排気ガスの成分から算出され
る。このように排気ガスの成分から算出する場合
は、応答に4〜5秒のタイム・ラグを生起する。
したがつて、このような大きなタイム・ラグを生
起する場合には特に、普通の連続フイードバツク
制御を行なつて制御量であるA/F値、EGR率
等を所望の値に設定することは困難である。
In this case, the EGR rate is generally calculated from the components of the exhaust gas, and the A/F value is also calculated from the components of the exhaust gas in the case of a method called the output method. When calculating from exhaust gas components in this way, a time lag of 4 to 5 seconds occurs in response.
Therefore, especially when such a large time lag occurs, it is difficult to perform normal continuous feedback control and set the control variables such as A/F value and EGR rate to desired values. It is.

このような場合に一番簡単な方法としては、燃
料の供給量を制御するポンプ・モータ、EGRバ
ルブ等の制御対象の操作量を一定の間隔でステツ
プ状に変化させ、その都度タイム・ラグを考慮し
て設定値とA/F、EGR率等の制御量の検出値
とを比較し、検出値が設定値になるまで操作量を
ステツプ状に順次変化させる方法がある。しか
し、この方法では、設定精度を上げるには1ステ
ツプの変化量を小さくする必要があるため、設定
に要する時間が極めて長くなるという欠点があ
る。
In such a case, the simplest method is to change the operation amount of the control target such as the pump motor or EGR valve that controls the amount of fuel supplied in steps at regular intervals, and reduce the time lag each time. There is a method in which the set value is compared with the detected value of a control variable such as A/F, EGR rate, etc., and the manipulated variable is sequentially changed in steps until the detected value reaches the set value. However, this method has the disadvantage that the time required for setting is extremely long because it is necessary to reduce the amount of change per step in order to increase the setting accuracy.

そこで、次に考えられる方法は、操作量をステ
ツプ状に変えるのは前と同じだが、1ステツプの
変化量を偏差量(設定値と検出値の差)に応じて
変化させるものとし、その際に偏差量と変化量と
の関係を予め決めテーブル化しておく方法であ
る。しかし、スロツトルバルブ開度とA/F値と
の関係、スロツトルバルブ開度と燃料流量、
EGRバルブ開度とEGR率の関係など、特にエン
ジン性能試験ではエンジンの状態によつて操作量
と制御量の関係が一義的に決まらないため、また
エンジンの機種によつても関係が異なるため、膨
大なテーブルを用意せねばならず、更にはテーブ
ル作成に長時間のデータ採りが必要であるという
時題がある。
Therefore, the next possible method is to change the manipulated variable in steps as before, but change the amount of change in one step according to the deviation amount (difference between the set value and the detected value). In this method, the relationship between the amount of deviation and the amount of change is determined in advance and created in a table. However, the relationship between the throttle valve opening and the A/F value, the throttle valve opening and the fuel flow rate,
Especially in engine performance tests, such as the relationship between the EGR valve opening and the EGR rate, the relationship between the manipulated variable and the controlled variable is not uniquely determined depending on the engine condition, and the relationship also differs depending on the engine model. There is a problem in that it is necessary to prepare a huge number of tables, and furthermore, it is necessary to collect data for a long time to create the table.

このため、従来はA/F値、EGR率等、応答
にタイムラグを有する制御量の自動的な制御は行
なわれておらず、図表等によるマニアル操作に留
まつていた。
For this reason, conventionally, automatic control of control variables that have a time lag in response, such as A/F value and EGR rate, has not been performed, and manual operation using charts and the like has been the only option.

<発明の目的> 本発明は、上記従来技術の欠点に鑑み、エンジ
ン試験におけるパラメータとなる制御量を短時間
で設定値に設定し得るようにした学習制御方法を
提供することを目的とする。
<Object of the Invention> In view of the drawbacks of the prior art described above, it is an object of the present invention to provide a learning control method that allows a control amount, which is a parameter in an engine test, to be set to a set value in a short time.

<発明の概要> 上記目的を達成する本願発明はエンジン試験に
おけるステツプ制御法を改良して、所定の設定値
に対して操作量をステツプ状に変化させはする
が、次回の操作量の変化は、前回迄の操作量とそ
れに対応した制御量の検出結果との関係によつて
予測し、これを順次続けて設定値に近づけるもの
である。
<Summary of the Invention> The present invention, which achieves the above object, improves the step control method in engine tests to change the manipulated variable in steps with respect to a predetermined set value, but the next change in the manipulated variable is , is predicted based on the relationship between the previous operation amount and the detection result of the corresponding control amount, and this is successively brought closer to the set value.

