JPH0564954B2 - - Google Patents

Info

Publication number
JPH0564954B2
JPH0564954B2 JP60209446A JP20944685A JPH0564954B2 JP H0564954 B2 JPH0564954 B2 JP H0564954B2 JP 60209446 A JP60209446 A JP 60209446A JP 20944685 A JP20944685 A JP 20944685A JP H0564954 B2 JPH0564954 B2 JP H0564954B2
Authority
JP
Japan
Prior art keywords
crystalline
zsm
dioxane
type
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60209446A
Other languages
Japanese (ja)
Other versions
JPS6270369A (en
Inventor
Haruhito Sato
Masanori Tsuzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP60209446A priority Critical patent/JPS6270369A/en
Publication of JPS6270369A publication Critical patent/JPS6270369A/en
Publication of JPH0564954B2 publication Critical patent/JPH0564954B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Description

【発明の詳现な説明】 産業䞊の利甚分野 本発明は、オキシ゚チレン基を基本単䜍ずしお
構成される二䟡アルコヌル類から、−ゞオ
キサンを補造する分野に利甚され、觊媒ず反応生
成物ずの分離が容易で、觊媒の繰返し䜿甚が可胜
で高収率で−ゞオキサンを補造するこずが
できる方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is applicable to the field of producing 1,4-dioxane from dihydric alcohols having an oxyethylene group as a basic unit. The present invention relates to a method capable of producing 1,4-dioxane in high yield, with easy separation from products, and repeated use of a catalyst.

埓来の技術およびその問題点 埓来、−ゞオキサンを補造する方法ずし
おは、たずえばゞ゚チレングリコヌル等のポリ゚
チレングリコヌルを硫酞觊媒に接觊させる方法、
硫酞、䞉フツ化ホり玠などの酞觊媒を甚いお、゚
チレンオキサむドを環化二量化する方法が知られ
おいる。
[Prior art and its problems] Conventionally, methods for producing 1,4-dioxane include, for example, a method in which polyethylene glycol such as diethylene glycol is brought into contact with a sulfuric acid catalyst;
A method is known in which ethylene oxide is cyclized and dimerized using an acid catalyst such as sulfuric acid or boron trifluoride.

しかしながら硫酞などの鉱酞やハロゲン酞を觊
媒ずしお䜿甚するず装眮などぞの腐食䜜甚が倧き
いため、装眮に高䟡な金属材料を甚いる必芁があ
るずいう問題があり、さらに、反応によ぀お生成
する氎などが反応系ぞ混入するこずによ぀お、觊
媒䜜甚が䜎䞋し、觊媒の再生や䜿甚枈み觊媒の廃
棄などの埌凊理にも問題がある。
However, when mineral acids such as sulfuric acid or halogen acids are used as catalysts, they have a strong corrosive effect on equipment, so there is a problem in that the equipment needs to be made of expensive metal materials. If the catalyst is mixed into the reaction system, the catalytic action is reduced, and there are also problems in post-processing such as regenerating the catalyst and disposing of the used catalyst.

このような問題点を解決する方法ずしお、特開
昭49−95981号公報には、酞性むオン亀換暹脂を
觊媒ずしお甚い、140〜170℃の枩床でゞ゚チレン
グリコヌルから−ゞオキサンを補造する方
法が開瀺されおいる。
As a method to solve these problems, JP-A-49-95981 discloses a method for producing 1,4-dioxane from diethylene glycol at a temperature of 140 to 170°C using an acidic ion exchange resin as a catalyst. Disclosed.

しかし、この方法で甚いられる酞性むオン亀換
暹脂は、䞀般に120℃以䞊の枩床ではスルホン酞
基などの脱酞反応が起こり易くな぀お、觊媒䜜甚
が損なわれるために、反応枩床の調節によ぀お反
応速床を十分に高く保぀こずが困難であり、さら
に倱掻した觊媒の再生も困難であるずいう重倧な
欠点を有しおいる。
However, the acidic ion exchange resin used in this method generally tends to deoxidize sulfonic acid groups at temperatures above 120°C, impairing the catalytic effect, so it is difficult to react by adjusting the reaction temperature. It has serious disadvantages in that it is difficult to maintain a sufficiently high speed and it is also difficult to regenerate a deactivated catalyst.

さらに、䞊蚘の欠点を解決した方法ずしお、特
開昭52−83472号公報には、無機質固䜓酞を觊媒
ずしお甚いる䟡アルコヌル類から−ゞオ
キサンを補造する方法が開瀺されおいる。
Furthermore, as a method for solving the above-mentioned drawbacks, JP-A-52-83472 discloses a method for producing 1,4-dioxane from dihydric alcohols using an inorganic solid acid as a catalyst.

しかしながら、この方法においおは觊媒である
無機質固䜓酞ずしお、シリカアルミナ、アルミナ
ボリアなどのいわゆる非結晶性固䜓酞觊媒、モル
デナむト−型固䜓酞、型れオラむトなどのい
わゆるれオラむト系固䜓酞、倩然粘土類を䜿甚し
おおり、−ゞオキサンの収率が70前埌ず
未だ十分ではないずいう欠点を有しおいる。
However, in this method, the inorganic solid acids used as catalysts include so-called non-crystalline solid acid catalysts such as silica alumina and alumina boria, so-called zeolite solid acids such as mordenite-H type solid acids and X type zeolites, and natural clays. The disadvantage is that the yield of 1,4-dioxane is around 70%, which is still not sufficient.

本発明は前蚘事情に基いおなされたものであ
る。
The present invention has been made based on the above circumstances.

すなわち、本発明の目的は、前蚘問題点を解決
し、装眮等の腐食および觊媒の埌凊理などの問題
がなく、觊媒の再生が容易であり、目的生成物で
ある−ゞオキサンの収率が十分に高い新芏
な觊媒を甚いお行なう工業䞊有利な䟡アルコヌ
ル類から−ゞオキサンを補造する方法を提
䟛するこずにある。
That is, an object of the present invention is to solve the above-mentioned problems, eliminate problems such as corrosion of equipment and catalyst post-treatment, facilitate regeneration of the catalyst, and improve the yield of 1,4-dioxane, which is the target product. The object of the present invention is to provide an industrially advantageous method for producing 1,4-dioxane from dihydric alcohols using a novel catalyst with a sufficiently high yield.

本発明者らは、前蚘の目的を達成すべく、鋭意
怜蚎を重ねた結果、特定の金属元玠を特定の組成
比で含有する結晶性金属シリケヌトを觊媒ずしお
甚いるこずによ぀お䞊蚘の目的を達成しうるこず
を芋い出し、本発明の到達した。
In order to achieve the above-mentioned object, the present inventors have made extensive studies, and as a result, the above-mentioned object has been achieved by using a crystalline metal silicate containing a specific metal element in a specific composition ratio as a catalyst. We have discovered that this is possible, and have arrived at the present invention.

前蚘問題点を解決するための手段 前蚘問題点を解決するための本発明の芁旚は、
オキシ゚チレン基を基本単䜍ずしお構成される
䟡アルコヌル類を、100〜500℃の反応枩床䞋に、
けい玠酞化物SiO2ず䟡金属の酞化物ずの
モル比SiO2M2O3が12〜3000の範囲内にあ
る結晶性金属シリケヌトに接觊させるこずを特城
ずする−ゞオキサンの補造方法である。
[Means for solving the above problems] The gist of the present invention for solving the above problems is as follows:
Constructed with oxyethylene group as the basic unit 2
Hydrolic alcohols are heated to a reaction temperature of 100 to 500℃,
1, characterized in that it is brought into contact with a crystalline metal silicate in which the molar ratio (SiO 2 /M 2 O 3 ) of silicon oxide (SiO 2 ) and trivalent metal oxide is within the range of 12 to 3000. , 4-dioxane.

本発明におけるオキシ゚チレン基を基本単䜍ず
しお構成される䟡アルコヌル類は、䞀般匏が
HO−CH2CH2−は以䞊の敎数であ
る。で衚される化合物であり、具䜓的には、゚
チレングリコヌル、ゞ゚チレングリコヌル、トリ
゚チレングリコヌル、テトラ゚チレングリコヌ
ル、および平均分子量が238以䞊のポリ゚チレン
グリコヌルである。こられの䟡アルコヌル類は
それぞれ単独でも、たた混合物ずしおも䜿甚する
こずができる。これらのうち、゚チレングリコヌ
ル、ゞ゚チレングリコヌルおよびトリ゚チレング
リコヌルがもっずも奜たしい。
The dihydric alcohols composed of oxyethylene groups as basic units in the present invention have the general formula:
A compound represented by HO-(CH 2 CH 2 O-)H (n is an integer of 1 or more), specifically ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and average Polyethylene glycol with a molecular weight of 238 or more. These dihydric alcohols can be used alone or as a mixture. Of these, ethylene glycol, diethylene glycol and triethylene glycol are most preferred.

本発明においお觊媒ずしお䜿甚する結晶性金属
シリケヌトは、䞀般匏がM2O3・XSiO2・mH2
mH2は結晶の構造氎で、その郚はずし
お䜿甚する、はの皮類、の䟡などによ぀お
倉化する。で衚される䟡の金属酞化物ずケむ
玠酞化物ずから構成され、が、AlGa
FeInLaScCrTiの䞭から遞ばれる
皮もしくは皮以䞊の金属元玠であり、か぀、
すなわち、モル比SiO2M2O3が12〜
3000、奜たしくは40〜3000の範囲である結晶性の
空掞構造を持ち、か぀陜むオン亀換胜を有する結
晶性の金属シリケヌトである。ここでモル比
SiO2M2O3が12未満であるず−ゞオ
キサンの収率が䜎い堎合があるので奜たしくな
く、䞀方、3000を超えるず原料である䟡アルコ
ヌルの転化率が䜎くなるので奜たしくない。これ
らのうち、酞玠10員環の䞻空掞を有するれオラむ
ト特にペンタシル型構造の金属シリケヌトに属す
る結晶性金属シリケヌトが奜たしい。このような
結晶性金属シリケヌトずしお、たずえば、が
Alの堎合に぀いお特公昭46−10064号、米囜特蚱
第3790471号などの公報に蚘茉されおいるZSM−
、特開昭47−25097号公報に蚘茉されおいる
ZSM−、特公昭53−23280号公報に蚘茉されお
いるZSM−11がある。その他、特開昭52−
139029号公報などに蚘茉されおいるZSM−35、
米囜特蚱第4001346号などの公報に蚘茉されおい
るZSM−21などの結晶性アルミノシリケヌトで
あ぀お、SiO2M2O3が12以䞊のものも䜿甚する
こずができる。
The crystalline metal silicate used as a catalyst in the present invention has a general formula of M2O3.XSiO2.mH2O .
(mH 2 O is crystalline water, part of which is used as H+, m varies depending on the type of M, the valence of X, etc.) and silicon oxide. M is composed of Al, Ga, B,
One or more metal elements selected from Fe, In, La, Sc, Y, Cr, and Ti, and
X, that is, the molar ratio (SiO 2 /M 2 O 3 ) is 12 to
3000, preferably in the range of 40 to 3000, and is a crystalline metal silicate having a cation exchange ability. If the molar ratio (SiO 2 /M 2 O 3 ) is less than 12, the yield of 1,4-dioxane may be low, which is undesirable. On the other hand, if it exceeds 3000, the conversion of the raw material dihydric alcohol is This is not preferable because the rate will be low. Among these, zeolites having a main cavity of a 10-membered oxygen ring, particularly crystalline metal silicates belonging to metal silicates having a pentasil type structure, are preferred. As such a crystalline metal silicate, for example, M is
Regarding the case of Al, ZSM-
5. Described in Japanese Patent Application Laid-Open No. 47-25097
There are ZSM-8 and ZSM-11 described in Japanese Patent Publication No. 53-23280. Others, JP-A-52-
ZSM-35 described in Publication No. 139029 etc.
A crystalline aluminosilicate such as ZSM-21 described in publications such as US Pat. No. 4,001,346 and having a SiO 2 /M 2 O 3 ratio of 12 or more can also be used.

たた、がの䟋ずしお、特開昭53−55500号
あるいは特開昭55−7598号に蚘茉されおいる
ZSM−型構造もしくはZSM−11型構造を有す
る結晶性ボロシリケヌトがある。がFeの䟋ず
しお、ゞダヌナル・オブ・キダタリシス
Journal of Catalysis第35巻、256頁〜272頁
1974幎、特開昭50−127898号あるいは特開昭55
−85415号などに蚘茉されおいるプリ゚ラむト
などの結晶性鉄シリケヌトがある。がGaの䟋
ずしおは、埌蚘参考䟋などに蚘茉のZSM−
型構造を有するがガロシリケヌトなどの結晶性ガ
ロシリケヌトがある。が、InLaSc
CrTiである䟋ずしおは、前蚘結晶性アルミノ
シリケヌト䞭の骚栌に組蟌たれた䟡のAlがそ
れぞれ䟡のInLaScCrで眮き換わ぀
た構造を有する結晶性金属シリケヌトがある。
Also, as an example where M is B, it is described in JP-A-53-55500 or JP-A-55-7598.
There are crystalline borosilicates having a ZSM-5 type structure or a ZSM-11 type structure. As an example where M is Fe, see Journal of Catalysis, Vol. 35, pp. 256-272 (1974), JP-A No. 127898-1974, or JP-A No. 127898/1973.
There are crystalline iron silicates such as ferrierite described in No.-85415. An example where M is Ga is ZSM-5 described in Reference Example 3 below.
There are crystalline gallosilicates, such as gallosilicate, which have a type structure. M is In, La, Sc, Y,
Examples of Cr and Ti include crystalline metals having a structure in which trivalent Al incorporated in the skeleton of the crystalline aluminosilicate is replaced with trivalent In, La, Sc, Y, and Cr, respectively. There are silicates.

これらのうち、前蚘䞀般匏䞭のがAlGa
であるものが奜たしく、AlGaであるものが
特に奜たしい。
Among these, M in the general formula is Al, Ga,
B is preferred, and Al and Ga are particularly preferred.

本発明の方法においお甚いられる前蚘結晶性金
属シリケヌトは、公知の方法によ぀お調補するこ
ずができる。
The crystalline metal silicate used in the method of the present invention can be prepared by a known method.

たずえば、前蚘ZSM−型れオラむトを代衚
ずするペンタシル型の結晶性金属シリケヌトを合
成する方法ずしおは、C2からC5のテトラアルキ
ルアンモニりムハラむド、その他のアミン類の存
圚䞋もしくは䞍存圚䞋においお、シリカ源ずしお
コロむド状シリカたたは氎ガラスなどのケむ酞た
たはその瞮合物、あるいはケむ酞塩、金属酞化物
M2O3源ずしお、たずえば、硫酞アルミニり
ム、硝酞ガリりム、ホり酞、硫酞第鉄、硫酞ク
ロム、アルミン酞ナトリりムなどの金属元玠の
硫酞塩、硝酞塩などの塩あるいは酞玠酞塩などの
䞻成分ずする混合物を甚いお氎熱合成によ぀お調
補できるこずが知られおいる。
For example, a method for synthesizing a pentasil type crystalline metal silicate represented by the ZSM-5 type zeolite is as follows: in the presence or absence of a C2 to C5 tetraalkylammonium halide or other amines. Silicic acid or its condensates, such as colloidal silica or water glass, as a silica source, or silicates, as a metal oxide (M 2 O 3 ) source, e.g. aluminum sulfate, gallium nitrate, boric acid, ferric sulfate. It is known that it can be prepared by hydrothermal synthesis using a mixture mainly consisting of sulfates, nitrates, or oxyacids of the metal element M such as chromium sulfate and sodium aluminate.

たた、前蚘の氎熱合成の際に、ナトリりムなど
のアルカリ金属氎酞化物、ハラむドなどのアルカ
リ金属化合物を共存させお調補する方法も知られ
おいる。
Also known is a method in which an alkali metal hydroxide such as sodium or an alkali metal compound such as a halide is allowed to coexist during the hydrothermal synthesis.

これらの方法によ぀お埗られる結晶性金属シリ
ケヌトは䞀般に型ではなく、の代わりに
玚アンモニりムむオンおよびたたはNaな
どのアルカリ金属むオンが眮換されおいるので、
これを、型に倉えるのが奜たしい。この倉換
は公知の方法によ぀お容易に達成できる。
The crystalline metal silicates obtained by these methods are generally not of the H+ type, and H+ is replaced with quaternary ammonium ions and/or alkali metal ions such as Na+.
It is preferable to change this to the H+ type. This conversion can be easily accomplished by known methods.

たずえば、玚アンモニりムむオンをに倉
えるには、空気䞭玄500〜600℃の枩床で焌成する
こずによ぀お達成できるこずが知られおおり、䞀
方、Naなどのアルカリ金属むオンをに代
えるには、たずえば、アルカリ金属塩型結晶性金
属シリケヌトを、硝酞アンモニりム、塩化アンモ
ニりムなどのアンモニりム塩の氎溶液で凊理しお
アンモニりム塩型結晶性金属シリケヌトずし、し
かる埌、300〜600℃で空気䞭で焌成し、型結
晶性金属シリケヌトを埗る方法がよく甚いられ
る。
For example, it is known that converting a quaternary ammonium ion to H+ can be achieved by firing it in air at a temperature of about 500 to 600°C; on the other hand, replacing an alkali metal ion such as Na+ with H+ For example, an alkali metal salt type crystalline metal silicate is treated with an aqueous solution of an ammonium salt such as ammonium nitrate or ammonium chloride to obtain an ammonium salt type crystalline metal silicate, and then calcined in air at 300 to 600°C. , a method of obtaining H+ type crystalline metal silicate is often used.

これらのほか、盎接、垌塩酞などの皀薄な酞で
凊理する方匏を甚いるこずもできる。
In addition to these methods, a method of directly treating with dilute acid such as dilute hydrochloric acid can also be used.

結晶性金属シリケヌトの合成法ずしおは、これ
ら以倖にも皮々の方法が知られおいる。
Various methods other than these are known as methods for synthesizing crystalline metal silicates.

本発明の方法においお觊媒ずしお甚いる結晶性
金属シリケヌトはこれらのいずれの方法によ぀お
も合成するこずができ、本発明は、特定の調補法
による觊媒の䜿甚に限定されるものではない。
The crystalline metal silicate used as a catalyst in the method of the invention can be synthesized by any of these methods, and the invention is not limited to the use of a catalyst by a particular method of preparation.

なお、本発明では、結晶性金属シリケヌトは、
型であるのが奜たしいが、この発明の目的を
阻害しない限り、觊媒䞭のの䞀郚もしくは党
郚が他の陜むオンたずえばマグネシりムむオン、
カルシりムむオン、ランタンむオン等で眮代わ぀
おいおも良い。
In addition, in the present invention, the crystalline metal silicate is
Although the H+ type is preferable, unless the purpose of the present invention is hindered, some or all of the H+ in the catalyst may be in the form of other cations such as magnesium ions,
Calcium ions, lanthanum ions, etc. may be substituted.

本発明における固䜓觊媒の圢状は、粉末状、粒
状、现片状、球状、ペレツト状などのいずれの圢
状でも䜿甚するこずができる。
The solid catalyst in the present invention may be in any shape such as powder, granules, strips, spheres, or pellets.

本発明においおは、第玚アミンなどの有機化
合物を配合しおれオラむトを氎密合成する堎合に
は、觊媒掻性を向䞊させるために反応前に空気お
よびたたは窒玠などの䞍掻性ガス気流䞭で、前
蚘結晶性金属シリケヌトを焌成するこずが奜たし
い。
In the present invention, when zeolite is watertightly synthesized by blending an organic compound such as a quaternary amine, in order to improve the catalytic activity, it is necessary to synthesize the zeolite in a stream of air and/or an inert gas such as nitrogen before the reaction. Preferably, the crystalline metal silicate is fired.

この堎合、焌成条件は前蚘結晶性金属シリケヌ
トの皮類、玚アンモニりムむオンおよび構造氎
の残存の床合などにより異なるが通垞、400〜600
℃、奜たしくは450〜550℃の枩床で時間以䞊、
奜たしくは時間以䞊加熱するこずによ぀おれオ
ラむト䞭の有機化合物が陀去される。
In this case, the firing conditions vary depending on the type of crystalline metal silicate, the degree of residual quaternary ammonium ion and structural water, etc., but usually 400 to 600
℃, preferably at a temperature of 450 to 550℃ for 1 hour or more,
Organic compounds in the zeolite are preferably removed by heating for 3 hours or more.

本発明においお、反応原料である䟡アルコヌ
ル類ず觊媒である結晶性金属シリケヌトずを接觊
させるにあた぀お、通垞、䟡アルコヌル類を液
盞の状態で接觊させるのが奜たしい。
In the present invention, when bringing the dihydric alcohol as a reaction raw material into contact with the crystalline metal silicate as a catalyst, it is usually preferable to bring the dihydric alcohol into contact in a liquid phase.

反応方匏は流通法、回分法などのいずれの方匏
を甚いおもよい。
As the reaction method, any method such as a flow method or a batch method may be used.

この発明に係る−ゞオキサンの補造方法
においおは、䟡アルコヌルず前蚘觊媒ずの接觊
は、100〜500℃、奜たしくは150〜350℃、も぀ず
も奜たしくは200〜250℃で実斜される。䜎枩にな
るほど反応速床が遅くな぀お䞍利であり、高枩に
なるほど反応原料および生成物の分解反応が起こ
り易い。
In the method for producing 1,4-dioxane according to the present invention, the contact between the dihydric alcohol and the catalyst is carried out at a temperature of 100 to 500°C, preferably 150 to 350°C, most preferably 200 to 250°C. The lower the temperature, the slower the reaction rate, which is disadvantageous, and the higher the temperature, the more likely decomposition reactions of reaction materials and products occur.

反応に芁する時間は、反応枩床、觊媒の皮類な
どによ぀お䞀様ではないが、通垞、回分法の堎合
〜48時間、奜たしくは、〜24時間であり、流
通法で行なう堎合には、回分法の反応時間に該圓
するLHSVで操䜜する。
The time required for the reaction varies depending on the reaction temperature, type of catalyst, etc., but it is usually 1 to 48 hours in the case of a batch method, preferably 5 to 24 hours, and 5 to 24 hours in the case of a flow method. , operate at LHSV corresponding to the reaction time of the batch method.

この反応は特に溶媒の存圚䞋に行なう必芁はな
いが、䞍掻性炭化氎玠やこの反応に䞍利な圱響を
およがさない溶媒の存圚䞋に行なうこずができ
る。
This reaction does not particularly need to be carried out in the presence of a solvent, but can be carried out in the presence of an inert hydrocarbon or a solvent that does not adversely affect this reaction.

たた、いずれの堎合にも反応は反応枩床におけ
る自圧もしくは加圧䞋で行なうこずができ、回分
法で行なう堎合には、生成物である−ゞオ
キサンを留去させ぀぀反応を行なう方匏も有効で
ある。
In either case, the reaction can be carried out under autogenous pressure or pressure at the reaction temperature, and in the case of a batch process, the reaction may be carried out while distilling off the product 1,4-dioxane. It is valid.

本発明においお觊媒ずしお䜿甚する結晶性金属
シリケヌトの䜿甚量は、觊媒の皮類、反応原料で
ある䟡アルコヌル類の皮類および他の反応条件
によ぀お異なるが、回分法の堎合、䟡アルコヌ
ル類に察しお通垞0.1〜30重量、奜たしくは
〜10重量である。
The amount of crystalline metal silicate used as a catalyst in the present invention varies depending on the type of catalyst, the type of dihydric alcohol as a reaction raw material, and other reaction conditions. Usually 0.1 to 30% by weight, preferably 1
~10% by weight.

反応終了埌、觊媒を固液分離操䜜で分離陀去し
たのち、−ゞオキサンを蒞留によ぀お単離
粟補するこずもできるが、回分法では、通垞、觊
媒を固液分離操䜜で特に分離陀去する必芁はな
く、生成した−ゞオキサンを生成氎ず共に
蒞留によ぀お系倖に留去する。たた、流通法で
は、觊媒を固定局にすれば固液分離操䜜の必芁は
ない。蒞留操䜜によ぀お回収された未反応䟡ア
ルコヌル類は出発原料ずしお再䜿甚するこずがで
きる。
After the reaction is completed, the catalyst can be separated and removed by a solid-liquid separation operation, and then 1,4-dioxane can be isolated and purified by distillation, but in the batch method, the catalyst is usually separated and removed by a solid-liquid separation operation. There is no need to remove the produced 1,4-dioxane, and the produced 1,4-dioxane is distilled out of the system together with the produced water. In addition, in the flow method, if the catalyst is a fixed bed, there is no need for solid-liquid separation operation. Unreacted dihydric alcohols recovered by the distillation operation can be reused as starting materials.

本発明においおは、觊媒ずしお䜿甚される結晶
性金属シリケヌトは、適時、コヌクスを陀去する
ための焌成操䜜を行なうこずにより砎壊損倱する
たで繰り返し觊媒ずしお有効に䜿甚するこずがで
きる。
In the present invention, the crystalline metal silicate used as a catalyst can be effectively used as a catalyst repeatedly until it is destroyed and lost by appropriately performing a calcination operation to remove coke.

発明の効果 本発明によるず次のような効果を奏するこずが
できる。
[Effects of the Invention] According to the present invention, the following effects can be achieved.

(1) 本発明においおは、䟡アルコヌル類から
−ゞオキサンを補造するにあた぀お、限
定されたモル比を有するず共にケむ玠酞化物ず
䟡金属酞化物ずからなる特定の結晶性金属シ
リケヌト觊媒を甚いるので、本発明によるず、
埓来のシリカアルミナ、モルデナむト−
型れオラむトなどを䜿甚する堎合に比范しお高
収率で−ゞオキサンを埗るこずができ、
本発明は工業䞊著しく有利である。
(1) In the present invention, when producing 1,4-dioxane from dihydric alcohols, a specific crystalline product having a limited molar ratio and consisting of a silicon oxide and a trivalent metal oxide is used. According to the invention, since a metal silicate catalyst is used,
Conventional silica alumina, mordenite-H,X
1,4-dioxane can be obtained in a higher yield than when using type zeolite etc.
The present invention has significant industrial advantages.

(2) 本発明の方法は、金属に察する結晶性金属シ
リケヌト觊媒の腐食䜜甚がないので、埓来の硫
酞などの鉱酞、ハロゲン酞などに比范しお実甚
䞊著しく有利である。
(2) The method of the present invention is extremely advantageous in practice compared to conventional mineral acids such as sulfuric acid, halogen acids, etc., since the crystalline metal silicate catalyst does not have a corrosive effect on metals.

(3) 本発明の方法は、結晶性金属シリケヌト觊媒
の熱安定性等が高く、比范的高枩で甚いるこず
もでき、したが぀お、反応速床を十分に高く保
぀こずができ、か぀、掻性が長時間持続し、さ
らに焌成操䜜を斜すこずによ぀お䜕回でも觊媒
ずしお有効に利甚するこずができるので、埓来
の酞觊媒、むオン亀換暹脂觊媒に比べお、觊媒
圓りの補造コストを䜎枛するこずができ工業䞊
著しく有利である。
(3) In the method of the present invention, the crystalline metal silicate catalyst has high thermal stability and can be used at relatively high temperatures. Therefore, the reaction rate can be kept sufficiently high and the activity can be maintained. It lasts for a long time and can be effectively used as a catalyst many times by further firing, reducing the manufacturing cost per catalyst compared to conventional acid catalysts and ion exchange resin catalysts. This is extremely advantageous industrially.

実斜䟋 次に本発明の実斜䟋、参考䟋および比范䟋を瀺
す。
[Example] Next, Examples, Reference Examples, and Comparative Examples of the present invention will be shown.

参考䟋結晶性アルミノシリケヌトの
調補 硫酞アルミニりム7.5を氎250mlに溶解させ、
さらにこれに濃硫酞17.6およびテトラヌ−プ
ロピルアンモニりムブロマむド26.3を溶解させ
おこれを液ずし、氎ガラスケむ酞゜ヌダ
号日本化孊工業(æ ª)補211.0を氎250mlに溶解
させお液ずし、さらに塩化ナトリりム79.0を
æ°Ž122mlに溶解させお液ずした。
(Reference Example 1; Preparation of crystalline aluminosilicate ()) 7.5 g of aluminum sulfate was dissolved in 250 ml of water,
Further, 17.6 g of concentrated sulfuric acid and 26.3 g of tetra n-propylammonium bromide were dissolved in this to prepare liquid A, and water glass [J sodium silicate 3
No.: Nihon Kagaku Kogyo Co., Ltd.] 211.0 g was dissolved in 250 ml of water to obtain liquid B, and 79.0 g of sodium chloride was further dissolved in 122 ml of water to form liquid C.

次いで、䞊蚘の液ず液ずを、宀枩にお10分
間にわたり同時に液に滎䞋した。埗られた混合
液をオヌトクレヌブに入れ、170℃で20時間加熱
凊理した。冷华埌、内容物を濟過氎掗し、120℃
で12時間也燥させた。生成物を線回折分析した
ずころZSM−であるこずが確認された。埗ら
れたZSM−を550℃で時間焌成するこずによ
りナトリりム型ZSM−を56.5埗た。このナト
リりム型ZSM−を倍重量の芏定硝酞アン
モニりム氎溶液に加えお、時間還流した。その
埌、冷华しお静眮し䞊柄みをデカンテヌシペンに
より陀去した。曎に、還流・デンカテヌシペンの
操䜜を回繰り返したのち、内容物を濟過・氎掗
し、120℃で12時間也燥し、アンモニりム型ZSM
−を埗た。このもののSiO2Al2O390モル
比であ぀た。このアンモニりム型ZSM−を
空気䞭550℃、時間焌成し、型ZSM−すな
わち結晶性アルミノシリケヌトを埗た。
Next, the above solutions A and B were simultaneously added dropwise to solution C at room temperature for 10 minutes. The resulting mixture was placed in an autoclave and heat-treated at 170°C for 20 hours. After cooling, the contents were filtered and washed with water at 120℃.
and dried for 12 hours. X-ray diffraction analysis of the product confirmed that it was ZSM-5. The obtained ZSM-5 was calcined at 550°C for 6 hours to obtain 56.5 g of sodium type ZSM-5. This sodium form ZSM-5 was added to a 1N ammonium nitrate aqueous solution weighing 5 times its weight, and the mixture was refluxed for 8 hours. Thereafter, the mixture was cooled and left to stand, and the supernatant was removed by decantation. Furthermore, after repeating the reflux and dencation operations three times, the contents were filtered and washed with water, dried at 120°C for 12 hours, and ammonium-type ZSM
-5 was obtained. The SiO 2 /Al 2 O 3 ratio of this product was 90 (molar ratio). This ammonium type ZSM-5 was calcined in air at 550°C for 5 hours to obtain H type ZSM-5, that is, crystalline aluminosilicate ().

参考䟋結晶性アルミノシリケヌトの
調補 参考䟋に蚘茉した結晶性アルミノシリケヌト
の調補においお、硫酞アルミニりムの配合
量を7.5から15に代えお、その他の調補条件
を党く同様にしお結晶性アルミノシリケヌト
を調補した。このもののSiO2Al2O345
モル比であ぀た。
(Reference Example 2; Preparation of crystalline aluminosilicate ()) In the preparation of crystalline aluminosilicate () described in Reference Example 1, the amount of aluminum sulfate was changed from 7.5 g to 15 g, and the other preparation conditions were completely changed. Crystalline aluminosilicate () was prepared in the same manner. SiO 2 /Al 2 O 3 of this = 45
(molar ratio).

参考䟋結晶性ガロシリケヌトの調補 硝酞ガリりム2.34、濃硫酞4.42およびテト
ラ−−プロピルアンモニりムブロマむド6.58
ã‚’æ°Ž62mlに溶解させた溶液、氎ガラスケむ
酞゜ヌダ号日本化孊工業(æ ª)補52.78を氎
62mlの溶解した溶液および塩化ナトリりム
19.75を氎30mlに溶解させた溶液を調補した。
぀いで、溶液およびを同時に溶液に滎䞋し
た。埗られた混合液をオヌトクレヌブに入れお、
反応枩床170℃で24時間反応させた。冷华埌、オ
ヌトクレヌブの内容物を濟過氎掗し、120℃で12
時間也燥埌、さらに600℃で時間焌成しおナト
リりム型結晶性ガロシリケヌト9.6を埗た。
(Reference Example 3; Preparation of crystalline gallosilicate) 2.34 g of gallium nitrate, 4.42 g of concentrated sulfuric acid, and 6.58 g of tetra-n-propylammonium bromide
Solution A, which is obtained by dissolving 52.78 g of water glass [J Sodium Silicate No. 3; manufactured by Nihon Kagaku Kogyo Co., Ltd.] in 62 ml of water, was added to the water.
62 ml of dissolved solution B and sodium chloride
Solution C was prepared by dissolving 19.75 g in 30 ml of water.
Solutions A and B were then added dropwise to solution C at the same time. Put the resulting mixture into an autoclave,
The reaction was carried out at a reaction temperature of 170°C for 24 hours. After cooling, the contents of the autoclave were filtered and washed with water and incubated at 120°C for 12
After drying for an hour, it was further calcined at 600°C for 6 hours to obtain 9.6 g of sodium type crystalline gallosilicate.

