JPH0565575B2 - - Google Patents

Info

Publication number
JPH0565575B2
JPH0565575B2 JP58155827A JP15582783A JPH0565575B2 JP H0565575 B2 JPH0565575 B2 JP H0565575B2 JP 58155827 A JP58155827 A JP 58155827A JP 15582783 A JP15582783 A JP 15582783A JP H0565575 B2 JPH0565575 B2 JP H0565575B2
Authority
JP
Japan
Prior art keywords
cast iron
parts
weight
aluminum
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58155827A
Other languages
Japanese (ja)
Other versions
JPS6050144A (en
Inventor
Kihachiro Nishiuchi
Kenichi Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP15582783A priority Critical patent/JPS6050144A/en
Publication of JPS6050144A publication Critical patent/JPS6050144A/en
Publication of JPH0565575B2 publication Critical patent/JPH0565575B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は新しい複合合金鋳鉄に関し、更に詳し
くは鋳鉄溶湯に、チタン酸アルカリ金属塩とホウ
素化合物または更にこれにアルミニウムを添加し
て成る複合合金鋳鉄に係る。 本発明の合金鋳鉄は耐熱及び耐食性を有する特
殊合金鋳鉄の材質研究の研究の過程で見い出され
たもので時にアルミニウム溶湯に対して耐久性の
高い性能を有する合金鋳鉄である。 従来、アルミニウム合金、亜鉛合金、マグネシ
ウム合金、錫合金などの非鉄軽金属合金の低圧鋳
造用器材やダイキヤスト用器材、例えばストー
ク、るつぼ、熱電対保護管、自動給湯用ラドルな
どにはFC20〜25の普通鋳鉄が使用されている。
しかしながらこれら普通鋳鉄は例えばアルミニウ
ム溶湯などに対する溶損が大きく、長期の使用に
耐えないうえに、鉄成分や炭素成分の混入によつ
てアルミニウム鋳造品等の品質低下をもたらして
いる。 本発明者は、上記の事実に鑑み、これら普通鋳
鉄に替わる新規な材料を求める一連の研究の中
で、ダクタイル鋳鉄、ミーハーナイト鋳鉄、高ア
ルミニウム鋳鉄(クラルフアー鋳鉄、アルシロン
鋳鉄)など従来公知の特殊鋳鉄よりアルミニウム
低圧鋳造用のストークを作成し、実操業を行なつ
て検討して来たが、FC鋳鉄からなる器材の3〜
6日の耐用日数に対して、2〜3倍程度の耐用日
数の上昇程度にとどまつた。 そこであくまでも鋳鉄を基本にして、鋳鉄複合
合金鋳鉄の体質を改善すべく従来の鋳造工学の常
識にとらわれることなく新たな発想を展開させる
ことによつて本発明の完成に至つたのである。即
ち鋳鉄溶湯中にチタン酸アルカリ金属塩を添加す
ることによつて今までのFC鋳鉄やその他の鋳鉄
よりもはるかにアルミニウム合金溶湯に対して耐
食性のある材質が安定して得られ、しかも鋳鉄中
の最適配合比率と鋳鉄製造時の温度条件の最適範
囲を設定することによつて、またチタン酸アルカ
リ金属を添加した鋳鉄溶湯に更にアルミニウムを
添加して得られる複合合金鋳鉄が上述のように鋳
鉄中の最適配合比率、アルミニウム添加比率、複
合合金鋳鉄製造時の最適温度範囲を条件づけるこ
とによりチタン酸アルカリ金属を鋳鉄溶湯に添加
するだけでも効果がある上にさらに良好な材料が
得られることが判明した。 本発明者は上記新しい事実に基づき更に研究を
続けた結果、鋳鉄溶湯に上記チタン酸アルカリ金
属又はこれのアルミニウムとを添加する際に、更
にホウ素化合物を共存せしめる時は、得られる目
的物たる合金鋳鉄の組織がより緻密化し、この結
果更に耐食性及び耐熱性が向上することを見出
し、ここに本発明を完成したものである。 本発明合金鋳鉄をその製造方法に基づいて下記
に説明する。 本発明に於いては鋳鉄溶湯にチタン酸アルカリ
金属塩及びホウ素化合物、或いは更にアルミニウ
ムを添加する。この際の鋳鉄溶湯としては従来か
ら使用されて来たものが使用出来、たとえば新銑
必要に応じ一部故銑を使用し、これに鋼材、コー
クス、石灰石、珪素源を溶解して得られる鋳鉄溶
湯である。これ等各成分は得られる目的物たる合
金鋳鉄の組成を考慮して適宜に配合させる。好ま
しい配合は、得られる合金鋳鉄がC:2.5〜4.0重
量%(以下単に%という)、Si:2.0〜4.0%、
Ti:0.05〜1%、またはC:2.5〜4.0%、Si:2.2
〜3.8%、Cr:0.2〜2%、Mn:0.1〜2%、Ti:
0.05〜1%、Al:1.5〜4.0%になる様な配合であ
る。珪素源としてはフエロシリコン、フエロクロ
ム、フエロマンガン等が好ましいものとして挙げ
られる。 本発明に於いては上記鋳鉄溶湯にチタン酸アル
カリ金属及びホウ元素化合物を添加し、或いはア
ルミニウムを更に添加し、溶解装置から出て来た
溶湯を鋳込んで合金を製造する。この際の溶解温
度は1550〜1800℃、出湯温度は1500〜1650℃、鋳
込み温度1450〜1600℃好ましくは1500〜1600℃程
度であり、通常の条件よりも高温である。 この際使用されるチタン酸アルカリ金属として
は、粉状でもまた繊維状のものでも良く、たとえ
ばチタン酸リチウム、チタン酸ナトリウム、チタ
ン酸カリウムを好ましいものとして例示出来、ル
ビジウムやセシウムの塩等は実用的に特に好まし
いものとは云い難い。チタン酸アルカリ金属塩の
添加量はFC成分に対して1.5〜10%好ましくは2.0
〜7.0%程度である。またホウ素化合物としては
ホウ酸ナトリウム(ホウ砂)、ホウ酸カリ、無水
ホウ酸、フエロホウ素等を好ましいものとして例
示出来、これ等の添加量は鋼材120Kgに対し、0.5
〜3Kg程度である。 本発明の鋳鉄並びに複合合金鋳鉄製造装置は古
くから用いられているキユーポラ炉ばかりでなく
電気溶解炉でも可能であり、キユーポラ炉の場
合、チタン酸アルカリ金属の飛散をなくするため
に塊状にして用いることが好ましい。 本発明に用いられる複合合金鋳鉄中の元素であ
るCは2.5〜4.0重量%好ましくは3.0〜3.8%のカ
ーボン比率である。カーボンが4.0%よりも多く
なると、複合合金鋳鉄は硬くなり過ぎ切削等の後
加工が困難になるとともに、もろくなる為に例え
あアルミニウム溶湯などに使用する際の熱シヨツ
クに際しクラツクの入る恐れがある。また、2.5
%より下になると、合金鋳鉄組織はフエライト
(純鉄)地が多くなり、フエライトはアルミニウ
ムと反応してアルミフエライトとなり易い性質を
有する為に、アルミニウム溶湯中に溶出する結果
となり腐食し易くなる、またSiは2.0〜4.0重量%
好ましくは2.2〜3.8重量%である。Siが4.0%より
も多くなると、Siの有する黒鉛化促進元素の性質
により、合金鋳鉄の組織が黒鉛とフエライト地の
組織となり、フエライト地が上記の様に腐食し易
くなる。更には偏析によりSiが単独で存在し易く
なり、アルミニウム溶湯中へ溶出した場合、一般
にかにがわくと称される発泡の原因ともなる。 また、2%よりも下になると耐熱性が悪くなり
