JPH0565351A - Polyethylene film containing organosilicon polymer and preparation thereof - Google Patents

Polyethylene film containing organosilicon polymer and preparation thereof

Info

Publication number
JPH0565351A
JPH0565351A JP25423691A JP25423691A JPH0565351A JP H0565351 A JPH0565351 A JP H0565351A JP 25423691 A JP25423691 A JP 25423691A JP 25423691 A JP25423691 A JP 25423691A JP H0565351 A JPH0565351 A JP H0565351A
Authority
JP
Japan
Prior art keywords
polymethylphenylsilane
film
polyethylene
polyethylene film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25423691A
Other languages
Japanese (ja)
Inventor
Michiya Fujiki
道也 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25423691A priority Critical patent/JPH0565351A/en
Publication of JPH0565351A publication Critical patent/JPH0565351A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the subject film which contains an organopolysilane easily handled yet retaining characteristics inherent in an organopolysilane. CONSTITUTION:The objective film contg. 0.1-10wt.% polymethylphenylsilane and having a thickness of 10-1,000mum is prepd. by pouring a soln. of polyethylene contg. polymethylphenylsilane in an amt. of 0.1-10wt.% of polyethylene into a poor solvent to give a powdered precipitate, thermally melt molding the precipitate into a film, and, if necessary, stretching the film. Polymethylphenylsilane having an average mol.wt. of 1,000-1,000,000 and polyethylene having an average mol.wt. of 1,000-150,000 are used. The film is useful as an optical waveguide material, a nonlinear optical material, and a light- emitting material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光導波路材料、非線型
光学材料、発光材料として、炭素を骨格とする従来の高
分子材料にはない新しいタイプの機能性材料である可溶
性有機ポリシラン高分子を含有するポリエチレン膜及び
その製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a soluble organic polysilane polymer which is a new type of functional material which is not present in conventional polymer materials having a carbon skeleton as an optical waveguide material, a non-linear optical material and a light emitting material. And a method for producing the same.

【0002】[0002]