<実施例> 以下本発明の実施例を図面に基づき詳細に説明
する。
<Examples> Examples of the present invention will be described in detail below based on the drawings.

第1図は本発明の第1の実施例を実現する装置
を示すブロツク図である。本実施例はA/F値を
設定値QSに制御する場合で、この場合の制御量
QはA/F値、操作量Sは燃料の供給量を制御す
るポンプモータ21の回転数である。第1図中、
1は学習制御系、2は燃料供給装置、3はエンジ
ン、4は設定器である。本実施例の燃料供給装置
2はフロート内圧式の気化器を用いたものであ
り、ポンプモータ21、シリンダ22、バツフア
23、気化器24からなる。即ち、ポンプモータ
21に指令を与えてこれを作動させることにより
シリンダ22が指令に応じた圧力を発生し、この
圧力がバツフア23を介して気化器24のキヤブ
フロート室25に加えられる。キヤブフロート室
25は気化用パイプ26に連通されており、加圧
に応じた量の燃料27が空気28と混合されてエ
ンジン3に供給される。従つてポンプモータ21
を操作することにより、A/F値が変化する。
FIG. 1 is a block diagram showing an apparatus for implementing a first embodiment of the present invention. In this embodiment, the A/F value is controlled to a set value Q S , and in this case, the control amount Q is the A/F value, and the operation amount S is the rotation speed of the pump motor 21 that controls the amount of fuel supplied. . In Figure 1,
1 is a learning control system, 2 is a fuel supply device, 3 is an engine, and 4 is a setting device. The fuel supply device 2 of this embodiment uses a float internal pressure type carburetor, and includes a pump motor 21, a cylinder 22, a buffer 23, and a carburetor 24. That is, by giving a command to the pump motor 21 and operating it, the cylinder 22 generates pressure according to the command, and this pressure is applied to the carburetor float chamber 25 of the carburetor 24 via the buffer 23. The carburetor float chamber 25 is communicated with a vaporization pipe 26, and fuel 27 in an amount corresponding to pressurization is mixed with air 28 and supplied to the engine 3. Therefore, the pump motor 21
By operating , the A/F value changes.

学習運転制御系1は出力法によるA/F値検出
器11、操作量予測演算装置12からなる。A/
F値検出器11にはエンジン3の排気ガスが導か
れ、ガス分析によつてA/F値が検出される。操
作量予測演算装置12は操作量を表わす信号(操
作信号)をステツプ状に変化させてポンプモータ
21へ与えるが、その際、過去の制御結果〔操作
量とA/F値の関係〕に基づいて操作量を予測す
る。
The learning operation control system 1 includes an A/F value detector 11 using an output method and a manipulated variable prediction calculation device 12. A/
Exhaust gas from the engine 3 is introduced to the F value detector 11, and the A/F value is detected by gas analysis. The operation amount prediction calculation device 12 changes a signal representing the operation amount (operation signal) in a stepwise manner and supplies it to the pump motor 21, but at this time, it changes the signal representing the operation amount in a stepwise manner and supplies it to the pump motor 21. predict the amount of operation.

次に、上記装置を用いて、その設定器4により
制御量(本実施例の場合はA/F値)の設定値
QSを設定した場合の本実施例方法に係る学習制
御方法を説明する。
Next, using the above device, the setting value of the control amount (A/F value in the case of this embodiment) is set by the setting device 4.
A learning control method according to the method of this embodiment when Q S is set will be explained.