例えばアルミニウム溶湯中で使用される場合の耐
熱性が問題となる。 チタン酸アルカリ金属塩より添加されるTiは
キユーポラ操業においては0.05〜1重量%の範囲
内となる。一般に酸素ガス、或いはハロゲンガス
等の腐食性ガスは合金鋳鉄に侵入する場合黒鉛を
通路として入ることが知られている。従つて、長
繊維、及び(或いは)それら繊維が連なつた黒鉛
は、腐食性ガスを容易に侵入させ得る為に、腐
食、或いはクラツクの原因となる。そこで、黒鉛
繊維は片状繊微細化する必要があるが、Tiは黒
鉛の微細化剤として非常に有効であり、従つて耐
食性のよい合金鋳鉄が得られる。 また、黒鉛安定化元素としてCrを0.2〜2重量
%及び/又はMnを0.1〜2重量%含有させる。こ
れにより、本発明の合金鋳鉄に耐食性を付与する
ことができる。 さらに、本発明ではAlを1.5〜4.0重量%含有さ
せることを必須とする。Alを添加することによ
つて合金鋳鉄いの耐熱性の向上を図ることができ
る。上記添加量が1.5重量%未満の場合には十分
な耐熱性が得られない。また、4.0重量%を上回
る場合にはAlの偏析或いは合金鋳鉄溶湯の湯流
れが悪くなり、例えば鋳造不良の原因となる
“巣”などが発生するので好ましくない。 而して、アルミニウム溶湯に対し耐食性を向上
する為には複合合金鋳鉄組織をアルミニウムとの
反応性の見られない分子式Fe3Cで示されるセメ
ンタイト地にする必要があるが、完全なセメンタ
イト地もまた硬くてもろい為に、前述のクラツク
が問題となる。従つて、じん性を兼ね備えたセメ
ンタイトとフエライトの層状組織即ち、パーライ
ト組織とする必要がある。このパーライト組織も
出来得る限りセメンタイト地を多くし、緻密な組
織とすることが耐食性の向上へとつながつてい
る。本発明に於いては特に上記特定の組織とする
ことによりこのパーライト地とすることが出来た
ものである。 このようにして得られた耐熱・耐食性合金鋳鉄
はこれを用いてアルミニウム合金低圧鋳造用スト
ークにしてその耐久度試験を行なつた結果、連続
66〜80日間の操業において全く浸食されず原形を
保持するという驚異的記録を達成する。このこと
は従来知られているダクタイル鋳鉄、ミーハーナ
イト鋳鉄、高アルミニウム鋳鉄などの鋳鉄に属す
るシラール鋳鉄、クラルフアー鋳鉄、アルシロン
鋳鉄などの鋳鉄、更にはTiと添加したTi鋳鉄と
いえども比較できないほどの高性能なものであ
る。 本発明の耐熱・耐食性合金鋳鉄がこのような耐
熱、耐食性に優れる1つの理由として、添加物の
相乗効果によつて流電腐食を軽減させる効果の他
に、溶融金属に対する流水性が極端に低くなるた
めであると考えられるがまた明らかではない。 本発明の耐熱・耐食性合金鋳鉄はアルミニウム
合金鋳鉄用のるつぼやストークの他、銅、錫、ニ
ツケル、亜鉛、鉛等各種合金の金属に対しても優
れた耐熱、耐久性を有しており、これら各種溶融
金属対象の素材としても有用である。更にこの耐
熱・耐食性合金鋳鉄は機械的性質が良好であるの
で多きな利用度と経済的効果が期待できるもので
ある。 以下、参考例および実施例により本発明を具体
的に説明する。 但し下記例に於いて部とあるのは重量部を示
す。 参考例 1 キユーポーラ炉投入時点における配合量は鋼材
60部、新銑30部、コークス15部、石灰石10部であ
り、この配合量に対してチタン酸カリウム5部と
ベントナイト0.6部とを水で混練、塊状に成型し、
乾燥したものを上記配合物と共に炉頂に添加し
た。キユーポラでの溶解条件は溶解温度が1550℃
以上1800℃までとし、出湯温度1580℃である。か
くして得られた溶湯を前炉にとり、該溶湯100部
に対しホウ酸ナトリウム1部を添加し、鋳込み温
度1520℃で鋳造した。 参考例 2 キユーポラ炉投入時点における配合量は鋼材60
部、新銑30部、故銑10部、フエロシリコン15部、
コークス13部、石灰石10部でありこの配合量に対
してチタン酸カリウム6部とベントナイト0.7部
とを水で混練、塊状に成型し、乾燥したものを上
記配合物と共に炉頂に添加した。キユーポラ溶解
条件は参考例1と同じにした。またホウ酸ナトリ
ウム1部に代えフエロホウ素2.5部(但しFe分100
部に対し)を使用した。 参考例 3 参考例1と同じ方法で実施した。配合量は鋼材
60部、新銑40部、コークス15部、故銑2.5部、フ
エロシリコン10部、フエロクロム2部、フエロホ
ウ素2部、チタン酸リチウム5部及びベントナイ
ト0.6部(Fe分100部に対して)であつた。 実施例 1 参考例1で製造された溶湯の一部を前炉に取
り、溶湯100部に対してあらかじめ別の炉で溶解
させておいた純アルミニウム5部を添加、鋳型に
鋳造した。 実施例 2 参考例2で製造された溶湯の一部を取り、溶湯
100部に対し、純アルミニウム3部を添加鋳造し
た。 実施例 3 参考例3で製造された溶湯を前炉に取り、溶湯
100部に対して、あらかじめ別の炉で溶解させて
おいた純アルミニウム4部を添加鋳造した。 参考例1〜3および実施例1〜3を用いてアル
ミニウム合金低圧鋳造用ストークスを試作した。
このストークスの重量をあらかじめ測定した。ま
た一方比較例に使用するためにFC20のストーク
を鋳込む。このストークは30.2Kgであつた。それ
ぞれ低圧鋳造装置にセツトし、アルミニウム合金
鋳鉄の操業によつて本発明の鋳鉄とFCストーク
の耐熱、耐久、耐腐食性について連続操業試験を
行なつた。結果を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new composite alloy cast iron, and more particularly to a composite alloy cast iron made by adding an alkali metal titanate and a boron compound or further aluminum to molten cast iron. The alloy cast iron of the present invention was discovered in the course of material research for a special alloy cast iron that has heat resistance and corrosion resistance, and is an alloy cast iron that has high durability against molten aluminum. Traditionally, low-pressure casting equipment and die casting equipment for nonferrous light metal alloys such as aluminum alloys, zinc alloys, magnesium alloys, and tin alloys, such as stalks, crucibles, thermocouple protection tubes, and ladle for automatic hot water supply, have been made using standard FC20 to 25. Cast iron is used.
