JPH0565618A - Corrosion preventive ceramic coating film - Google Patents

Corrosion preventive ceramic coating film

Info

Publication number
JPH0565618A
JPH0565618A JP3255951A JP25595191A JPH0565618A JP H0565618 A JPH0565618 A JP H0565618A JP 3255951 A JP3255951 A JP 3255951A JP 25595191 A JP25595191 A JP 25595191A JP H0565618 A JPH0565618 A JP H0565618A
Authority
JP
Japan
Prior art keywords
hydrogen
steel
sulfide
ceramic coating
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3255951A
Other languages
Japanese (ja)
Inventor
Toshitsugu Fukai
利嗣 深井
Keiichi Matsumoto
桂一 松本
Keiichi Shibata
啓一 柴田
Masahide Ishizuka
正英 石塚
Sadao Wasaka
貞雄 和坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI SEKITAN EKIKA KK
Original Assignee
MITSUI SEKITAN EKIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI SEKITAN EKIKA KK filed Critical MITSUI SEKITAN EKIKA KK
Priority to JP3255951A priority Critical patent/JPH0565618A/en
Publication of JPH0565618A publication Critical patent/JPH0565618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To inhibit the penetration of hydrogen into a vessel, piping, etc., in which a fluid contg. hydrogen and/or hydrogen sulfide is treated or handled at high temp. and pressure and/or the corrosion of the vessel, piping, etc., by hydrogen sulfide. CONSTITUTION:An Ni-Cr alloy coating film is formed on each surface of the vessel, piping, etc., a ceramic coating film is further formed on the Ni-Cr alloy coating film by thermal spraying and at least part of the pores in the ceramic coating film are sealed with Ni sulfide and Cr sulfide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素及び/又は硫化水素
を含有する流体を処理又は取り扱う容器、配管等の防食
及び水素透過を抑制するのに有効な防食セラミックス皮
膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anticorrosion ceramic coating effective for anticorrosion of a container, piping, etc. for treating or handling a fluid containing hydrogen and / or hydrogen sulfide and for suppressing hydrogen permeation.

【0002】[0002]

【従来の技術】従来、水素及び/又は硫化水素を含む流
体を処理するプロセスにおいて、反応器、高温分離器等
の高温高圧容器の材料として、Cr−Mo鋼の表面に耐
食性に優れたステンレス鋼を被覆した材料を用いてき
た。
2. Description of the Related Art Conventionally, in a process for treating a fluid containing hydrogen and / or hydrogen sulfide, a stainless steel having excellent corrosion resistance on the surface of Cr-Mo steel has been used as a material for high temperature and high pressure vessels such as reactors and high temperature separators. Have been used.