(1) 第1回目の操作量S1(本実施例の場合はポン
プモータ21の回転数)の算出: 最初は初期設定であり、操作量Sの予測の基
礎となる制御量Qの検出値がないので、操作量
予測演算装置12に設定値QSを与えることに
より制御量Qと操作量Sとの関係を示す任意の
関係式Q=f(s)に基づき算出された操作量S1
被制御対象(本実施例ではポンプモータ21)
を制御する。このとき関係式Q=f(s)に特別な
限定はなく両者の関係を表わすものと予想され
る近似式で近似すれば良い。例えば、第2図に
示すような二次関数近似でも良いし、また一次
関数近似、その他の曲線、折れ線による近似で
も勿論良い。
(1) Calculation of the first manipulated variable S 1 (in the case of this example, the rotation speed of the pump motor 21): The detected value of the controlled variable Q, which is the initial setting and is the basis for predicting the manipulated variable S. Therefore, by giving the set value Q S to the manipulated variable prediction calculation device 12, the manipulated variable S 1 is calculated based on an arbitrary relational expression Q=f(s) that indicates the relationship between the controlled variable Q and the manipulated variable S. The controlled object (in this example, the pump motor 21)
control. At this time, the relational expression Q=f(s) is not particularly limited and may be approximated by an approximate expression expected to express the relationship between the two. For example, quadratic function approximation as shown in FIG. 2 may be used, linear function approximation, and approximation using other curves or polygonal lines may also be used.

(2) 第2回目の操作量S2の算出: 第1回目の操作による実際の制御量(本実施
例ではA/F値)をA/F値検出器11で検出
して求める。次いで次式(1)により設定値QS
第1回目の操作により検出された制御量Q1
の差分ΔQ1を求める。
(2) Calculation of the second operation amount S2 : The actual control amount (in this embodiment, the A/F value) due to the first operation is detected and determined by the A/F value detector 11. Next, the difference ΔQ 1 between the set value Q S and the control amount Q 1 detected by the first operation is determined using the following equation (1).

ΔQ1=QS−Q1 ……(1) 次いで、第1回目の操作量S1の算出に用いた
関係式を用いて差分ΔQ1に相当する補正操作量
ΔS1を求め、次式(2)によつて第2回目の操作量
S2を算出し、制御対象を制御する。
ΔQ 1 = Q S −Q 1 ...(1) Next, the corrected manipulated variable ΔS 1 corresponding to the difference ΔQ 1 is determined using the relational expression used to calculate the first manipulated variable S 1 , and the following formula ( 2) The second operation amount is
Calculate S 2 and control the controlled object.

S2=S1+ΔS1 ……(2) このとき、第2図に示す場合にはΔS1=ΔQ/m という如く関係式Q=f(s)の操作量S1における
微分係数mを用いているが、第1回目の操作量
S1の決定の際に用いた関係式を用いればその用
い方に特別な限定はない。例えば第2図に示す
場合において関係式Q=f(s)が表わす曲線の操
作量S=0の点における微分係数を用いても良
い。また、補正操作量ΔS1に適当な制御定数k2
を乗じてやつても良い。
S 2 = S 1 + ΔS 1 ...(2) At this time, in the case shown in Figure 2, the differential coefficient m of the relational expression Q = f(s) with respect to the manipulated variable S 1 is used as ΔS 1 = ΔQ/m. However, the first operation amount
There are no particular limitations on how to use the relational expression used in determining S 1 . For example, in the case shown in FIG. 2, the differential coefficient at the point of the manipulated variable S=0 of the curve represented by the relational expression Q=f(s) may be used. In addition, an appropriate control constant k 2 for the correction operation amount ΔS 1
You can also do this by multiplying by

(3) 第3回目以降、第n回目のステツプでの操作
量を算出: 操作量Sの予測の基礎となる制御量Qの検出
値は2個以上あるので、前々回、即ち、第n−
2回目の操作量So-2とそれに対応して実際に検
出された制御量Qo-2と、前回、即ち、第n−
1回目の操作量So-1とそれに対応して実際に検
出された制御量Qo-1とを用い、第n回目の操
作量を次式(3)により求め操作量Snを算出し制
御対象を制御する。
(3) Calculate the manipulated variable at the n-th step from the 3rd time onward: Since there are two or more detected values of the controlled variable Q, which is the basis for predicting the manipulated variable S,
The second manipulated variable S o-2 and the corresponding actually detected controlled variable Q o-2 , and the previous one, that is, the n-th
Using the first manipulated variable S o-1 and the corresponding control variable Q o-1 that was actually detected, the n-th manipulated variable is calculated using the following formula (3), and the manipulated variable Sn is calculated and controlled. Control the subject.