However, these ordinary cast irons suffer from a large amount of corrosion loss against, for example, molten aluminum, and cannot withstand long-term use. In addition, the quality of aluminum castings is degraded due to the contamination of iron and carbon components. In view of the above-mentioned facts, the present inventor conducted a series of research to find new materials to replace these ordinary cast irons. We have created stalks for low-pressure casting of aluminum from cast iron and conducted actual operations to examine the results.
Compared to the 6-day service life, the service life only increased by about 2 to 3 times. Therefore, based on cast iron, the present invention was completed by developing a new idea without being bound by conventional foundry engineering common sense in order to improve the constitution of cast iron composite alloy cast iron. In other words, by adding alkali metal titanate to molten cast iron, it is possible to stably obtain a material that is much more resistant to corrosion against molten aluminum alloy than conventional FC cast iron or other cast irons, and moreover, By setting the optimum blending ratio of and the optimum range of temperature conditions during cast iron manufacturing, composite alloy cast iron obtained by further adding aluminum to molten cast iron containing alkali metal titanates can be made into cast iron as described above. By adjusting the optimal blending ratio, aluminum addition ratio, and optimal temperature range during composite alloy cast iron production, we have found that simply adding alkali metal titanate to molten cast iron can be effective and produce even better materials. found. As a result of further research based on the above-mentioned new facts, the present inventor found that when adding the above-mentioned alkali metal titanate or aluminum to molten cast iron, and also coexisting with a boron compound, the resulting target alloy It was discovered that the structure of cast iron becomes more dense, and as a result, corrosion resistance and heat resistance are further improved, and the present invention has now been completed. The alloy cast iron of the present invention will be explained below based on its manufacturing method. In the present invention, an alkali metal titanate and a boron compound, or further aluminum are added to the molten cast iron. As the molten cast iron in this case, conventionally used molten metal can be used, such as cast iron obtained by melting steel, coke, limestone, and silicon source using fresh pig iron and some waste pig iron if necessary. It is molten metal. These components are appropriately mixed in consideration of the composition of the target alloyed cast iron to be obtained. A preferred composition is that the resulting alloy cast iron contains C: 2.5 to 4.0% by weight (hereinafter simply referred to as %), Si: 2.0 to 4.0%,
Ti: 0.05-1%, or C: 2.5-4.0%, Si: 2.2
~3.8%, Cr: 0.2~2%, Mn: 0.1~2%, Ti:
The content is 0.05-1% and Al: 1.5-4.0%. Preferred silicon sources include ferrosilicon, ferrochrome, ferromanganese, and the like. In the present invention, an alkali metal titanate and a boron element compound are added to the molten cast iron, or aluminum is further added, and the molten metal coming out of the melting device is poured to produce an alloy. The melting temperature at this time is 1550 to 1800°C, the tapping temperature is 1500 to 1650°C, and the casting temperature is 1450 to 1600°C, preferably about 1500 to 1600°C, which are higher than normal conditions. The alkali metal titanate used in this case may be in powder or fibrous form, and examples of preferred examples include lithium titanate, sodium titanate, and potassium titanate, and salts of rubidium and cesium are preferred. It is hard to say that it is particularly preferable. The amount of alkali metal titanate added is 1.5 to 10%, preferably 2.0% to the FC component.