【0003】しかしながら、ステンレス鋼そのものは、
耐食性に優れてはいるが、施工時の残留応力により応力
腐食割れの発生する危険性がある。さらに、水素は、ス
テンレス鋼中を原子状水素として拡散し、基材であるC
r−Mo鋼に侵入する。Cr−Mo鋼に侵入した水素
は、そのCr−Mo鋼に含まれている炭化物と反応し、
メタンを生成する。このメタンガスは、Cr−Mo鋼の
結晶粒界に蓄積され、その内圧により粒界割れを引き起
こす。この現象が発生するCr−Mo鋼表面の水素分圧
及び温度は、Cr−Mo鋼中のCr及びMoの含有量に
より異なる。Cr及びMoの含有量と粒界割れを引き起
こす水素分圧と温度との関係が、ネルソン線図としてま
とめられている。例えば、この線図より、水素又は水素
と硫化水素を含む粒体を扱うプロセスにおいて、一般的
に使用されている材料である2.25Cr−1Mo鋼
は、水素分圧13.79MPa以上では、454.4℃
(850°F)が限界温度である。経済性を追及する商
業プラントでは、このネルソン線図の境界付近で材料を
選択することとなる。しかしながら、このネルソン線図
は、あくまでも使用実績を基に作成されたものであり、
必ずしも明確な境界を示すものではなく、使用範囲が安
全境界内にあっても、完璧に安全であるとはいい難い。
したがって、安全境界内で使用されるCr−Mo鋼であ
っても、水素侵食の危険性がないとはいえず、事実、特
に0.5%Mo鋼においては安全域内の損傷が相次ぎ、
ついに1990年版ネルソン線図で、0.5%Mo鋼の
ラインは、削除されるに至っている。
However, stainless steel itself is
Although it has excellent corrosion resistance, there is a risk of stress corrosion cracking due to residual stress during construction. Further, hydrogen diffuses in the stainless steel as atomic hydrogen, and C
Penetrates r-Mo steel. Hydrogen that has entered the Cr-Mo steel reacts with the carbides contained in the Cr-Mo steel,
It produces methane. This methane gas is accumulated in the crystal grain boundaries of Cr-Mo steel, and the internal pressure thereof causes grain boundary cracking. The hydrogen partial pressure and temperature on the surface of the Cr-Mo steel where this phenomenon occurs varies depending on the contents of Cr and Mo in the Cr-Mo steel. The relationship between the Cr and Mo contents, the hydrogen partial pressure that causes intergranular cracking, and the temperature is summarized as a Nelson diagram. For example, from this diagram, 2.25Cr-1Mo steel, which is a material generally used in the process of handling hydrogen or particles containing hydrogen and hydrogen sulfide, shows 454 at a hydrogen partial pressure of 13.79 MPa or more. 4 ° C
The limit temperature is (850 ° F). In a commercial plant that pursues economic efficiency, materials are selected near the boundary of this Nelson diagram. However, this Nelson diagram is created based on actual usage records,
It does not necessarily indicate a clear boundary, and it is hard to say that it is completely safe even if the range of use is within the safe boundary.
Therefore, it cannot be said that even the Cr-Mo steel used within the safety boundary is not at risk of hydrogen attack, and in fact, particularly in the case of 0.5% Mo steel, damage within the safety range is successively caused.
Finally, in the 1990 edition Nelson diagram, the line of 0.5% Mo steel was deleted.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は水素及
び/又は硫化水素を含有する流体を高温、高圧下に処理
又は取り扱う容器、配管等の防食及びそれらへの水素侵
食を有効に抑制することができる防食皮膜を提供するこ
とにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to effectively prevent corrosion of containers and pipes for treating or handling a fluid containing hydrogen and / or hydrogen sulfide at high temperature and high pressure and effectively suppress hydrogen corrosion to them. An object of the present invention is to provide an anticorrosion coating that can be used.

【0005】[0005]

【課題を解決するための手段】本発明者らは、Cr−M
o鋼の寿命を延長する手段として、硫化腐食及び水素侵
食に対して有効な皮膜をCr−Mo鋼の表面に施すこと
を考えた。Cr−Mo鋼の表面に施すことができる皮膜
としては、化学蒸着又は物理蒸着によるセラミックス皮
膜、溶融アルミメッキ皮膜、クロムの拡散浸透皮膜等
が、耐食性があり、さらに水素透過抑制効果のあること
は知られている。しかしこれらの皮膜形成方法を考えた
場合、あまり表面積の大きくない部分への施工は可能で
あるが、水素及び/又は硫化水素を含む流体を処理する
容器及び配管のような大面積の部分への施工は、現状の
技術では困難である。そこで、このような大面積の部分
への施工が可能で経済的な技術として、今までは空隙率
が高く耐食性及び水素透過抑制効果もないと考えられ、
このような条件では使用されていなかったセラミックス
溶射を試み、以下のようにして得られた皮膜が耐食性に
優れ、水素透過抑制効果もあることを見出し、本発明を
完成した。
The present inventors have found that Cr-M
As a means of extending the life of o steel, it was considered to apply a coating effective on sulfide corrosion and hydrogen attack to the surface of Cr-Mo steel. As the film that can be applied to the surface of the Cr-Mo steel, a ceramic film formed by chemical vapor deposition or physical vapor deposition, a molten aluminum plating film, a diffusion and penetration film of chromium, and the like have corrosion resistance and further have a hydrogen permeation suppression effect. Are known. However, considering these film forming methods, it is possible to apply to a part with a not so large surface area, but to a large area part such as a container and piping for processing a fluid containing hydrogen and / or hydrogen sulfide. Construction is difficult with current technology. Therefore, as an economical technology that can be applied to such a large area, it is considered that until now, it does not have high porosity and corrosion resistance and hydrogen permeation suppression effect,
The inventors have attempted thermal spraying of ceramics that has not been used under such conditions, and have found that the film obtained as described below has excellent corrosion resistance and also has an effect of suppressing hydrogen permeation, and completed the present invention.