So=So-1+ko×So-1−So-2/Qo-1−Qo-2・ΔQo-1 ……(3) 但し、ko=制御定数 ΔQo-1=QS−Qo-1 (4) 上述した操作量Sのステツプ変化が進み設定
値と実際に検出された制御量Qとの差が許容範
囲内に入ると操作量Sをその値で一定に保つ。
S o = S o-1 + k o ×S o-1 −S o-2 /Q o-1 −Q o-2・ΔQ o-1 …(3) However, k o = control constant ΔQ o-1 =Q S −Q o-1 (4) As the step change in the manipulated variable S described above progresses and the difference between the set value and the actually detected controlled variable Q falls within the allowable range, the manipulated variable S is kept constant at that value. Keep it.

以上の説明では燃料供給装置2がフロート内圧
式の気化器を用いたものであり、制御対象をポン
プモータ21としている。電子式の燃料供給装置
が使用される場合は、一般に電子コントローラへ
出力する補正抵抗値を操作することになる。な
お、補正抵抗値は燃料の増量比の関数になつてお
り、通常試験をするときは増量比1.5付近の補正
抵抗値でA/F=14.7(理論値)となるように調
整されている。
In the above description, the fuel supply device 2 uses a float internal pressure type carburetor, and the pump motor 21 is controlled. When an electronic fuel supply system is used, the correction resistance value that is output to the electronic controller is generally manipulated. Note that the corrected resistance value is a function of the fuel increase ratio, and when conducting normal tests, the corrected resistance value is adjusted so that A/F = 14.7 (theoretical value) at a fuel increase ratio of around 1.5.

また以上の説明では、3回目の操作以降は過去
2点づつの検出値に基づき、操作量を一次関数近
似で予測したが、3点づつ以上の検出値に基づき
一次関数あるいは二次関数などの近似で予測して
も良い。また、式(3)に示されている如く、予測毎
に制御定数を変えても良い。
In addition, in the above explanation, from the third operation onwards, the operation amount was predicted by a linear function approximation based on the detected values at each of two past points, but it is predicted by linear function approximation based on the detected values at three or more points. It may be predicted by approximation. Furthermore, as shown in equation (3), the control constant may be changed for each prediction.