~7.0%. Preferred examples of boron compounds include sodium borate (borax), potassium borate, boric anhydride, and ferroboron, and the amount of these added is 0.5 per 120 kg of steel material.
~3Kg. The apparatus for manufacturing cast iron and composite alloy cast iron of the present invention can be used not only in the Kupora furnace, which has been used for a long time, but also in an electric melting furnace. In the case of the Kupora furnace, the alkali metal titanate is used in bulk to prevent scattering. It is preferable. The carbon content of the element C in the composite alloy cast iron used in the present invention is 2.5 to 4.0% by weight, preferably 3.0 to 3.8%. If the carbon content exceeds 4.0%, the composite alloy cast iron becomes too hard, making post-processing such as cutting difficult, and it also becomes brittle, so there is a risk of cracking when subjected to heat shock when used with molten aluminum, for example. . Also, 2.5
%, the alloy cast iron structure has a large amount of ferrite (pure iron), and since ferrite has the property of easily reacting with aluminum to form aluminum ferrite, it is easily leached into the molten aluminum, resulting in corrosion. Also, Si is 2.0 to 4.0% by weight
Preferably it is 2.2 to 3.8% by weight. When Si exceeds 4.0%, the structure of the alloyed cast iron becomes a structure of graphite and ferrite base due to the graphitization promoting element properties of Si, and the ferrite base becomes susceptible to corrosion as described above. Furthermore, due to segregation, Si tends to exist alone, and if it is eluted into the molten aluminum, it may cause foaming, which is generally referred to as crab foam. Furthermore, if it is less than 2%, the heat resistance deteriorates, causing a problem in heat resistance when used in molten aluminum, for example. Ti added from an alkali metal titanate is in the range of 0.05 to 1% by weight in cupola operation. It is generally known that when corrosive gases such as oxygen gas or halogen gas enter alloy cast iron, they enter through graphite. Therefore, long fibers and/or graphite in which these fibers are connected can easily allow corrosive gases to enter, causing corrosion or cracks. Therefore, it is necessary to refine graphite fibers into flaky fibers, and Ti is very effective as a graphite refiner, and therefore alloy cast iron with good corrosion resistance can be obtained. Furthermore, 0.2 to 2% by weight of Cr and/or 0.1 to 2% by weight of Mn are contained as graphite stabilizing elements. Thereby, corrosion resistance can be imparted to the cast iron alloy of the present invention. Furthermore, in the present invention, it is essential to contain Al in an amount of 1.5 to 4.0% by weight. By adding Al, the heat resistance of alloyed cast iron can be improved. If the amount added is less than 