【従来の技術】近年シリコンを骨格とする高分子である
可溶性有機ポリシランは、光導波路材料、非線型光学材
料、発光材料として、炭素を骨格とする従来の高分子材
料にはない新しいタイプの機能性高分子材料として多く
の注目を集めている。しかしながら、有機ポリシラン単
独ではフィルム形成能が十分でない。というのは、ポリ
シランに特徴的な近紫外域の吸光度の範囲を応用上実用
的な0.5〜4程度に制御しようとした場合、膜厚はサ
ブミクロンのオーダーとなり非常に薄いため、ピンホー
ルのない有機ポリシラン単独膜の形成は全く不可能であ
る。一方、溶融成形加工するためには有機ポリシランの
分子量制御が必要であるが現状ではその方法が知られて
おらず不可能である。そこで、通常は有機ポリシランを
適当な有機溶剤に溶かした溶液を支持基板上に塗布する
という操作によって、そのような超薄膜を支持基板上に
固定化する方法しかない状況にあった。したがって、光
導波路材料、非線型光学材料、発光材料といった観点か
ら、有機ポリシランの取扱いが著しく不便であった。一
方、有機ポリシランの近紫外吸収帯は高分子主鎖方向に
のびているため、有機ポリシランの光導波路材料、非線
型光学材料、発光材料としての特性を一層向上させるに
は一軸配向させることが望ましい。しかしながらこれま
で有機ポリシラン単独で配向に成功した例がないが、融
点が40℃と非常に低いジヘキシルポリシランについて
ガラス基板上においてラビング配向した例があるのみで
ある。
2. Description of the Related Art Recently, soluble organic polysilane, which is a polymer having silicon as a skeleton, has a new type of function as an optical waveguide material, a non-linear optical material, and a light emitting material, which is not present in conventional polymer materials having a carbon skeleton. Has attracted a lot of attention as a functional polymer material. However, the organic polysilane alone is not sufficient in film forming ability. This is because if you try to control the near-ultraviolet absorbance range, which is characteristic of polysilane, to about 0.5 to 4 which is practical for application, the film thickness will be on the order of submicron, which is very thin. It is completely impossible to form a single film of organic polysilane without the presence of a metal. On the other hand, it is necessary to control the molecular weight of the organic polysilane in order to carry out the melt molding process, but at present the method is not known and impossible. Therefore, there is usually only a method of immobilizing such an ultrathin film on a supporting substrate by an operation of applying a solution of organic polysilane dissolved in an appropriate organic solvent on the supporting substrate. Therefore, the handling of organic polysilane has been extremely inconvenient from the viewpoints of optical waveguide materials, nonlinear optical materials, and light emitting materials. On the other hand, since the near-ultraviolet absorption band of organic polysilane extends in the polymer main chain direction, uniaxial orientation is desirable in order to further improve the properties of organic polysilane as an optical waveguide material, a nonlinear optical material, and a light emitting material. However, until now, there has been no example of successful orientation with organic polysilane alone, but there is only an example of rubbing orientation of dihexylpolysilane having a very low melting point of 40 ° C. on a glass substrate.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、光導
波路材料、非線型光学材料、発光材料として期待される
有機ポリシラン類を有機ポリシランとしての性質を保有
しながら取扱いが容易な形態で提供するため、有機ポリ
シランを含有する高分子膜及びその製造方法を提供する
ことにある。またその有機ポリシランを含有する高分子
膜を延伸処理することによって有機ポリシラン主鎖が配
向した有機ポリシランを含有する高分子膜及びその製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide organic polysilanes expected as optical waveguide materials, nonlinear optical materials, and light emitting materials in a form that is easy to handle while retaining the properties of organic polysilanes. Therefore, it is an object of the present invention to provide a polymer film containing an organic polysilane and a method for producing the same. Another object of the present invention is to provide a polymer film containing an organic polysilane having an organic polysilane main chain oriented by stretching the polymer film containing the organic polysilane, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は有機シリコン高分子含有ポリエチレ
ン膜に関する発明であって、ポリメチルフェニルシラン
をポリエチレン中に0.1〜10重量%含有し、厚みが
10〜1000μmであることを特徴とする。また、本
発明の第2の発明は有機シリコン高分子含有ポリエチレ
ン膜の製造方法に関する発明であって、ポリメチルフェ
ニルシランをポリエチレンに対して0.1〜10重量%
混合させた溶液を貧溶媒中に再沈し、得られる有機シリ
コン高分子含有ポリエチレン粉末を更に溶融加熱成形し
て、厚みが10〜1000μmの膜とすることを特徴と
する。そして、本発明の第3の発明は有機シリコン高分
子含有ポリエチレン膜の他の製造方法に関する発明であ
って、ポリメチルフェニルシランをポリエチレンに対し
て0.1〜10重量%混合させた溶液を貧溶媒中に再沈
し、得られる有機シリコン高分子含有ポリエチレン粉末
を更に溶融加熱成形し、更に延伸処理をして、厚みが1
0〜1000μmの膜とすることを特徴とする。
SUMMARY OF THE INVENTION The present invention will be outlined. The first invention of the present invention relates to a polyethylene film containing an organic silicon polymer, wherein polymethylphenylsilane is added to polyethylene in an amount of 0.1 to 10%. It is characterized by containing by weight and having a thickness of 10 to 1000 μm. The second invention of the present invention relates to a method for producing a polyethylene film containing an organic silicon polymer, wherein polymethylphenylsilane is contained in an amount of 0.1 to 10% by weight based on polyethylene.
The mixed solution is reprecipitated in a poor solvent, and the obtained organosilicon polymer-containing polyethylene powder is further melt-heated and molded to form a film having a thickness of 10 to 1000 μm. And the third invention of the present invention is an invention relating to another method for producing a polyethylene film containing an organic silicon polymer, wherein a solution prepared by mixing polymethylphenylsilane in an amount of 0.1 to 10% by weight with respect to polyethylene is used. After reprecipitation in a solvent, the obtained organosilicon polymer-containing polyethylene powder is further melt-heat molded and further stretched to have a thickness of 1
It is characterized in that the film has a thickness of 0 to 1000 μm.