第3図は本発明の第2の実施例を実現する装置
を示すブロツク図である。本実施例はEGR率を
設定値QSに制御する場合で、この場合の制御量
QはEGR率、操作量SはEGRパルプの操作圧で
ある。第3図中、1は学習制御系、2は燃料供給
装置、3はエンジン、4は設定器、5はEGR装
置である。これらのうち学習制御系1はA/F値
検出器11の代わりにEGR率検出器13を有す
る。他の燃料供給装置2、エンジン3及び設定器
4は第1図に示すものと同様であるので重複する
説明は省略する。本例のEGR装置5は、差動ア
ンプ51、アンプ52、パルス発振器53a,5
3b、インバータ54、電磁弁55a,55b、
真空ポンプ56、バツフア57、圧力センサ58
及びEGRパルプ59を有している。EGRバルブ
59はその入口59aから排気ガスを吸入し出口
59bから吐出することにより排気ガスを燃料供
給装置2から供給される混合気中に導入するとと
もに、弁体59cの開度により混合気中に導入す
る排気ガスの量を制御するものである。この
EGRバルブ59の弁体59cの開度は、パルス
発振器53a,53bが出力するパルス信号P1
P2のデユーテイを変えて電磁弁55a,55b
をデユーテイ制御することにより制御している。
更に詳言すると、パルス発振器53aには操作量
Sを表わす電気信号が直接、パルス発振器53b
には前記電気信号がインバータ54を介して夫々
供給されるので、パルス信号P2はパルス信号P1
を反転したものとなる。したがつて、電磁弁55
a,55bの開状態と閉状態とは互いに逆の関係
となり両者が同時に開状態となることはなく、し
かもパルス信号P1により制御される電磁弁55
aが開くと真空がバツフア57を介してEGRバ
ルブ59に作用し、パルス信号P2により制御さ
れる電磁弁55bが開くと大気圧がバツフア57
を介してEGRバルブ59に作用するため、前者
の場合に弁体59cの開度が増大し、後者の場合
に弁体59cの開度が減少する。かくて、EGR
バルブ59の操作圧はパルス信号P1,P2のデユ
ーテイを変えることにより変化する。したがつ
て、本例において学習制御系1の出力信号である
操作量Sを表す信号により制御される制御対象は
パルス発振器53a,53bということになる。
FIG. 3 is a block diagram showing an apparatus for implementing a second embodiment of the invention. In this embodiment, the EGR rate is controlled to a set value Q S , and in this case, the control amount Q is the EGR rate, and the manipulated variable S is the operating pressure of the EGR pulp. In FIG. 3, 1 is a learning control system, 2 is a fuel supply system, 3 is an engine, 4 is a setting device, and 5 is an EGR device. Among these, the learning control system 1 has an EGR rate detector 13 instead of the A/F value detector 11. The other fuel supply device 2, engine 3, and setting device 4 are the same as those shown in FIG. 1, so redundant explanation will be omitted. The EGR device 5 of this example includes a differential amplifier 51, an amplifier 52, pulse oscillators 53a, 5
3b, inverter 54, solenoid valves 55a, 55b,
Vacuum pump 56, buffer 57, pressure sensor 58
and EGR pulp 59. The EGR valve 59 takes in exhaust gas from its inlet 59a and discharges it from its outlet 59b, thereby introducing the exhaust gas into the air-fuel mixture supplied from the fuel supply device 2. This controls the amount of exhaust gas introduced. this
The opening degree of the valve body 59c of the EGR valve 59 is determined by the pulse signal P 1 output from the pulse oscillators 53a and 53b.
Change the duty of P 2 and use solenoid valves 55a and 55b.
is controlled by duty control.
To be more specific, the pulse oscillator 53a receives an electrical signal representing the manipulated variable S directly, and the pulse oscillator 53b
are supplied with the electric signals via the inverter 54, so that the pulse signal P 2 is the same as the pulse signal P 1
It is the inverted version of . Therefore, the solenoid valve 55
The open and closed states of the solenoid valves 55a and 55b are inversely related to each other, so that they are never open at the same time, and moreover, the solenoid valve 55 is controlled by the pulse signal P1.
When a opens, the vacuum acts on the EGR valve 59 via the buffer 57, and when the solenoid valve 55b controlled by the pulse signal P2 opens, atmospheric pressure acts on the EGR valve 59 via the buffer 57.
In the former case, the opening degree of the valve body 59c increases, and in the latter case, the opening degree of the valve body 59c decreases. Thus, EGR
The operating pressure of the valve 59 is changed by changing the duty of the pulse signals P 1 and P 2 . Therefore, in this example, the controlled objects controlled by the signal representing the manipulated variable S, which is the output signal of the learning control system 1, are the pulse oscillators 53a and 53b.

かかる装置を用いて、その設定器4により設定
値QSを設定した場合の学習制御は、第1の実施
例と同様に3回目以降は前回及び前々回の検出結
果に基づき次の操作量Sを予測して操作量Sをス
テツプ状に変化させることにより制御量Qをステ
ツプ状に変化させることにより行なわれる。た
だ、本例の場合は、EGRバルブ59の操作圧P
とEGR率との間に一次式で良好に近似される関
係(操作圧=EGR率×k)が成立する点に鑑み、
EGRバルブ59に作用する操作圧を圧力センサ
58で検出して、この検出圧力を操作量Sと差動
アンプ51で比較している。即ち、このときの操
作量Sは圧力で与えられ、例えば0〜200mmHgの
圧力を0〜10Vの電圧に対応させたものとなつて
おり、差動アンプ51はEGRバルブ59の操作
圧が操作量Sと一致するようにパルス発振器53
a,53bを制御する。
Learning control when using such a device and setting the set value Q S with the setting device 4 is similar to the first embodiment, and from the third time onwards, the next manipulated variable S is determined based on the detection results of the previous and two previous times. This is performed by predicting and changing the manipulated variable S in a stepwise manner, thereby changing the controlled variable Q in a stepwise manner. However, in this example, the operating pressure P of the EGR valve 59
Considering that a relationship that can be well approximated by a linear equation (operating pressure = EGR rate x k) holds between and the EGR rate,
The operating pressure acting on the EGR valve 59 is detected by the pressure sensor 58, and this detected pressure is compared with the operating amount S by the differential amplifier 51. That is, the operating amount S at this time is given by pressure, for example, the pressure of 0 to 200 mmHg corresponds to the voltage of 0 to 10 V, and the differential amplifier 51 determines that the operating pressure of the EGR valve 59 is the operating amount. Pulse oscillator 53 to match S
a, 53b.