1.5% by weight, sufficient heat resistance cannot be obtained. Moreover, if it exceeds 4.0% by weight, it is not preferable because it causes segregation of Al or poor flow of the molten alloy cast iron, resulting in, for example, "porosity" that causes poor casting. Therefore, in order to improve the corrosion resistance against molten aluminum, it is necessary to make the composite alloy cast iron structure into a cementite base with a molecular formula of Fe 3 C that shows no reactivity with aluminum, but a completely cementite base is not possible. Also, since it is hard and brittle, the crack mentioned above becomes a problem. Therefore, it is necessary to have a layered structure of cementite and ferrite, that is, a pearlite structure, which has both toughness. This pearlite structure also has as much cementite as possible to create a dense structure, which leads to improved corrosion resistance. In the present invention, this pearlite base can be obtained by particularly forming the above-mentioned specific structure. The heat-resistant and corrosion-resistant alloy cast iron thus obtained was used to make a stalk for aluminum alloy low-pressure casting, and its durability was tested.
During the 66 to 80 days of operation, it remained in its original shape without any erosion, an astonishing record. This means that even cast irons such as Silar cast iron, Kralfur cast iron, and Alsilon cast iron, which belong to the conventionally known cast irons such as ductile cast iron, Meekhanite cast iron, and high aluminum cast iron, and even Ti cast iron with added Ti, cannot be compared. It is high performance. One of the reasons why the heat-resistant and corrosion-resistant alloy cast iron of the present invention has such excellent heat and corrosion resistance is that, in addition to the effect of reducing galvanic corrosion due to the synergistic effect of additives, it also has extremely low water flowability with respect to molten metal. It is thought that this is because of this, but it is not clear. The heat-resistant and corrosion-resistant alloy cast iron of the present invention has excellent heat resistance and durability against crucibles and stalks for aluminum alloy cast iron, as well as various alloy metals such as copper, tin, nickel, zinc, and lead. It is also useful as a material for these various molten metal objects. Furthermore, this heat-resistant and corrosion-resistant alloy cast iron has good mechanical properties, so it can be expected to be widely used and economically effective. The present invention will be specifically explained below using reference examples and examples. However, in the following examples, parts indicate parts by weight. Reference example 1 The blended amount at the time of loading into the Kewpor furnace is steel material
60 parts of fresh pig iron, 15 parts of coke, and 10 parts of limestone.To this amount, 5 parts of potassium titanate and 0.6 parts of bentonite are kneaded with water and formed into a lump.
The dried material was added to the furnace top along with the above formulation. The melting conditions at Cupola are a melting temperature of 1550°C.
The maximum temperature is 1800℃, and the hot water temperature is 1580℃. The molten metal thus obtained was placed in a forehearth, 1 part of sodium borate was added to 100 parts of the molten metal, and cast at a casting temperature of 1520°C. Reference example 2 The amount of steel mixed at the time of input into the Kewpor furnace is 60