【0006】本発明の防蝕セラミックス皮膜は金属表面
上に施されたNi−Cr合金皮膜、及びその皮膜上に溶
射されたセラミックス皮膜からなり、かつセラミックス
皮膜層の空隙の少なくとも一部がNi及びCrの硫化物
で封孔されていることを特徴とするものである。
The corrosion-resistant ceramic coating of the present invention comprises a Ni-Cr alloy coating applied on a metal surface and a ceramic coating sprayed on the coating, and at least a part of voids in the ceramic coating layer is Ni and Cr. It is characterized by being sealed with a sulfide of.

【0007】本発明において防食さるべき対象は水素及
び/又は硫化水素を含有する流体を処理又は取り扱う高
温、高圧の容器、配管等である。このような容器、配管
等の素材としては、前述したような被覆を施したCr−
Mo鋼(Cr含量0.8〜10重量%、Mo含量0.4
5〜1.1重量%)が用いられる。
In the present invention, the object to be protected against corrosion is a high temperature, high pressure container, piping, etc. for treating or handling a fluid containing hydrogen and / or hydrogen sulfide. As a material for such a container or piping, Cr-
Mo steel (Cr content 0.8 to 10% by weight, Mo content 0.4
5 to 1.1% by weight) is used.

【0008】このCr−Mo鋼の表面に、まずNi−C
r合金の皮膜が溶射等の方法で施される。この皮膜の厚
さは好ましくは100μm〜200μmである。
On the surface of this Cr-Mo steel, first Ni-C
A film of r alloy is applied by a method such as thermal spraying. The thickness of this film is preferably 100 μm to 200 μm.

【0009】Ni−Cr合金としては、Ni含量が40
〜85重量%、Cr含量が15〜60重量%であるも
の、又はその他の成分、例えばCoもしくは希土類元素
を少量含有したものが用いられる。
The Ni-Cr alloy has a Ni content of 40.
.About.85% by weight, Cr content of 15 to 60% by weight, or those containing a small amount of other components such as Co or rare earth elements.

【0010】Ni−Cr合金皮膜の上に、溶射によって
セラミックス皮膜を50μm〜150μmの厚さに形成
する。溶射されるセラミックスとしては、アルミナ、ジ
ルコニア、チタニア等が用いられる。これらのセラミッ
クスのうちで、アルミナが特に好ましい。
On the Ni-Cr alloy coating, a ceramic coating is formed to a thickness of 50 to 150 µm by thermal spraying. Alumina, zirconia, titania, etc. are used as the ceramics to be sprayed. Of these ceramics, alumina is particularly preferred.

【0011】溶射方法としてはフレーム溶射、アーク溶
射及びプラズマ溶射等の方法が用いられるが、これらの
うちの特定の方法に限定されるものではない。ただし、
セラミックスの溶射については、プラズマ溶射が効果の
点で最も好ましい。
As the thermal spraying method, flame spraying, arc spraying, plasma spraying and the like are used, but the method is not limited to any particular method. However,
Regarding thermal spraying of ceramics, plasma spraying is most preferable in terms of its effect.