かくて、この場合には学習制御の1回目及び2
回目に制御量(EGR率)と操作量(EGRバルブ
59の操作圧)との関係を表わす関係式が一次式
で良好に近似されるため、EGR率をその設定値
Qに迅速に設定し得る。
Thus, in this case, the first and second learning control
Since the relational expression representing the relationship between the controlled amount (EGR rate) and the manipulated variable (the operating pressure of the EGR valve 59) is well approximated by a linear equation, the EGR rate can be quickly set to its set value Q. .

勿論、このときの操作量Sとしてパルス発振器
53a,53bの出力信号であるパルス信号P1
P2のデユーテイを選択しても良いが、このとき
の制御量QであるEGR率とデユーテイとの間の
関係は一義的には定まらないため、学習制御にお
ける1回目、2回目の操作量Sの初期値設定及び
次の操作量Sの設定が、設定値QSと実際に検出
された制御量Q1、Q2との間の差分を大きなもの
とする可能性はあり、この場合には制御量Qの設
定値QSへの収束に、前述の如く操作量Sを操作
圧とした場合よりも、長時間を要する。ただ、こ
の場合も、第1の実施例と同様に適当な関数Q=
f(s)を選定することにより、第1の実施例と同等
の効果は得られる。
Of course, the manipulated variable S at this time is the pulse signal P 1 , which is the output signal of the pulse oscillators 53a and 53b.
P 2 duty may be selected, but since the relationship between the EGR rate, which is the control amount Q at this time, and the duty is not uniquely determined, the first and second operation amount S in learning control There is a possibility that the initial value setting and the next setting of the manipulated variable S will increase the difference between the set value Q S and the actually detected controlled variables Q 1 and Q 2 , and in this case, It takes a longer time for the control amount Q to converge to the set value Q S than when the manipulated variable S is used as the operating pressure as described above. However, in this case as well, an appropriate function Q=
By selecting f(s), the same effect as the first embodiment can be obtained.

<発明の効果> 以上実施例とともに具体的に説明したように、
本発明によれば、制御量を設定値に設定する際、
制御対象の操作量をステツプ状に変化させるばか
りでなく、操作量の3回目以降の設定の際には、
直前の複数の操作量と各操作量に対応した制御量
との関係から操作量を予測して定めるとともに、
1回目及び2回目の操作量の設定は制御量と操作
量との或る任意に定めた関係式から求めるように
したので、制御量を迅速に設定値に設定し得る。
<Effects of the Invention> As specifically explained above with the examples,
According to the present invention, when setting the control amount to the set value,
In addition to changing the manipulated variable of the controlled object in steps, when setting the manipulated variable from the third time onwards,
In addition to predicting and determining the manipulated variable from the relationship between the previous multiple manipulated variables and the control amount corresponding to each manipulated variable,
Since the first and second manipulated variables are determined from an arbitrarily determined relational expression between the controlled variables and the manipulated variables, the controlled variables can be quickly set to the set values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を実現する装置
を示すブロツク図、第2図は本発明の実施例に係
る操作量と制御量の関係を示すグラフ、第3図は
本発明の第2の実施例を実現する装置を示すブロ
ツク図である。 図面中、1は学習制御系、2は燃料供給装置、
3はエンジン、4は設定器、5はEGR装置であ
る。
FIG. 1 is a block diagram showing an apparatus for realizing the first embodiment of the present invention, FIG. 2 is a graph showing the relationship between the manipulated variable and the controlled variable according to the embodiment of the present invention, and FIG. FIG. 3 is a block diagram showing an apparatus for realizing a second embodiment. In the drawing, 1 is a learning control system, 2 is a fuel supply device,
3 is an engine, 4 is a setting device, and 5 is an EGR device.