【0005】有機ポリシランとしてポリメチルフェニル
シランを、マトリックス高分子としてポリエチレンを選
んだ理由を以下に示す。
The reason why polymethylphenylsilane is selected as the organic polysilane and polyethylene is selected as the matrix polymer is shown below.

【0006】これまで知られている種々の有機ポリシラ
ンの中でガラス転移点が室温よりもかなり低く、融点も
室温よりも少し高いという熱的特性を持つジアルキルポ
リシラン類では、光導波路材料、非線型光学材料、発光
材料といった実用的観点から、安定した特性が得られに
くいため、ガラス転移点が室温よりも十分に高い有機ポ
リシラン類が好ましい。ポリメチルフェニルシランは、
これまで知られている有機ポリシラン類のなかで、ガラ
ス転移点が約100℃と室温よりも十分に高く、加熱成
形加工が可能であるため、光導波路材料、非線型光学材
料、発光材料といった実用的観点から最も望ましい有機
ポリシランである。
Among various organic polysilanes known so far, dialkyl polysilanes having the thermal characteristics that the glass transition point is considerably lower than room temperature and the melting point is slightly higher than room temperature are used as optical waveguide materials and nonlinear materials. From a practical point of view such as an optical material and a light emitting material, organic polysilanes having a glass transition point sufficiently higher than room temperature are preferable because it is difficult to obtain stable characteristics. Polymethylphenylsilane is
Among the organic polysilanes known so far, the glass transition point is about 100 ° C., which is sufficiently higher than room temperature, and it can be processed by heat molding. Therefore, it can be used in practical applications such as optical waveguide materials, nonlinear optical materials, and light emitting materials. It is the most desirable organic polysilane from the viewpoint.

【0007】一方、マトリックス高分子としては、可と
う性、原料コスト、紫外可視域での透明性、溶融成形加
工性、耐湿性などを考慮すると、種々のエンジニアリン
グプラスチックの中で、ポリエチレンが最も望ましい。
ここで、ポリメチルフェニルシランの重量平均分子量範
囲が1000〜1000000(ゲルパーミエーション
クロマトグラフ法、標準ポリスチレンを使用して評価)
のものを使用することができる。ポリエチレンは高密度
直鎖タイプ、低密度分岐タイプを含む重量(数)平均分
子量範囲が1000〜150000のものを使用するこ
とができる。
On the other hand, as the matrix polymer, polyethylene is most preferable among various engineering plastics in consideration of flexibility, raw material cost, transparency in the UV-visible range, melt-molding processability, moisture resistance and the like. ..
Here, the weight average molecular weight range of polymethylphenylsilane is 1,000 to 1,000,000 (evaluated using gel permeation chromatography, standard polystyrene).
Can be used. Polyethylene having a high-density linear type and a low-density branched type and having a weight (number) average molecular weight range of 1,000 to 150,000 can be used.

【0008】また再沈のための貧溶媒としてイソプロピ
ルアルコールのほかにメタノールやエタノールなどのア
ルコール類、ヘキサンやイソオクタンなどの脂肪族炭化
水素系溶媒、アセトンなどが使用可能である。
In addition to isopropyl alcohol, alcohols such as methanol and ethanol, aliphatic hydrocarbon solvents such as hexane and isooctane, and acetone can be used as the poor solvent for reprecipitation.

【0009】[0009]

【実施例】以下、本発明を実施例及び応用例によって更
に具体的に説明するが、本発明はこれら実施例に限定さ
れない。
EXAMPLES The present invention will be described in more detail below with reference to examples and application examples, but the present invention is not limited to these examples.

【0010】実施例1 ポリメチルフェニルシラン含有
ポリエチレン膜及びその製造方法 ポリメチルフェニルシラン含有ポリエチレン膜は以下の
ようにして作製できる。ポリメチルフェニルシラン(重
量平均分子量:8,000)を低密度ポリエチレンに対
して2重量%混合させた熱キシレン溶液を調製する。こ
の均一混合溶液をイソプロピルアルコール中に再沈し
て、ポリメチルフェニルシラン含有ポリエチレン粉末を
得る。この粉末を更に二枚のガラス中に挟み込み、溶融
加熱成形する。適当な厚みになるまで加熱温度と時間を
調節する。この方法で厚みが10〜1000μmの範囲
で制御できる。またこの方法でポリメチルフェニルシラ
ンは0.1〜10重量%の範囲で含有量を制御できる。
図1に、得られたポリメチルフェニルシラン含有ポリエ
チレン膜(ポリメチルフェニルシラン含量2%、厚み1
00μm)の紫外可視吸収スペクトルを、吸光度(縦
軸)と波長(nm、横軸)との関係で示す。ポリメチル
フェニルシランに特徴的な340nm、270nm付近
の吸収が明りょうに認められる。
Example 1 Polymethylphenylsilane-containing polyethylene film and method for producing the same A polymethylphenylsilane-containing polyethylene film can be produced as follows. A hot xylene solution is prepared by mixing 2% by weight of polymethylphenylsilane (weight average molecular weight: 8,000) with low density polyethylene. This homogeneous mixed solution is reprecipitated in isopropyl alcohol to obtain polyethylene powder containing polymethylphenylsilane. This powder is further sandwiched between two glasses and melt-molded by heating. Adjust the heating temperature and time until the appropriate thickness is achieved. By this method, the thickness can be controlled in the range of 10 to 1000 μm. Further, the content of polymethylphenylsilane can be controlled by this method in the range of 0.1 to 10% by weight.
Fig. 1 shows the obtained polymethylphenylsilane-containing polyethylene film (polymethylphenylsilane content 2%, thickness 1
The UV-visible absorption spectrum of (00 μm) is shown by the relationship between the absorbance (vertical axis) and the wavelength (nm, horizontal axis). The absorption around 340 nm and 270 nm, which is characteristic of polymethylphenylsilane, is clearly observed.

【0011】実施例2 配向ポリメチルフェニルシラン
含有ポリエチレン膜及びその製造方法 配向ポリメチルフェニルシラン含有ポリエチレン膜は以
下のようにして製造することができる。ポリメチルフェ
ニルシラン含有ポリエチレン膜(ポリメチルフェニルシ
ラン含量2%、厚み100μm)を100〜150℃に
加熱しながら一方向に延伸操作する。図2に、得られた
配向ポリメチルフェニルシラン含有ポリエチレン膜(延
伸比5)の紫外可視吸収スペクトルの偏光依存性を示
す。すなわち、図2は、該偏光依存性を吸光度(縦軸)
と波長(nm、横軸)との関係で示す図であり、は編
光方向と延伸方向が平行の場合、は偏光方向と延伸方
向が直角の場合を示す。ポリメチルフェニルシランに特
徴的な340nm、270nm付近の偏光吸収依存性が
明りょうに認められる。また400〜800nmにかけ
てポリメチルフェニルシランがポリエチレン中に異方的
に配向することに起因して、屈折率の異方性に基づくベ
ースラインについても偏光依存性が認められる。340
nmの吸収に関し、二色比は1.2と見積られる。これ
らの性質を利用して、近紫外〜可視域での偏光フィルタ
ーとして使用できる可能性を示している。
Example 2 Oriented Polymethylphenylsilane-Containing Polyethylene Film and Method for Producing the Same The oriented polymethylphenylsilane-containing polyethylene film can be produced as follows. A polyethylene film containing polymethylphenylsilane (polymethylphenylsilane content 2%, thickness 100 μm) is stretched in one direction while heating at 100 to 150 ° C. FIG. 2 shows the polarization dependence of the ultraviolet-visible absorption spectrum of the obtained oriented polymethylphenylsilane-containing polyethylene film (stretching ratio 5). That is, FIG. 2 shows the polarization dependence of the absorbance (vertical axis).
Is a diagram showing the relationship between the wavelength and the wavelength (nm, abscissa), where is the case where the knitting direction is parallel to the stretching direction, and is the case where the polarization direction is perpendicular to the stretching direction. The polarization absorption dependence around 340 nm and 270 nm, which is characteristic of polymethylphenylsilane, is clearly recognized. In addition, due to the anisotropic orientation of polymethylphenylsilane in polyethylene over 400 to 800 nm, polarization dependency is also recognized for the baseline based on the anisotropy of refractive index. 340
For nm absorption, the dichroic ratio is estimated to be 1.2. Utilizing these properties, it has been shown that it can be used as a polarizing filter in the near ultraviolet to visible range.

【0012】実施例3 ポリメチルフェニルシラン含有
ポリエチレン膜の応用例 ポリメチルフェニルシラン含有ポリエチレン膜の応用と
して、光学回路の形成が可能であることを以下に示す。
図3に、ポリメチルフェニルシラン含有ポリエチレン膜
(ポリメチルフェニルシラン含量2%、厚み100μ
m)に254nm、6Wの紫外線を照射したときの経時
変化をt=0分、5分、30分の場合について、吸光度
(縦軸)と波長(nm、横軸)との関係で示す。紫外線
照射に伴い、ポリメチルフェニルシランに特徴的な34
0nm、270nm付近の吸収並びに400〜800n
mにかけてのベースラインが小さくなる。紫外線照射
(254nm、6W)に伴って、340nm、270n
m付近の吸収は消色し、400〜800nmのベースラ
インは小さくなるが、その速度はポリメチルフェニルシ
ラン単独とポリメチルフェニルシランを含有するポリエ
チレン膜とでほとんど変化がない。このことは、紫外線
照射によるポリメチルフェニルシランの光分解は高分子
自身で起こり、高分子鎖近傍の状態によらない。この性
質を利用して、ポリメチルフェニルシラン含有ポリエチ
レン膜に400nm以下の光をマスクを介して照射すれ
ば、光学回路の形成が可能なことを示している。すなわ
ちポリメチルフェニルシラン含有部がコア部で、光照射
部がクラッド部に相当する。
Example 3 Application Example of Polymethylphenylsilane-Containing Polyethylene Film As an application of the polymethylphenylsilane-containing polyethylene film, it is shown below that an optical circuit can be formed.
Figure 3 shows a polyethylene film containing polymethylphenylsilane (polymethylphenylsilane content 2%, thickness 100μ
The change with time when m) is irradiated with ultraviolet rays of 254 nm and 6 W is shown by the relationship between absorbance (vertical axis) and wavelength (nm, horizontal axis) for t = 0 minutes, 5 minutes, and 30 minutes. The characteristic of polymethylphenylsilane is 34 with UV irradiation.
Absorption near 0 nm and 270 nm and 400 to 800 n
The baseline becomes smaller toward m. 340nm, 270n with ultraviolet irradiation (254nm, 6W)
The absorption around m disappears and the baseline of 400 to 800 nm becomes smaller, but the speed is almost the same between the polymethylphenylsilane alone and the polyethylene film containing polymethylphenylsilane. This means that the photolysis of polymethylphenylsilane by UV irradiation occurs in the polymer itself and does not depend on the state near the polymer chain. By using this property, it is shown that an optical circuit can be formed by irradiating the polymethylphenylsilane-containing polyethylene film with light of 400 nm or less through a mask. That is, the polymethylphenylsilane-containing portion corresponds to the core portion, and the light irradiation portion corresponds to the clad portion.

【0013】[0013]

【発明の効果】以上、詳細な説明で示したように、ポリ
メチルフェニルシランをポリエチレン中に0.1〜10
重量%含有し、厚みが10〜1000μmである、有機
シリコン高分子含有ポリエチレン膜及びその配向膜は、
ポリメチルフェニルシランをポリエチレンに対して0.
1〜10重量%混合させた溶液を貧溶媒中に再沈して得
られる有機シリコン高分子含有ポリエチレン粉末を更に
溶融加熱成形、及び延伸処理することによって製造する
ことができる。ポリメチルフェニルシラン含有ポリエチ
レン膜は、有機ポリシラン単独では取扱いが困難なもの
についても、適当な有機高分子、例えばポリエチレンの
ような高分子をマトリックスにすることによって、取扱
いが容易になり、例えば、光導波路材料、非線型光学材
料、発光材料として、幅広い分野の応用が期待される。
As described above in detail, polymethylphenylsilane is added to polyethylene in an amount of 0.1-10.
A polyethylene film containing an organic silicon polymer and its alignment film, which contain 10 wt.
Polymethylphenylsilane was added to polyethylene at 0.
It can be produced by re-precipitating a solution mixed with 1 to 10% by weight in a poor solvent to obtain an organosilicon polymer-containing polyethylene powder, which is further subjected to melt heat molding and stretching treatment. Polymethylphenylsilane-containing polyethylene film is easy to handle even if it is difficult to handle with organic polysilane alone, by using a suitable organic polymer, for example, a polymer such as polyethylene, as a matrix, for example, optical Applications in a wide range of fields are expected as waveguide materials, nonlinear optical materials, and light emitting materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で製造されたポリメチルフェニルシラ
ン含有ポリエチレン膜の紫外可視吸収スペクトルを表す
図である。
FIG. 1 is a diagram showing an ultraviolet-visible absorption spectrum of a polymethylphenylsilane-containing polyethylene film produced in Example 1.

【図2】実施例2で製造された配向ポリメチルフェニル
シラン含有ポリエチレン膜(延伸比5)の紫外可視吸収
スペクトルの偏光依存性を表す図である。
FIG. 2 is a diagram showing polarization dependence of an ultraviolet-visible absorption spectrum of an oriented polymethylphenylsilane-containing polyethylene film (stretching ratio 5) produced in Example 2.

【図3】実施例1で合成されたポリメチルフェニルシラ
ン含有ポリエチレン膜の紫外可視吸収スペクトルの紫外
線(6W、254nm)照射時間依存性を示す図であ
る。
FIG. 3 is a diagram showing the ultraviolet (6W, 254 nm) irradiation time dependence of the ultraviolet-visible absorption spectrum of the polymethylphenylsilane-containing polyethylene film synthesized in Example 1.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08L 23:04 Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display area C08L 23:04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポリメチルフェニルシランをポリエチレ
ン中に0.1〜10重量%含有し、厚みが10〜100
0μmであることを特徴とする有機シリコン高分子含有
ポリエチレン膜。
1. Polyethylene containing polymethylphenylsilane in an amount of 0.1 to 10% by weight and having a thickness of 10 to 100.
An organosilicon polymer-containing polyethylene film having a thickness of 0 μm.
【請求項2】 ポリメチルフェニルシランをポリエチレ
ンに対して0.1〜10重量%混合させた溶液を貧溶媒
中に再沈し、得られる有機シリコン高分子含有ポリエチ
レン粉末を更に溶融加熱成形して、厚みが10〜100
0μmの膜とすることを特徴とする有機シリコン高分子
含有ポリエチレン膜の製造方法。
2. A solution obtained by mixing polymethylphenylsilane in an amount of 0.1 to 10% by weight with respect to polyethylene is reprecipitated in a poor solvent, and the resulting organosilicon polymer-containing polyethylene powder is further melt-heat molded. , Thickness 10-100
A process for producing an organosilicon polymer-containing polyethylene film, which comprises forming a film having a thickness of 0 μm.
【請求項3】 ポリメチルフェニルシランをポリエチレ
ンに対して0.1〜10重量%混合させた溶液を貧溶媒
中に再沈し、得られる有機シリコン高分子含有ポリエチ
レン粉末を更に溶融加熱成形し、更に延伸処理をして、
厚みが10〜1000μmの膜とすることを特徴とする
有機シリコン高分子含有ポリエチレン膜の製造方法。
3. A solution obtained by mixing polymethylphenylsilane in an amount of 0.1 to 10% by weight with respect to polyethylene is reprecipitated in a poor solvent, and the obtained organosilicon polymer-containing polyethylene powder is further melt-heat molded, Further stretching,
A method for producing a polyethylene film containing an organic silicon polymer, wherein the film has a thickness of 10 to 1000 μm.
JP25423691A 1991-09-06 1991-09-06 Polyethylene film containing organosilicon polymer and preparation thereof Pending JPH0565351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25423691A JPH0565351A (en) 1991-09-06 1991-09-06 Polyethylene film containing organosilicon polymer and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25423691A JPH0565351A (en) 1991-09-06 1991-09-06 Polyethylene film containing organosilicon polymer and preparation thereof