【0012】水素及び/又は硫化水素を含有する流体を
処理及び取り扱う条件については特に制限はないが、C
r−Mo鋼が硫化腐食及び水素侵食を受ける可能性のあ
る条件、すなわち、温度が300℃以上で、水素分圧が
1kg/cm2 以上及び/又は硫化水素濃度が0.01
モル%以上の条件が一般的である。
The conditions for treating and handling a fluid containing hydrogen and / or hydrogen sulfide are not particularly limited, but C
Conditions under which r-Mo steel may be subjected to sulfide corrosion and hydrogen attack, that is, temperature is 300 ° C. or higher, hydrogen partial pressure is 1 kg / cm 2 or higher, and / or hydrogen sulfide concentration is 0.01.
Conditions of more than mol% are common.

【0013】処理又は取り扱う流体が硫化水素を含有し
ている場合は、硫化水素は上記条件下でセラミックス皮
膜中の空隙を通過してNi−Cr合金皮膜の表面に到達
する。ここで硫化水素はNi及びCrと反応してそれぞ
れの硫化物が生成する。これらの硫化物は生成するにし
たがいセラミックス皮膜中の空隙に入り、空隙を封孔す
るに至る。このようにセラミックス皮膜の空隙を封孔し
た硫化物は、それ以上の硫化水素の侵入を防ぐととも
に、水素が存在する場合にはその透過をも抑制する役割
を果たす。
When the fluid to be treated or treated contains hydrogen sulfide, the hydrogen sulfide reaches the surface of the Ni-Cr alloy coating through the voids in the ceramic coating under the above conditions. Here, hydrogen sulfide reacts with Ni and Cr to generate respective sulfides. As these sulfides enter the voids in the ceramic film as they are formed, the voids are sealed. In this way, the sulfide that seals the voids in the ceramic film not only prevents further intrusion of hydrogen sulfide, but also suppresses the permeation of hydrogen when it is present.

【0014】処理又は取り扱う流体が水素を含有するが
硫化水素を含有しない場合は、予め硫化水素含有流体で
処理することによりセラミックス皮膜の空隙部をNi及
びCrの硫化物で封孔する。
When the fluid to be treated or handled contains hydrogen but does not contain hydrogen sulfide, it is previously treated with a fluid containing hydrogen sulfide to seal the voids of the ceramic coating with sulfides of Ni and Cr.

【0015】一般に、Ni−Cr合金皮膜上のセラミッ
クス溶射皮膜は細孔が発達しており、その細孔の空隙部
を水素分子が自由に移動するので、水素透過を抑制する
効果はない。しかNi−Cr合金皮膜を硫化することに
よりセラミックス皮膜中の空隙は封孔されるので、セラ
ミックス皮膜中には水素分子が自由に移動できる空隙は
存在しなくなる。ただし、Ni及びCrの硫化物中を水
素は原子として拡散移動することができる。セラミック
ス皮膜中の空隙はセラミックスの粒子間に生成されてお
り、しかもその空隙は硫化物により封孔されているの
で、原子状水素がセラミックス皮膜を通過するために移
動しなければならない距離はセラミックス皮膜の厚さに
比して、はるかに長い距離となる。このように、Cr−
Mo鋼表面に施した皮膜のうち、その空隙がNi及びC
rの硫化物で封孔されたセラミックス皮膜が水素原子に
対して大きな抵抗となるので、Cr−Mo鋼表面での水
素分圧を低下させ、Cr−Mo鋼を通過する水素量を減
少させ得る。したがって、本発明による防食セラミック
ス皮膜を有するCr−Mo鋼が、ネルソン線図上で、ス
ティンレス鋼被覆Cr−Mo鋼よりも水素侵食による粒
界割れに対して、より安全側で使用することの可能性を
示唆すると云い得る。
Generally, the ceramic sprayed coating on the Ni-Cr alloy coating has fine pores and hydrogen molecules move freely in the voids of the fine pores, so that there is no effect of suppressing hydrogen permeation. However, since the voids in the ceramic coating are sealed by sulfiding the Ni-Cr alloy coating, there are no voids in the ceramic coating in which hydrogen molecules can move freely. However, hydrogen can diffuse and move as atoms in the sulfides of Ni and Cr. Since the voids in the ceramic film are formed between the ceramic particles and the voids are sealed by the sulfide, the distance that atomic hydrogen must move to pass through the ceramic film is the ceramic film. The distance is much longer than the thickness. Thus, Cr-
Among the coatings applied to the surface of Mo steel, the voids are Ni and C
Since the ceramic film sealed with the sulfide of r has a large resistance to hydrogen atoms, the hydrogen partial pressure on the surface of the Cr-Mo steel can be reduced and the amount of hydrogen passing through the Cr-Mo steel can be reduced. .. Therefore, the Cr-Mo steel having the anticorrosion ceramic coating according to the present invention can be used on the Nelson diagram more safely than the stainless steel-coated Cr-Mo steel against grain boundary cracking due to hydrogen attack. It can be said to suggest the possibility.

【0016】本発明においては、また、Ni−Cr合金
及びセラミックス皮膜を、この順序で多層に施すことが
できる。多層施工の層数は、あまり多くしても効果が、
その割には増大しないので、2〜4層(Ni−Cr層及
びその上に溶射したセラミックス皮膜を1層とする)が
好ましい。この場合、Ni−Cr合金層の硫化は、表面
に最も近い層のみでもよいし、あるいはさらに被覆され
た金属表面に近い層まで硫化してもよい。
In the present invention, the Ni-Cr alloy and the ceramic coating may be applied in multiple layers in this order. Even if the number of layers in multi-layer construction is too large, the effect is
Since it does not increase in comparison therewith, it is preferable to have 2 to 4 layers (the Ni—Cr layer and the ceramic coating sprayed thereon are one layer). In this case, the Ni—Cr alloy layer may be sulfided only in the layer closest to the surface, or may be sulfided to the layer closer to the further coated metal surface.

【0017】[0017]

【実施例】以下に実施例及び比較例を示して本発明をさ
らに具体的に説明する。 実施例1 厚さが4.5mmのCr−Mo鋼の全面に、Niが50
重量%、Crが50重量%のNi−Cr合金を、厚さ1
75μmに大気プラズマ溶射し、その上にアルミナを6
0μmの厚さに大気プラズマ溶射した30mm×30m
mの試験片を用いて試験を行った。
EXAMPLES The present invention will be described more specifically by showing Examples and Comparative Examples below. Example 1 The entire surface of a Cr-Mo steel having a thickness of 4.5 mm was filled with 50% Ni.
% Ni, Cr 50% by weight Ni-Cr alloy, thickness 1
Atmospheric plasma spraying to 75 μm and alumina 6 on it
30 mm x 30 m, plasma-sprayed to a thickness of 0 μm
The test was performed using m test pieces.

【0018】上記試験片を、内容積10リットルのオー
トクレーブ中に置き、温度450℃、全圧40kg/c
2 (ゲージ圧)、硫化水素濃度1.5モル%、水素濃
度98.5モル%の条件下に100〜1,000時間保
って硫化腐食試験を行った。結果を図1に示す。 実施例2 アルミナの溶射方法を減圧プラズマによった以外は実施
例1と同様に試験を行った。
The above test piece was placed in an autoclave having an internal volume of 10 liters, and the temperature was 450 ° C. and the total pressure was 40 kg / c.
A sulfidation corrosion test was carried out under conditions of m 2 (gauge pressure), hydrogen sulfide concentration of 1.5 mol% and hydrogen concentration of 98.5 mol% for 100 to 1,000 hours. The results are shown in Figure 1. Example 2 A test was conducted in the same manner as in Example 1 except that the alumina spraying method was low-pressure plasma.

【0019】結果を図1に示す。 比較例1 試験片のNi−Cr合金皮膜上へのアルミナ溶射を行わ
ない以外は実施例1と同様に試験を行った。
The results are shown in FIG. Comparative Example 1 A test was conducted in the same manner as in Example 1 except that the Ni-Cr alloy coating of the test piece was not sprayed with alumina.

【0020】結果を図1に示す。The results are shown in FIG.

【0021】実施例1及び1の結果によれば、ほぼ10
0時間までは硫化による重量増加が見られるがそれ以降
の重量増加は見られない。しかしながら、比較例1にお
けるNi−Cr合金溶射のみの試験片では重量は増加し
続け、硫化腐食が進行し続けていることがわかる。
According to the results of Examples 1 and 1, about 10
A weight increase due to sulfurization is observed up to 0 hours, but no further weight increase is observed thereafter. However, it can be seen that the weight of the test piece of Comparative Example 1 that is only sprayed with the Ni—Cr alloy continues to increase, and the sulfide corrosion continues to progress.

【0022】この重量変化と同時に断面のEPMA面分
析により、硫黄の分布状況を観察した。その結果、実施
例1及び2においては、100時間以降の断面の硫黄分
布状況に変化が見られなかった。このことは、100時
間以降、硫化腐食が事実上進行していないことを裏付け
るものである。しかし、比較例1においては時間の経過
とともに、Ni−Cr合金皮膜の硫黄量が増加速度は鈍
るものの、増加し続けていた。
Simultaneously with this change in weight, the distribution of sulfur was observed by EPMA surface analysis of the cross section. As a result, in Examples 1 and 2, no change was observed in the sulfur distribution state of the cross section after 100 hours. This confirms that the sulfidation corrosion has not substantially progressed after 100 hours. However, in Comparative Example 1, the amount of sulfur in the Ni—Cr alloy film continued to increase with the lapse of time, although the rate of increase was slow.

【0023】以上の結果から実施例1及び2の本発明に
よる防食セラミックス皮膜は比較例1のNi−Cr合金
皮膜に比較して硫化腐食に対して耐性が大きく充分に防
食効果のあることが明らかである。 実施例3 厚さが8mmのCr−Mo鋼の全面にNiが50重量
%、Crが50重量%のNi−Cr合金を厚さ175μ
mに大気プラズマ溶射し、その上にアルミナを60μm
の厚みに大気プラズマ溶射した直径91mmの試験片の
片側に水素(純度99.9999%)で11kg/cm
2 (絶対圧)の圧力をかけ、450℃に保持し、試験片
の反対側に透過してくる水素を窒素ガス(純度99.9
999%)に同伴させてガスクロマトグラフに導き定量
した。
From the above results, it is clear that the anticorrosion ceramic coatings according to the present invention of Examples 1 and 2 are more resistant to sulfidation corrosion than the Ni-Cr alloy coating of Comparative Example 1 and have a sufficient anticorrosion effect. Is. Example 3 A Ni—Cr alloy having a Ni content of 50% by weight and a Cr content of 50% by weight is formed on the entire surface of a Cr—Mo steel having a thickness of 8 mm to a thickness of 175 μm.
m plasma sprayed to the atmosphere, and 60 μm of alumina on it
Of hydrogen (purity 99.9999%) on one side of a test piece having a diameter of 91 mm and plasma-sprayed to a thickness of 11 kg / cm
A pressure of 2 (absolute pressure) is applied, the temperature is maintained at 450 ° C., and hydrogen that permeates to the opposite side of the test piece is replaced with nitrogen gas (purity 99.9).
999%) and led to a gas chromatograph for quantification.

【0024】同様の試験を実施例1におけると同様の硫
化環境暴露後に実施した。
Similar tests were carried out after exposure to the same sulfiding environment as in Example 1.

【0025】結果を表1に示す 実施例4 アルミナの溶射方法を減圧プラズマによった以外は実施
例3におけると同様の試験片を用いて実施例3と同様に
試験を行った。結果を表1に示す。 比較例2 Ni−Cr合金皮膜上へのアルミナ溶射を行わない以外
は実施例3と同様の試験片を用い実施例3と同様の試験
を行った。結果を表1に示す。 比較例3 実施例3と同サイズの処理をしないCr−Mo鋼を用い
て実施例3と同様に試験を行った。結果を表1に示す。
The results are shown in Table 1. Example 4 A test was conducted in the same manner as in Example 3 using the same test piece as in Example 3 except that the alumina spraying method was low pressure plasma. The results are shown in Table 1. Comparative Example 2 The same test as in Example 3 was performed using the same test piece as in Example 3 except that the alumina thermal spraying was not performed on the Ni—Cr alloy coating. The results are shown in Table 1. Comparative Example 3 A test was conducted in the same manner as in Example 3 using Cr-Mo steel having the same size as that of Example 3 and not treated. The results are shown in Table 1.

【0026】[0026]

【表1】 比較例2においては、Ni−Cr合金皮膜に水素透過抑
制効果がなく、比較例3における無処理のCr−Mo鋼
の水素透過量と全く変りがない。硫化環境に暴露した後
も水素透過抑制効果に変化がない。
[Table 1] In Comparative Example 2, the Ni—Cr alloy film has no hydrogen permeation suppressing effect, and is the same as the hydrogen permeation amount of the untreated Cr—Mo steel in Comparative Example 3 at all. There is no change in the hydrogen permeation suppression effect even after exposure to a sulfidizing environment.

【0027】実施例3及び4においては、硫化環境に暴
露する前では、水素透過量は無処理Cr−Mo鋼のそれ
と変りがないが、暴露後の水素透過量は実施例3におい
ては38%、実施例4においては41%にまで低下し
た。このことは、硫化環境に暴露してNi−Cr合金皮
膜を硫化することによりアルミナ皮膜の空隙が硫化物で
封孔され、これによってCr−Mo鋼表面における水素
分圧が低下せしめられCr−Mo鋼を通過する水素量が
減少することを示すものである。
In Examples 3 and 4, the hydrogen permeation amount was the same as that of the untreated Cr-Mo steel before being exposed to the sulfurizing environment, but the hydrogen permeation amount after the exposure was 38% in Example 3. In Example 4, it was reduced to 41%. This means that by exposing the Ni—Cr alloy coating to a sulfidizing environment, the voids in the alumina coating are sealed with sulfides, which reduces the hydrogen partial pressure on the surface of the Cr—Mo steel and reduces the Cr—Mo. This indicates that the amount of hydrogen passing through the steel is reduced.

【0028】[0028]

【発明の効果】本発明による防食セラミックス皮膜は、
高温、高圧で水素及び/又は硫化水素を含有する流体を
処理又は取り扱うCr−Mo鋼製の容器、配管等に対し
て有効に硫化腐食及び/又は水素透過を抑制することが
できる。
The anticorrosion ceramic coating according to the present invention comprises:
Sulfide corrosion and / or hydrogen permeation can be effectively suppressed with respect to a Cr-Mo steel container, piping, etc. that processes or handles a fluid containing hydrogen and / or hydrogen sulfide at high temperature and high pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1及び2、並びに比較例1における試験
時間と、試験片の重量変化/試験片の表面積との関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the test time and the weight change of the test piece / surface area of the test piece in Examples 1 and 2 and Comparative Example 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属表面上に施されたNi−Cr合金皮
膜、及びその皮膜上に溶射されたセラミックス皮膜から
なり、かつセラミックス皮膜中の空隙の少なくとも一部
がNi及びCrの硫化物で封孔されていることを特徴と
する金属表面への水素の透過及び/又は金属表面の腐食
を抑制するための防食セラミックス皮膜。
1. A Ni-Cr alloy coating formed on a metal surface and a ceramic coating sprayed on the coating, and at least a part of voids in the ceramic coating is sealed with a sulfide of Ni and Cr. An anti-corrosion ceramic film for suppressing permeation of hydrogen to the metal surface and / or corrosion of the metal surface, which is characterized by being perforated.
JP3255951A 1991-09-09 1991-09-09 Corrosion preventive ceramic coating film Pending JPH0565618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3255951A JPH0565618A (en) 1991-09-09 1991-09-09 Corrosion preventive ceramic coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3255951A JPH0565618A (en) 1991-09-09 1991-09-09 Corrosion preventive ceramic coating film

Publications (1)

Publication Number Publication Date
JPH0565618A true JPH0565618A (en) 1993-03-19

Family

ID=17285848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3255951A Pending JPH0565618A (en) 1991-09-09 1991-09-09 Corrosion preventive ceramic coating film

Country Status (1)

Country Link
JP (1) JPH0565618A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037253A1 (en) * 1997-02-21 1998-08-27 Tocalo Co. Ltd. Heating tube for boilers and method of manufacturing the samme
US11703816B2 (en) 2013-05-18 2023-07-18 Fipak Research And Development Company Method and apparatus for ensuring air quality in a building, including method and apparatus for controlling a working device using a handheld unit having scanning, networking, display and input capability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037253A1 (en) * 1997-02-21 1998-08-27 Tocalo Co. Ltd. Heating tube for boilers and method of manufacturing the samme
EP0922784A1 (en) * 1997-02-21 1999-06-16 Tocalo Co. Ltd. Heating tube for boilers and method of manufacturing the same
EP0922784A4 (en) * 1997-02-21 2000-05-24 Tocalo Co Ltd Heating tube for boilers and method of manufacturing the same
US6082444A (en) * 1997-02-21 2000-07-04 Tocalo Co., Ltd. Heating tube for boilers and method of manufacturing the same
US11703816B2 (en) 2013-05-18 2023-07-18 Fipak Research And Development Company Method and apparatus for ensuring air quality in a building, including method and apparatus for controlling a working device using a handheld unit having scanning, networking, display and input capability

Similar Documents

Publication Publication Date Title
Xiang et al. Preparation technique and alloying effect of aluminide coatings as tritium permeation barriers: a review
Agüero et al. Metal dusting protective coatings. A literature review
US5112698A (en) Ceramic coating
EP0704549B1 (en) Method for deposition of aluminides containing easily oxidized metals
Medvedovski et al. Wear‐and Corrosion‐Resistant Boride‐Based Coatings Obtained through Thermal Diffusion CVD Processing
US11192792B2 (en) Boronizing powder compositions for improved boride layer quality in oil country tubular goods and other metal articles
US5725905A (en) Method of manufacturing a component with a protective arrangement which prevents aluminizing or chromizing during gas diffusion coating
Cho et al. Corrosion behavior of plasma-sprayed Al2O3–Cr2O3 coatings in hot lithium molten salt
Bluni et al. Effects of thermal spray coating composition and microstructure on coating response and substrate protection at high temperatures
Coad et al. The use of titanium nitride as a diffusion barrier for M Cr Al Y coatings
JPH0565618A (en) Corrosion preventive ceramic coating film
KR20060130202A (en) Metal dusting resistant stable-carbide forming alloy surfaces
WO1984000122A1 (en) Build-up welding method
US4929473A (en) Corrosion resistance of low carbon steels in a vanadium, sulfur and sodium environment at high temperatures
US20180057924A1 (en) Coating compositions, methods and articles produced thereby
US5190598A (en) Steam turbine components having duplex coatings for improved erosion resistance
RU2685841C1 (en) Composition of powder mixture for thermodiffusion treatment of steel items, method of thermodiffusion treatment of steel products
JP2001170823A (en) Repairing method for cracked part of metallic structure
Smith et al. Aluminide coatings on 304 stainless steel
RU2286401C1 (en) Method for protecting of constructional steels from corrosion in lead heat-carrier and melts thereof
WO2017142431A1 (en) Method for protecting technological equipment used in petrochemical production
CA2998048A1 (en) Boronizing powder compositions for improved boride layer quality in oil country tubular goods and other metal articles
Moosa et al. Corrosion properties of inconel alloy 600 coated by simultaneous aluminizing-chromizing process
Lequien et al. Corrosion initiation of Hastelloy C‐2000 in an HCl‐polluted atmosphere
Fukai et al. Surface modification effects on hydrogen permeation in high-temperature, high-pressure, hydrogen-hydrogen sulfide environments