30 parts of new pig iron, 10 parts of old pig iron, 15 parts of ferrosilicon,
A mixture of 13 parts of coke and 10 parts of limestone was mixed with 6 parts of potassium titanate and 0.7 parts of bentonite with water, molded into a lump, dried, and added to the top of the furnace together with the above mixture. Cupola dissolution conditions were the same as in Reference Example 1. Also, replace 1 part of sodium borate with 2.5 parts of ferroboron (however, Fe content is 100
) was used. Reference Example 3 The same method as Reference Example 1 was used. Blend amount is steel material
60 parts, 40 parts of fresh pig iron, 15 parts of coke, 2.5 parts of old pig iron, 10 parts of ferrosilicon, 2 parts of ferrochrome, 2 parts of ferroboron, 5 parts of lithium titanate, and 0.6 parts of bentonite (per 100 parts of Fe content) It was hot. Example 1 A part of the molten metal produced in Reference Example 1 was placed in a forehearth, and 5 parts of pure aluminum, which had been previously melted in a separate furnace, was added to 100 parts of the molten metal, and cast into a mold. Example 2 A part of the molten metal produced in Reference Example 2 was taken and the molten metal
3 parts of pure aluminum was added to 100 parts by casting. Example 3 The molten metal produced in Reference Example 3 was placed in a forehearth, and the molten metal
4 parts of pure aluminum, which had been previously melted in a separate furnace, was added to 100 parts for casting. Using Reference Examples 1 to 3 and Examples 1 to 3, Stokes for aluminum alloy low-pressure casting was prototyped.
The weight of this Stokes was measured in advance. On the other hand, a FC20 stalk was cast for use as a comparative example. This stalk weighed 30.2Kg. Continuous operation tests were conducted on the heat resistance, durability, and corrosion resistance of the cast iron and FC stalk of the present invention by setting them in a low-pressure casting apparatus and operating aluminum alloy cast iron. The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ケイ素を含有する鉄原料120重量部に対し、
Ti源として特定量のチタン酸アルカリ金属塩及
び0.5〜3重量部のホウ素化合物を添加し、これ
を溶融反応させて得られる合金鋳鉄溶湯に純アル
ミニウムを加えることによつて、各成分の含有量
が、それぞれC;2.5〜4.0重量%、Si;2.2〜3.8重
量%、Ti;0.05〜1重量%、Al;1.5〜4.0重量%
の範囲内にある合金鋳鉄を得ることを特徴とする
耐熱・耐食性合金鋳鉄の製造方法。
1. For 120 parts by weight of iron raw material containing silicon,
By adding a specific amount of alkali metal titanate and 0.5 to 3 parts by weight of a boron compound as a Ti source, and adding pure aluminum to the molten alloy cast iron obtained by melting and reacting these, the content of each component can be reduced. However, C: 2.5-4.0% by weight, Si: 2.2-3.8% by weight, Ti: 0.05-1% by weight, Al: 1.5-4.0% by weight, respectively.
A method for producing heat-resistant and corrosion-resistant alloy cast iron, which is characterized by obtaining alloy cast iron within the range of .
JP15582783A 1983-08-25 1983-08-25 Alloy cast iron Granted JPS6050144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15582783A JPS6050144A (en) 1983-08-25 1983-08-25 Alloy cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15582783A JPS6050144A (en) 1983-08-25 1983-08-25 Alloy cast iron

Publications (2)

Publication Number Publication Date
JPS6050144A JPS6050144A (en) 1985-03-19
JPH0565575B2 true JPH0565575B2 (en) 1993-09-20

Family

ID=15614355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15582783A Granted JPS6050144A (en) 1983-08-25 1983-08-25 Alloy cast iron

Country Status (1)

Country Link
JP (1) JPS6050144A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142848A (en) * 1980-01-25 1981-11-07 Nordstjernan Rederi Ab Abrasion resistant cast iron
JPS5814867A (en) * 1981-07-21 1983-01-27 Canon Inc Developing device
JPS58151450A (en) * 1982-02-27 1983-09-08 Kyowa Chuzosho:Kk Composite alloy cast iron
JPS58155828A (en) * 1982-03-12 1983-09-16 株式会社日立製作所 Electric cleaner
JPS58155829A (en) * 1982-03-12 1983-09-16 株式会社日立製作所 Electric cleaner
JPS5993852A (en) * 1982-11-20 1984-05-30 Kyowa Chuzosho:Kk Composite alloy cast iron

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142848A (en) * 1980-01-25 1981-11-07 Nordstjernan Rederi Ab Abrasion resistant cast iron
JPS5814867A (en) * 1981-07-21 1983-01-27 Canon Inc Developing device
JPS58151450A (en) * 1982-02-27 1983-09-08 Kyowa Chuzosho:Kk Composite alloy cast iron
JPS58155828A (en) * 1982-03-12 1983-09-16 株式会社日立製作所 Electric cleaner
JPS58155829A (en) * 1982-03-12 1983-09-16 株式会社日立製作所 Electric cleaner
JPS5993852A (en) * 1982-11-20 1984-05-30 Kyowa Chuzosho:Kk Composite alloy cast iron

Also Published As

Publication number Publication date
JPS6050144A (en) 1985-03-19

Similar Documents

Publication Publication Date Title
RU1813113C (en) Cast iron modifier
CN102392094A (en) Spheroidizing agent for spheroidal graphite cast iron, and preparation method thereof
US2836486A (en) Exothermic alloy addition agent
CN109609803B (en) High-strength wear-resistant copper alloy material, preparation method and sliding bearing
CN109136770B (en) High-chromium alloy steel crucible for magnesium smelting and preparation method thereof
US1906567A (en) Metal alloy
US4517018A (en) Cast iron alloy and method for producing same
JPH0565575B2 (en)
JPH0565579B2 (en)
JPH0565577B2 (en)
JPH0565576B2 (en)
JPH0346539B2 (en)
CN102994838A (en) MgAlSi heat resistance magnesium alloy
US3836358A (en) Addition agent
SE447549B (en) SET FOR TERMIT WELDING FORMS OF AUSTENITIC MANGANES
JPS585976B2 (en) Method for preventing slag adhesion to furnace walls
RU2590772C1 (en) Method for production of aluminium cast iron
SU939577A1 (en) Briquet for melting aluminium alloys
RU2161659C1 (en) Cermet composition
SU1723148A1 (en) Compositional wire for steel modifying
SU1705395A1 (en) Cast iron
JPS6060978A (en) Nozzle composition for continuous casting
JPS6323149B2 (en)
CN111004967A (en) Vermicular graphite cast iron cooker and production method thereof
SU1548244A1 (en) Cast iron for aluminium alloy melting and dispensing furnaces