Publications (1)

Publication Number Publication Date
JPH0565351A true JPH0565351A (en) 1993-03-19

Family

ID=17262163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25423691A Pending JPH0565351A (en) 1991-09-06 1991-09-06 Polyethylene film containing organosilicon polymer and preparation thereof

Country Status (1)

Country Link
JP (1) JPH0565351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201849A (en) * 2007-02-16 2008-09-04 Osaka Gas Co Ltd Resin composition and molded article thereof
JP2016204620A (en) * 2015-04-28 2016-12-08 大阪ガスケミカル株式会社 Crystal nucleus agent for polyolefin and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201849A (en) * 2007-02-16 2008-09-04 Osaka Gas Co Ltd Resin composition and molded article thereof
JP2016204620A (en) * 2015-04-28 2016-12-08 大阪ガスケミカル株式会社 Crystal nucleus agent for polyolefin and use thereof

Similar Documents

Publication Publication Date Title
TW523607B (en) SPD films and light valves comprising same
KR930002164B1 (en) Process for producing optically readable information
JPH03170597A (en) Anisotropic liquid crystal polymer film, its manufacture and optical information memory
Ryabchun et al. Novel generation of liquid crystalline photo‐actuators based on stretched porous polyethylene films
JPS6410019B2 (en)
JPH0572416A (en) Light scattering apparatus and manufacture thereof
Stutzmann et al. Solid‐state replication of relief structures in semicrystalline polymers
Fan et al. Improving the polarization-holography performance of PQ/PMMA photopolymer by doping with THMFA
Egen et al. Artificial opals as effect pigments in clear‐coatings
Tian et al. Tough photonic crystals fabricated by photo‐crosslinkage of latex spheres
Zhong et al. Comparative studies of polymer‐dispersed liquid crystal films via a thiol‐ene click reaction
Qiu et al. The synthesis and electro-optic properties of polyimide/silica hybrids containing the benzothiazole chromophore
JPH0565351A (en) Polyethylene film containing organosilicon polymer and preparation thereof
Hanemann et al. Polymer/Phenanthrene‐Derivative Host‐Guest Systems: Rheological, Optical and Thermal Properties
Hanemann et al. Viscosity and refractive index tailored methacrylate‐based polymers
US5130362A (en) Third order non-linear optically active composites, method of making same and photonic media comprising same
JP2004204206A (en) Photocurable composition and its manufacturing method, as well as cured product
Zhou et al. Azo Polymer Microspheres with Photo‐Manipulated Surface and Topographic Structure
Hanemann et al. Viscosity and refractive index adjustment of poly (methyl methacrylate‐co‐ethyleneglycol dimethacrylate) for application in microoptics
Moirangthem et al. Hot pen and laser writable photonic polymer films
Xiong et al. Trialkoxysilane‐capped acrylic resin/titania organic–inorganic hybrid optical films prepared by the sol–gel process
He et al. A novel photobleachable polysilane copolymer for optical waveguide fabrication
Beginn et al. Self‐organization of liquid crystalline 3, 4, 5‐tris [(11‐methacryloyl‐undecyl‐1‐oxy)‐4‐benzyloxy] benzoates in low‐shrinkage methacrylate mixtures
Huang et al. Effects of terpene alcohol dopant on the morphology and electro‐optical properties of polymer‐dispersed liquid‐crystal composite films
Bucio et al. Functionalization of polypropylene film by radiation grafting of acryloyl chloride and subsequent esterification with Disperse Red 1