Claims (1)

【特許請求の範囲】[Claims] 1 操作量をステツプ状に変化させて制御量をス
テツプ状に変化させ、この制御量を設定値に近づ
けるエンジン試験における制御方法において、制
御量の設定値に対する第1回目の操作量を制御量
と操作量との或る任意に決めた関係式から演算に
よつて求め、この操作量で制御対象を制御し、続
いて第2回目の操作量は、第1回目の制御に対す
る制御量と設定値との差に相当する補正操作量を
第1回目の制御に用いた関係式から算出して求
め、この操作量で制御対象を制御し、更に第3回
目以降第n回目の操作量は、直前の2回の操作量
同志の差を直前の2回の制御量同志の差で除し、
この除した値に設定値と直前の制御量との差を乗
じた値に基づき予測して定め、検出した制御量が
許容範囲内で設定値に近づくまで操作量を上記予
測によつてステツプ状に変化させることを特徴と
するエンジン試験における学習制御方法。
1 In a control method for engine testing in which the manipulated variable is changed stepwise to change the controlled variable in a stepwise manner, and this controlled variable approaches the set value, the first manipulated variable relative to the set value of the controlled variable is the controlled variable. The manipulated variable is determined by calculation from an arbitrarily determined relational expression with the manipulated variable, the controlled object is controlled with this manipulated variable, and then the second manipulated variable is calculated from the controlled variable and set value for the first control. The corrected operation amount corresponding to the difference between Divide the difference between the two manipulated variables by the difference between the two immediately preceding controlled variables,
The calculated value is predicted and determined based on the value multiplied by the difference between the set value and the immediately preceding controlled variable, and the manipulated variable is set in a stepwise manner based on the above prediction until the detected controlled variable approaches the set value within the allowable range. A learning control method in an engine test characterized by changing.
JP7171184A 1984-04-12 1984-04-12 Learning control for engine test Granted JPS60216243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7171184A JPS60216243A (en) 1984-04-12 1984-04-12 Learning control for engine test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7171184A JPS60216243A (en) 1984-04-12 1984-04-12 Learning control for engine test

Publications (2)

Publication Number Publication Date
JPS60216243A JPS60216243A (en) 1985-10-29
JPH0565812B2 true JPH0565812B2 (en) 1993-09-20

Family

ID=13468391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7171184A Granted JPS60216243A (en) 1984-04-12 1984-04-12 Learning control for engine test

Country Status (1)

Country Link
JP (1) JPS60216243A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301644A (en) * 1989-05-15 1990-12-13 Japan Electron Control Syst Co Ltd Individual-cylinder error detecting device, individual-cylinder learning device and individual-cylinder diagnosis device in fuel supply control device for internal combustion engine
US7295949B2 (en) * 2004-06-28 2007-11-13 Broadcom Corporation Energy efficient achievement of integrated circuit performance goals

Also Published As

Publication number Publication date
JPS60216243A (en) 1985-10-29

Similar Documents

Publication Publication Date Title
US6363316B1 (en) Cylinder air charge estimation using observer-based adaptive control
EP0041585A1 (en) Electronic, variable speed engine governor
US4138979A (en) Fuel demand engine control system
DE10306278B4 (en) Regulating device and control method
RU2027051C1 (en) Method of controlling portions of air and fuel in multi- cylinder internal combustion engine
US6718822B2 (en) Feed-forward observer-based control for estimating cylinder air charge
US4291656A (en) Method of controlling the rotational speed of an internal combustion engine
EP0582085A2 (en) Fuel metering control system and cylinder air flow estimation method in internalcombustion engine
JPH0240044A (en) Throttle opening control device for internal combustion engine
US6021755A (en) Method and apparatus for determining a fuel command for a fuel system
JPH0362898B2 (en)
JPH1068340A (en) Control device for internal combustion engine
US5520146A (en) Electronic control system for single and series throttle valves
US5014550A (en) Method of processing mass air sensor signals
US6985806B2 (en) Method for determining an estimated value of a mass flow in the intake channel of an internal combustion engine
JPH0565812B2 (en)
DE102008043965A1 (en) Method for determining e.g. supercharging pressure, in suction tube in air supply system of internal combustion engine in engine system, involves forming difference equation for discretization of differential equation based on Euler-process
JPS60195342A (en) Engine controller
JPH0572534B2 (en)
JPS6287651A (en) Method of controlling operating characteristic amount of operating control means in internal combustion engine
US20020059917A1 (en) Method of controlling an internal combustion engine
JP3071104B2 (en) Operation control method of lean burn gas engine
JPH07189785A (en) Device and method for fuel control of internal combustion engine, and vehicle using the same
JPS6157456B2 (en)
JPH0542616B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees