JPH0565076A - Structure of strength member of car body - Google Patents

Structure of strength member of car body

Info

Publication number
JPH0565076A
JPH0565076A JP22936491A JP22936491A JPH0565076A JP H0565076 A JPH0565076 A JP H0565076A JP 22936491 A JP22936491 A JP 22936491A JP 22936491 A JP22936491 A JP 22936491A JP H0565076 A JPH0565076 A JP H0565076A
Authority
JP
Japan
Prior art keywords
main body
collision
member main
reaction force
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22936491A
Other languages
Japanese (ja)
Other versions
JP2650527B2 (en
Inventor
Yoshibumi Shimose
義文 下瀬
Yasukuni Matsuura
康城 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP22936491A priority Critical patent/JP2650527B2/en
Publication of JPH0565076A publication Critical patent/JPH0565076A/en
Application granted granted Critical
Publication of JP2650527B2 publication Critical patent/JP2650527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PURPOSE:To suppress the initial reaction load when a member body launches a collision and increase the collisional energy absorbing amount by maintaining the mean reaction load high. CONSTITUTION:A longitudinal rib 3 and a crosswise rib 4 are formed in a single piece in the longitudinal direction within the member body 1 of a side member SM formed through extrusion process from an aluminum light alloy material in a closed square section. Arc-shaped slopes 3a, 4a are formed at the ends of the longitudinal and crosswise ribs 3, 4. The relation between length Lb of the slopes 3a, 4a and the peripheral length La of the member body 1 is 1/2La<Lb<La.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車の車体強度メンバ
構造、とりわけ、フロントサイドメンバやリヤサイドメ
ンバ等のように車体の前後方向に配設される強度メンバ
の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strength member structure for an automobile, and more particularly to a structure for a strength member such as a front side member and a rear side member which are arranged in the front-rear direction of the vehicle body.

【0002】[0002]

【従来の技術】図13は自動車の車体骨格構造を示すも
ので、車体骨格は車体前後方向の強度メンバであるサイ
ドメンバSMやサイドシルSSに、車幅方向の強度メン
バである複数本のクロスメンバCMを接合して骨格のベ
ースとし、この骨格ベースにフロントピラーAP,セン
ターピラーBP,およびリヤピラーCPを車体上下方向
の強度メンバとして立設して概ね構成されている。
2. Description of the Related Art FIG. 13 shows a structure of a vehicle body structure of an automobile. The vehicle body structure includes a side member SM and a side sill SS, which are strength members in the longitudinal direction of the vehicle body, and a plurality of cross members, which are strength members in the vehicle width direction. CM is joined to form a skeleton base, and a front pillar AP, a center pillar BP, and a rear pillar CP are erected vertically on the skeleton base as strength members in the vertical direction of the vehicle body.

【0003】前述の車体前後方向の強度メンバ、例えば
サイドメンバSMとしては、図14に示すようにアルミ
軽合金材料を用いて方形の閉断面に押出し成形したもの
が知られている(特開昭64−67482号公報参
照)。このサイドメンバSMは、メンバ本体1の端部の
周壁に長手方向に適宜の間隔をおいて複数条の溶接ビー
ド2を設けてあって、溶接ビード2の成形時の焼き鈍し
効果により節目状に低剛性部が形成され、軸方向に衝突
入力が作用した場合に、前記低剛性部でメンバ本体1が
容易に座屈変形し得るようにしたものである。
As the strength member in the front-rear direction of the vehicle body, for example, the side member SM, there is known a member formed by extruding a light aluminum alloy material into a rectangular closed cross section as shown in FIG. 64-67482). This side member SM is provided with a plurality of weld beads 2 at appropriate intervals in the longitudinal direction on the peripheral wall of the end portion of the member main body 1, and the side beads SM are knot-shaped due to the annealing effect when the weld beads 2 are formed. A rigid portion is formed so that the member body 1 can be easily buckled and deformed by the low-rigidity portion when a collision input acts in the axial direction.

【0004】また、この他に図15に示すように前述と
同様にアルミ軽合金材料を用いて方形の閉断面に押出し
成形したメンバ本体1の内部に、該閉断面を複数に隔成
する縦リブ3と横リブ4とを長手方向に一体成形して、
メンバ本体1を格子状の閉断面に形成したものも考えら
れる。
In addition to this, as shown in FIG. 15, a member body 1 extruded into a rectangular closed cross section by using an aluminum light alloy material as described above is provided inside a member main body 1 having a plurality of closed cross sections. The rib 3 and the horizontal rib 4 are integrally molded in the longitudinal direction,
A member main body 1 having a lattice-shaped closed cross section may be considered.

【0005】[0005]

【発明が解決しようとする課題】車両の衝突時にサイド
メンバSMに軸方向に衝突入力が作用すると、図14に
示したものにあってはメンバ本体1の端部の周壁に長手
方向に複数条の溶接ビード2を形成してあって、これら
溶接ビード2部分を起点として座屈変形し易いため、図
12のa線で示すように初期反力荷重Pc1を比較的に
小さく抑えることができる半面、座屈開始後に発生する
平均的な反力荷重Pm1も小さくなって、衝突エネルギ
ー吸収量が少なくなってしまう。
When a collision input acts on the side member SM in the axial direction during a vehicle collision, in the case shown in FIG. 14, a plurality of strips are longitudinally formed on the peripheral wall of the end of the member body 1. Since the welding beads 2 of No. 1 are formed and buckling deformation easily starts from these welding beads 2 portions, the initial reaction force load Pc 1 can be suppressed to a relatively small value as shown by the line a in FIG. On the other hand, the average reaction force load Pm 1 generated after the start of buckling also decreases, and the amount of collision energy absorption decreases.

【0006】また、図15に示したものにあっては、縦
リブ3と横リブ4とによってメンバ本体1の閉断面を格
子状に形成することにより、図12のb線で示すように
平均的な反力荷重Pm2を高めて衝突エネルギー吸収量
を大きくできる半面、初期反力荷重Pc2が大きくなっ
て車体に加わる衝撃力が高くなってしまう。
In the structure shown in FIG. 15, the vertical ribs 3 and the horizontal ribs 4 form a closed cross section of the member main body 1 in a lattice shape so that the average as shown by the line b in FIG. While the reaction force load Pm 2 can be increased to increase the collision energy absorption amount, the initial reaction force load Pc 2 is increased and the impact force applied to the vehicle body is increased.

【0007】そこで、本発明は衝突時の初期反力荷重を
小さくすることができると共に、座屈開始後の平均的な
反力荷重を高めて所期する衝突エネルギー吸収量を確保
することができる自動車の車体強度メンバ構造を提供す
るものである。
Therefore, according to the present invention, the initial reaction force load at the time of collision can be reduced, and the average reaction force load after the start of buckling can be increased to secure the desired amount of collision energy absorption. A vehicle body strength member structure for an automobile is provided.

【0008】[0008]

【課題を解決するための手段】閉断面に押出し成形され
て車体前後方向に配設されるメンバ本体の内部に、該閉
断面を複数に隔成するリブを長手方向に一体成形した構
造において、前記リブの端部に、メンバ本体の周縁部と
の結合点からメンバ本体の内部に向かう傾斜部を形成し
てある。
In a structure in which a rib for partitioning a plurality of closed cross sections into a member body is integrally formed in the longitudinal direction inside a member main body that is extruded to have a closed cross section and is disposed in the front-rear direction of a vehicle body, An inclined portion is formed at the end of the rib from the connection point with the peripheral edge of the member main body toward the inside of the member main body.

【0009】[0009]

【作用】車両の衝突時にメンバ本体の端部に軸方向に衝
突入力が作用すると、メンバ本体の端面部分ではリブに
メンバ本体の周縁部との結合点からメンバ本体の内部に
向かう傾斜部を形成してあって、リブ断面積が極端に小
さくなっているため軸方向に座屈変形し易く、従って、
初期反力荷重を小さく抑えることができる。そして、座
屈の進行と共にリブ断面積が漸増するため、リブ本来の
補強効果が得られ、平均的な反力荷重を高められて衝突
エネルギー吸収量が増大される。
When a collision input is applied to the end of the member body in the axial direction during a vehicle collision, a rib is formed on the end face of the member body, the inclined portion extending from the connecting point with the peripheral edge of the member body toward the inside of the member body. Since the rib cross-sectional area is extremely small, it is easy to buckle and deform in the axial direction.
The initial reaction force load can be kept small. Since the rib cross-sectional area gradually increases with the progress of buckling, the original reinforcing effect of the rib is obtained, the average reaction force load is increased, and the collision energy absorption amount is increased.

【0010】[0010]

【実施例】以下、本発明の実施例をサイドメンバを例に
採って、前記従来の構成と同一部分に同一符号を付して
詳述する。
Embodiments of the present invention will now be described in detail by taking the side member as an example and assigning the same reference numerals to the same parts as those of the conventional structure.

【0011】図1,2において、1はアルミ軽合金材料
により方形の閉断面に押出し成形したサイドメンバSM
のメンバ本体を示し、このメンバ本体1の内部には、該
閉断面を複数に隔成する縦リブ3と横リブ4とを長手方
向に一体成形してある。これら縦リブ3と横リブ4の端
部には、メンバ本体1の周縁部との結合点からメンバ本
体1の内部に向かう傾斜部3a,4aを形成してある。
この実施例にあっては傾斜部3a,4aを、縦リブ3と
横リブ4との交点を最深部とする弧状に形成して、メン
バ本体1の端面側から内部に行くにしたがって、リブ断
面積が零から漸増するようにして、該端部に軸方向に衝
突入力が作用した場合に座屈変形し易いようにしてあ
る。
In FIGS. 1 and 2, 1 is a side member SM extruded from a light aluminum alloy material into a rectangular closed cross section.
The member main body 1 is shown in which the vertical ribs 3 and the horizontal ribs 4 that divide the closed cross section into a plurality of parts are integrally formed in the longitudinal direction. The end portions of the vertical ribs 3 and the horizontal ribs 4 are formed with inclined portions 3a and 4a extending from the connecting point with the peripheral edge portion of the member main body 1 toward the inside of the member main body 1.
In this embodiment, the inclined portions 3a and 4a are formed in an arc shape with the intersection of the vertical ribs 3 and the horizontal ribs 4 as the deepest portion, and the ribs are cut off from the end face side of the member main body 1 toward the inside. The area is gradually increased from zero so that the end portion is easily buckled and deformed when a collision input is applied in the axial direction.

【0012】ここで、メンバ本体1の長辺の長さをL
a、傾斜部3a,4aのメンバ本体1端面から最深部ま
での長さをLbとして、前記衝突入力に対する初期反力
荷重の変化を考察すると、図3に示すように前記寸法L
bの増加と共に初期反力荷重が減少するが、LbがLa
の寸法を越えると初期反力荷重が、内部にリブのない単
純方形閉断面のメンバ本体1(図14参照)における初
期反力荷重Pc1と同等の値として得られ略一定とな
る。また、Lbが1/2Laの寸法付近では初期反力荷
重が前記Pc1に漸近するようになる。
Here, the length of the long side of the member body 1 is L
a and the length from the end surface of the member main body 1 of the inclined portions 3a and 4a to the deepest portion is Lb, considering the change of the initial reaction force load with respect to the collision input, as shown in FIG.
Although the initial reaction force load decreases as b increases, Lb becomes La
When the value exceeds the value of, the initial reaction force load is obtained as a value equivalent to the initial reaction force load Pc 1 in the member main body 1 (see FIG. 14) having a simple rectangular closed cross section with no rib inside, and becomes substantially constant. Further, in the vicinity of the dimension where Lb is 1 / 2La, the initial reaction force load comes to approach Pc 1 .

【0013】一方、前述のLbの寸法をLa以上に設定
した場合のメンバ本体1の座屈荷重−変位特性を考察す
ると、図4に示すように、衝突時における初期反力荷重
はPc1となるが、その後急激に反力荷重が減少し、そ
して、再び上昇して縦リブ3と横リブ4の傾斜部3a,
4aの交点を越えると反力荷重がPm2として得られ略
一定となる。しかし、この場合、メンバ本体1の衝突時
の座屈変形初期には、前記反力荷重の急激な落ち込みが
あるため、縦リブ3,横リブ4を設けたことによる衝突
エネルギー吸収量の大幅な増大は望めなくなってしま
う。
On the other hand, considering the buckling load-displacement characteristics of the member body 1 when the dimension of Lb is set to be La or more, the initial reaction force load at the time of collision is Pc 1 as shown in FIG. However, after that, the reaction force load suddenly decreases, and then rises again, and the inclined portions 3a of the vertical ribs 3 and the horizontal ribs 4,
When the intersection point of 4a is exceeded, the reaction force load is obtained as Pm 2 and becomes substantially constant. However, in this case, since the reaction force load sharply drops at the initial stage of buckling deformation at the time of collision of the member main body 1, since the vertical ribs 3 and the horizontal ribs 4 are provided, a large amount of collision energy is absorbed. You can't expect the increase.

【0014】そこで、前述の傾斜部3a,4aの寸法L
bは、初期反力荷重,衝突エネルギー吸収量、およびメ
ンバ本体1の蛇腹状の座屈変形ピッチ等を考慮して、1
/2La<Lb<Laの範囲に設定してある。
Therefore, the dimension L of the above-mentioned inclined portions 3a and 4a
b is 1 in consideration of the initial reaction force load, the amount of collision energy absorption, the bellows-like buckling deformation pitch of the member body 1, and the like.
It is set in the range of / 2La <Lb <La.

【0015】以上の実施例構造によれば、車両衝突時に
メンバ本体1の端部に衝突入力が作用すると、メンバ本
体1が内部の縦リブ3,横リブ4と共に座屈して潰れな
がら衝突エネルギーを吸収して行くが、衝突初期には縦
リブ3,横リブ4の弧状の傾斜部3a,4aの形成によ
ってメンバ本体1の周壁だけの座屈となり、図12のC
線で示すように初期反力荷重はPc1として得られ低く
抑えることができる。座屈変形が図2に示すA位置から
B位置に進むと、縦リブ3,横リブ4の断面積が漸増し
ていて、これら縦リブ3,横リブ4も座屈するため、反
力荷重の急激な落ち込みが回避され、そして、これら縦
リブ3,横リブ4の傾斜部3a,4aの交点以降に座屈
変形が進行することにより、反力荷重がPm2となって
略一定するようになる。従って、車両衝突時の初期反力
荷重を小さく抑えて衝撃力を少なくすることができると
共に、衝突初期後の平均的な反力荷重を高めて、衝突エ
ネルギー吸収量の増大化を実現することができる。
According to the structure of the above embodiment, when a collision input is applied to the end portion of the member main body 1 at the time of vehicle collision, the member main body 1 buckles and collapses together with the internal vertical ribs 3 and the horizontal ribs 4 and collides with the collision energy. Although absorbed, the buckling of only the peripheral wall of the member main body 1 occurs due to the formation of the arc-shaped inclined portions 3a and 4a of the vertical ribs 3 and the horizontal ribs 4 in the initial stage of the collision, and C in FIG.
As shown by the line, the initial reaction force load is obtained as Pc 1 and can be kept low. When the buckling deformation progresses from the A position to the B position shown in FIG. 2, the cross-sectional areas of the vertical ribs 3 and the horizontal ribs 4 gradually increase, and the vertical ribs 3 and the horizontal ribs 4 also buckle, so that the reaction load A sudden drop is avoided, and the buckling deformation progresses after the intersection of the inclined portions 3a, 4a of the vertical ribs 3, horizontal ribs 4, so that the reaction force load becomes Pm 2 and becomes substantially constant. Become. Therefore, it is possible to reduce the initial reaction force load at the time of a vehicle collision to reduce the impact force, and increase the average reaction force load after the initial stage of the collision to realize an increase in the amount of collision energy absorption. it can.

【0016】前記実施例にあっては、メンバ本体1内の
リブを縦リブ3と横リブ4とで交差配置した場合を示し
たが、この他、図5に示すようにメンバ本体1内に横リ
ブ4を複数設けて、これら横リブ4の端部に前述の同様
に傾斜部4aを形成することによっても所期の目的を達
成することができる。
In the embodiment described above, the ribs in the member main body 1 are arranged so as to intersect the vertical ribs 3 and the horizontal ribs 4, but in addition to this, as shown in FIG. The intended purpose can also be achieved by providing a plurality of lateral ribs 4 and forming the inclined portions 4a at the ends of the lateral ribs 4 in the same manner as described above.

【0017】図6,7は前述の構成のサイドメンバSM
を傾斜部3a,4a形成側の端部を車体前部に配置して
フロントサイドメンバSM1として用いた場合で、フロ
ントバンパー5はバンパーステイ6を介してフロントサ
イドメンバSM1の前端部に取り付けられる。バンパー
ステイ6は、上下縁にノッチ8を形成すると共に前端部
上下縁に一側方向にバンパー取付部9を曲折成形したプ
レート状のステイ本体7と、ステイ本体7の後部に曲折
成形されて、メンバ本体1の前端面に係合する受圧部1
0とを備え、この受圧部10の側縁より後方に向けて曲
折成形したブラケット11をメンバ本体1の一側の側壁
面に内接させてボルト・ナット固定するようにしてあ
る。前記バンパー取付部9は周縁部の略後半部に接合し
て上下方向に跨設したステイフナー12で補強され、フ
ロントバンパー5はその上下壁後縁に突設したブラケッ
ト13をバンパー取付部9に重合してボルト・ナット固
設される。
6 and 7 show the side member SM having the above-mentioned structure.
Is used as the front side member SM 1 by arranging the end portions on the side where the inclined portions 3a and 4a are formed as the front portion of the vehicle body, the front bumper 5 is attached to the front end portion of the front side member SM 1 via the bumper stay 6. .. The bumper stay 6 is formed by forming notches 8 on the upper and lower edges and bending-shaped a bumper attaching portion 9 in one direction on the upper and lower edges of the front end portion, and a bent portion on the rear portion of the stay body 7. Pressure receiving portion 1 that engages with the front end surface of the member body 1.
0, and the bracket 11 bent and formed rearward from the side edge of the pressure receiving portion 10 is inscribed in the side wall surface on one side of the member main body 1 to fix the bolt and nut. The bumper mounting portion 9 is reinforced by a stay funner 12 which is joined to substantially the rear half of the peripheral edge and is laid across in the vertical direction. Bolts and nuts are fixed.

【0018】従って、この実施例にあっては、車両が前
面衝突した場合、軽衝突時では図8に示すようにステイ
本体7のみがノッチ8形成部分を起点として一側に曲げ
変形して衝突エネルギーを吸収し、車体側の変形損傷を
防ぐ一方、衝突の度合いが大きい場合にはステイ本体7
の曲げ変形によりバンパー取付部9が受圧部10に突き
当たり、該受圧部10を介してメンバ本体1の端部に平
均的に衝突入力を作用させ、該メンバ本体1を前述の如
く座屈変形させて衝突エネルギーを吸収する。
Therefore, in this embodiment, in the case of a frontal collision of the vehicle, at the time of a light collision, only the stay main body 7 is bent and deformed to one side from the notch 8 forming portion as a starting point, as shown in FIG. While absorbing energy to prevent deformation and damage on the vehicle body side, if the degree of collision is large, the stay body 7
The bumper mounting portion 9 abuts the pressure receiving portion 10 due to the bending deformation of the member, and the collision input is evenly applied to the end portion of the member main body 1 via the pressure receiving portion 10 to cause the member main body 1 to buckle and deform as described above. Absorb the collision energy.

【0019】図9はバンパーステイ6の異なる例を示す
もので、ステイ本体7はその中間部に蛇腹部7aを形成
してあると共に、その一側にメンバ本体1の一方の側壁
に内接するウエッジ部14を接合配置してある。ステイ
本体7の後端部の上下縁にはブラケット11a,11a
を曲折成形して、ブラケット11aをメンバ本体1の上
壁に、およびブラケット11bをメンバ本体1の側壁に
それぞれ重合してボルト・ナット15固定して取り付け
られる。
FIG. 9 shows a different example of the bumper stay 6, in which the stay body 7 has a bellows portion 7a formed in the middle thereof, and a wedge which is inscribed in one side wall of the member body 1 on one side thereof. The parts 14 are arranged so as to be joined. Brackets 11a, 11a are provided on the upper and lower edges of the rear end of the stay body 7.
Are bent and formed, and the bracket 11a is attached to the upper wall of the member main body 1 and the bracket 11b is attached to the side wall of the member main body 1 by fixing the bolts and nuts 15.

【0020】この実施例の場合、車両の後面衝突時には
図10に示すように、始めにステイ本体7が蛇腹部7a
で塑性変形してメンバ本体1内に後退移動する。これに
伴ってウエッジ部14でメンバ本体1の一側壁を内側に
変形させて、メンバ本体1の座屈変形のトリガーとさ
せ、該メンバ本体1を前述と同様に座屈変形させて衝突
エネルギーを吸収する。
In the case of this embodiment, when the rear surface of the vehicle collides, as shown in FIG.
And plastically deforms and moves backward into the member main body 1. Along with this, one side wall of the member main body 1 is deformed inward by the wedge portion 14 to serve as a trigger for buckling deformation of the member main body 1, and the member main body 1 is buckled and deformed in the same manner as described above to reduce collision energy. Absorb.

【0021】図11はサイドメンバSMを傾斜部3a,
4a形成側の端部を車体後部に配置してリヤサイドメン
バSM2として用いた場合を示している。この実施例に
あっても、車両の後面衝突時にはメンバ本体1が、縦リ
ブ3,横リブ4の各傾斜部3a,4a(図1参照)の形
成により、初期反力荷重の上昇を伴わずに座屈変形を開
始し、次第に内部の縦リブ3,横リブ4と共に蛇腹状に
整然と座屈変形して衝突エネルギーを効率よく吸収する
ことができる。リヤサイドメンバSM2の場合、図11
に示すようにその後側部分には図外のサスペンションメ
ンバ等との干渉を回避するために、上方に湾曲するアー
チ部MAを形成してある関係上、後面衝突時の初期反力
荷重が高いと、該アーチ部MAに応力が集中して同図鎖
線で示すようにアーチ部MAが折れて衝突エネルギー吸
収をうまく行えなくなることが考えられるが、本実施例
のように衝突時の初期反力荷重を小さく抑えられること
で、メンバ本体1の後端部の蛇腹状の塑性変形を漸次車
体前方へ波及させることができて、アーチ部MAの折損
を生じることなく効果的な衝突エネルギー吸収を行わせ
ることができる。
FIG. 11 shows the side member SM with the inclined portion 3a,
It shows a case where the end portion on the formation side of 4a is arranged at the rear portion of the vehicle body and used as the rear side member SM 2 . Even in this embodiment, the member main body 1 does not cause an increase in the initial reaction force load due to the formation of the inclined portions 3a and 4a (see FIG. 1) of the vertical ribs 3 and the horizontal ribs 4 at the time of a rear surface collision of the vehicle. Then, the buckling deformation is started, and gradually the buckling deformation is carried out in an orderly manner in a bellows shape together with the internal vertical ribs 3 and the horizontal ribs 4, so that the collision energy can be efficiently absorbed. In the case of the rear side member SM 2 , FIG.
In order to avoid interference with a suspension member or the like (not shown) on the rear side portion thereof, as shown in FIG. 5, since the arch portion MA that curves upward is formed, it is considered that the initial reaction force load at the time of a rear surface collision is high. It is conceivable that stress concentrates on the arch portion MA and the arch portion MA breaks as shown by the chain line in the figure, making it impossible to absorb collision energy well. However, as in this embodiment, the initial reaction force load at the time of collision is By suppressing the force to be small, the bellows-like plastic deformation of the rear end portion of the member main body 1 can be gradually propagated to the front of the vehicle body, and effective collision energy absorption can be performed without causing breakage of the arch portion MA. be able to.

【0022】なお、前記実施例ではサイドメンバSMに
ついて説明したが、この他、車体前後方向に配設される
サイドシルSSに適用して前述と同様の効果を得ること
ができる。
Although the side member SM has been described in the above embodiment, the same effect as described above can be obtained by applying the side member SM to the side sill SS arranged in the longitudinal direction of the vehicle body.

【0023】[0023]

【発明の効果】以上のように本発明によれば、メンバ本
体の閉断面内に一体成形したリブの端部には傾斜部を形
成してあって、メンバ本体の端面側からリブの断面積が
漸増するように形成してあるため、該メンバ本体の端部
に衝突入力が作用した場合に、初期反力荷重を小さく抑
えることができると共に、平均的な反力荷重を高く維持
できて衝突エネルギー吸収量を著しく増大することがで
きるという実用上多大な効果を有する。
As described above, according to the present invention, the end portion of the rib integrally formed in the closed cross section of the member main body is formed with the inclined portion, and the cross sectional area of the rib from the end face side of the member main body is formed. The initial reaction force load can be kept small and the average reaction force load can be kept high when a collision input is applied to the end of the member main body. It has a practically great effect that the energy absorption amount can be remarkably increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す斜視図。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】同実施例の側面図。FIG. 2 is a side view of the embodiment.

【図3】同実施例のリブの傾斜部長さと座屈荷重との関
係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between a length of an inclined portion of a rib and a buckling load in the example.

【図4】同実施例のリブの傾斜部長さをメンバ本体の長
辺長さよりも大きくした場合のメンバ本体の座屈荷重−
変位特性図。
FIG. 4 is a buckling load of the member main body when the length of the inclined portion of the rib of the embodiment is made larger than the long side length of the member main body;
Displacement characteristic diagram.

【図5】本発明の異なる例を示す斜視図。FIG. 5 is a perspective view showing another example of the present invention.

【図6】図1のメンバ本体をフロントサイドメンバに適
用した例を示す分解斜視図。
FIG. 6 is an exploded perspective view showing an example in which the member main body of FIG. 1 is applied to a front side member.

【図7】図6のC矢視図。FIG. 7 is a view on arrow C of FIG.

【図8】図6,7に示したバンパーステイの変形状態を
示す平面図。
FIG. 8 is a plan view showing a deformed state of the bumper stay shown in FIGS.

【図9】バンパーステイの異なる例を示す斜視図。FIG. 9 is a perspective view showing another example of the bumper stay.

【図10】図9のバンパーステイの変形状態を示す平面
図。
10 is a plan view showing a deformed state of the bumper stay of FIG.

【図11】図1のメンバ本体をリヤサイドメンバに適用
した例を示す側面図。
11 is a side view showing an example in which the member main body of FIG. 1 is applied to a rear side member.

【図12】メンバ本体の座屈荷重−変位特性図。FIG. 12 is a buckling load-displacement characteristic diagram of the member main body.

【図13】自動車の車体骨格構造を示す斜視図。FIG. 13 is a perspective view showing a vehicle body frame structure of an automobile.

【図14】従来のメンバ本体の構造を示す斜視図。FIG. 14 is a perspective view showing a structure of a conventional member main body.

【図15】従来のメンバ本体の異なる例を示す斜視図。FIG. 15 is a perspective view showing a different example of a conventional member main body.

【符号の説明】[Explanation of symbols]

1…メンバ本体、3,4…リブ、3a,4a…傾斜部。 1 ... Member main body, 3, 4 ... Ribs, 3a, 4a ... Inclined portion.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 閉断面に押出し成形されて車体前後方向
に配設されるメンバ本体の内部に、該閉断面を複数に隔
成するリブを長手方向に一体成形した構造において、前
記リブの端部に、メンバ本体の周縁部との結合点からメ
ンバ本体の内部に向かう傾斜部を形成したことを特徴と
する自動車の車体強度メンバ構造。
1. A structure in which a rib that divides the closed cross section into a plurality of pieces is integrally formed in the longitudinal direction inside a member main body that is extruded into the closed cross section and is arranged in the vehicle front-rear direction, has an end of the rib. A vehicle body strength member structure for an automobile, characterized in that an inclined portion is formed in the member from a connection point with a peripheral portion of the member body toward the inside of the member body.
JP22936491A 1991-09-10 1991-09-10 Car body strength member structure Expired - Lifetime JP2650527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22936491A JP2650527B2 (en) 1991-09-10 1991-09-10 Car body strength member structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22936491A JP2650527B2 (en) 1991-09-10 1991-09-10 Car body strength member structure

Publications (2)

Publication Number Publication Date
JPH0565076A true JPH0565076A (en) 1993-03-19
JP2650527B2 JP2650527B2 (en) 1997-09-03

Family

ID=16891013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22936491A Expired - Lifetime JP2650527B2 (en) 1991-09-10 1991-09-10 Car body strength member structure

Country Status (1)

Country Link
JP (1) JP2650527B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496067A (en) * 1993-10-05 1996-03-05 Smh Management Services Ag Chassis for vehicles notably for motor vehicles
EP0830988A1 (en) * 1996-08-22 1998-03-25 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Frame for a vehicle
JP2002012165A (en) * 2001-05-29 2002-01-15 Kobe Steel Ltd Energy absorbing member
EP1209039A2 (en) 2000-11-21 2002-05-29 Aisin Seiki Kabushiki Kaisha Shock absorbing member and bumper comprising the same
JP2002155981A (en) * 2000-11-21 2002-05-31 Aisin Seiki Co Ltd Impact absorbing member and bumper
US6502874B2 (en) 2000-12-25 2003-01-07 Toyota Jidosha Kabushiki Kaisha Coupling structure of shock transmitting member and shock absorbing member, and bumper
EP1426270A1 (en) 2002-12-06 2004-06-09 HONDA MOTOR CO., Ltd. Vehicle body frame
US6908111B2 (en) * 2000-04-13 2005-06-21 Nissan Motor Co., Ltd. Aluminum hollow bent member and vehicular member construction
JP2019219050A (en) * 2018-06-22 2019-12-26 株式会社神戸製鋼所 Energy absorption member for vehicle, manufacturing method thereof and energy absorption assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3512753B2 (en) 2001-04-20 2004-03-31 川崎重工業株式会社 Railcar collision energy absorption structure
JP2004168218A (en) * 2002-11-21 2004-06-17 Hitachi Ltd Energy absorbing member

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496067A (en) * 1993-10-05 1996-03-05 Smh Management Services Ag Chassis for vehicles notably for motor vehicles
EP0830988A1 (en) * 1996-08-22 1998-03-25 Bayerische Motoren Werke Aktiengesellschaft, Patentabteilung AJ-3 Frame for a vehicle
US6908111B2 (en) * 2000-04-13 2005-06-21 Nissan Motor Co., Ltd. Aluminum hollow bent member and vehicular member construction
EP1209039A2 (en) 2000-11-21 2002-05-29 Aisin Seiki Kabushiki Kaisha Shock absorbing member and bumper comprising the same
JP2002155981A (en) * 2000-11-21 2002-05-31 Aisin Seiki Co Ltd Impact absorbing member and bumper
US6502874B2 (en) 2000-12-25 2003-01-07 Toyota Jidosha Kabushiki Kaisha Coupling structure of shock transmitting member and shock absorbing member, and bumper
JP2002012165A (en) * 2001-05-29 2002-01-15 Kobe Steel Ltd Energy absorbing member
US6811212B2 (en) 2002-06-12 2004-11-02 Honda Motor Co., Ltd. Vehicle body frame
EP1426270A1 (en) 2002-12-06 2004-06-09 HONDA MOTOR CO., Ltd. Vehicle body frame
JP2019219050A (en) * 2018-06-22 2019-12-26 株式会社神戸製鋼所 Energy absorption member for vehicle, manufacturing method thereof and energy absorption assembly

Also Published As

Publication number Publication date
JP2650527B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
JP2607897Y2 (en) Safety beam
JP3512753B2 (en) Railcar collision energy absorption structure
KR100644416B1 (en) Vehicle hood structure
JP2001260945A (en) Floor structure for automobile
EP1048530B1 (en) Bumper assembly for vehicles
JP2650527B2 (en) Car body strength member structure
JP3794966B2 (en) Bumper reinforcement structure
JP2006335241A (en) Bumper stay and bumper device
JPH10244955A (en) Collision energy absorbing structure of front side member
JP4035292B2 (en) Bumper reinforcement with excellent offset impact
JP4174637B2 (en) Energy absorption structure of automobile
JP3308719B2 (en) Bumper reinforcement
JPH11342869A (en) Body lower part structure for automobile
JP4362952B2 (en) Bumpy stay
JPH07156834A (en) Frame reinforcing structure of vehicle body
JP2002120752A (en) Front body structure of automobile
JP4493945B2 (en) Vehicle shock absorbing structure and method of manufacturing the same
JPH0891154A (en) Bumper stay
JP2003312534A (en) Reinforcement structure of vehicle body skeleton frame
JPS6013730Y2 (en) frame structure
JP2001171447A (en) Energy absorbing member structure for vehicle body
JP3223794B2 (en) Support structure for impact energy absorbing materials for automobiles
JP2005170232A (en) Shock absorbing member
JP4766075B2 (en) Bumpy stay
JP4706656B2 (en) Bumpy stay