次に埗られたガロシリケヌトを倍重量の芏
定硝酞アンモニりム溶液に加え、80℃で時間加
熱凊理し、冷华埌、濟過した。さらに固圢物に加
熱、濟過の操䜜を回繰り返した埌、氎掗し120
℃で16時間也燥しおアンモニりム型結晶性ガロシ
リケヌトのSiO2ずGa2O3の組成比はSiO2Ga2O3
75.5モル比であ぀た。たた、このガロシリ
ケヌトは線回折により、ZSM−構造を有す
るものであるこずがわか぀た。このアンモニりム
型結晶性ガロシリケヌトを空気䞭550℃、時間
焌成するこずによ぀お型結晶性ガロシリケヌト
を埗た。
Next, the obtained gallosilicate was added to 5 times the weight of 1N ammonium nitrate solution, heated at 80° C. for 8 hours, cooled, and filtered. Furthermore, after repeating the heating and filtration operation three times, the solid material was washed with water and
After drying at ℃ for 16 hours, the composition ratio of SiO 2 and Ga 2 O 3 of ammonium type crystalline gallosilicate is SiO 2 /Ga 2 O 3
=75.5 (molar ratio). Moreover, this gallosilicate was found to have a ZSM-5 structure by X-ray diffraction. This ammonium type crystalline gallosilicate was calcined in air at 550°C for 4 hours to obtain H type crystalline gallosilicate.

実斜䟋  生成物を留出させるこずができる蒞留装眮を぀
けた䞉ツ口フラスコに、ゞ゚チレングリコヌル
50.0ず参考䟋で調補した結晶性アルミノシリ
ケヌト1.0を入れ、反応枩床200℃に保
ち、10時間撹拌を続けた。その間に留出した生成
物の党量は47.2であ぀た。生成物をガスクロ分
析し、−ゞオキサンを92の収率で埗た。
副生成物はアセトアルデヒドおよび゚チレングリ
コヌル各であ぀た。
(Example 1) Diethylene glycol was added to a three-necked flask equipped with a distillation device capable of distilling the product.
50.0g and 1.0g of the crystalline aluminosilicate () prepared in Reference Example 1 were added, the reaction temperature was kept at 200°C, and stirring was continued for 10 hours. The total amount of product distilled during this period was 47.2 g. The product was analyzed by gas chromatography, and 1,4-dioxane was obtained with a yield of 92%.
By-products were acetaldehyde and ethylene glycol (1% each).

実斜䟋  実斜䟋の反応残枣物に、さらにゞ゚チレング
リコヌル50.0を加え、同䞀の反応装眮で、反応
枩床200℃に保ち、12時間撹拌を続けた。その間
に留出した生成物の党量は48.5であ぀た。ガス
クロ分析した結果、1.4−ゞオキサンの収率は95
であ぀た。
(Example 2) 50.0 g of diethylene glycol was further added to the reaction residue of Example 1, and stirring was continued for 12 hours in the same reaction apparatus while maintaining the reaction temperature at 200°C. The total amount of product distilled during this period was 48.5 g. As a result of gas chromatography analysis, the yield of 1.4-dioxane was 95
It was %.

実斜䟋  実斜䟋においお、ゞ゚チレングリコヌルの代
わりに゚チレングリコヌルを甚い、攪拌時間を20
時間に代えた以倖は同様に実斜した。生成物の留
出量は46.2であり、このずきの−ゞオキ
サンの収率は90であ぀た。生成物の留出物䞭に
は原料の゚チレングリコヌルが回収されおい
た。
(Example 3) In Example 1, ethylene glycol was used instead of diethylene glycol, and the stirring time was 20
The same procedure was carried out except that the time was changed. The amount of product distilled out was 46.2 g, and the yield of 1,4-dioxane at this time was 90%. 2% of the raw material ethylene glycol was recovered in the product distillate.

実斜䟋  実斜䟋においおゞ゚チレングリコヌルに代え
お、トリ゚チレングリコヌルを甚いた以倖は同様
に反応を行な぀た。生成物の党留出量は48.9で
あり、−ゞオキサンの収率は86であ぀
た。
(Example 4) The reaction was carried out in the same manner as in Example 1 except that triethylene glycol was used instead of diethylene glycol. The total distilled amount of product was 48.9 g, and the yield of 1,4-dioxane was 86%.

実斜䟋  実斜䟋においお、結晶性アルミノシリケヌト
に倉えお参考䟋で調補した結晶性ガロシ
リケヌトを甚いた以倖は同様に反応を行な぀た。
生成物の党留出量は46.1であり、−ゞオ
キサンの収率は90であ぀た。
(Example 5) The reaction was carried out in the same manner as in Example 1 except that the crystalline gallosilicate prepared in Reference Example 3 was used instead of the crystalline aluminosilicate ().
The total distilled amount of product was 46.1 g, and the yield of 1,4-dioxane was 90%.

実斜䟋  実斜䟋においお、参考䟋の結晶性アルミノ
シリケヌトに代えお、参考䟋の結晶性ア
ルミノシリケヌトを䜿甚した以倖は実斜䟋
ず同様にしお反応を行な぀た。生成物の党留出
量は46.8であり、−ゞオキサンの収率は
87であ぀た。
(Example 6) In Example 1, the reaction was carried out in the same manner as in Example 1, except that the crystalline aluminosilicate () of Reference Example 2 was used instead of the crystalline aluminosilicate () of Reference Example 1. Ta. The total distillate amount of product was 46.8 g, and the yield of 1,4-dioxane was
It was 87%.

比范䟋  実斜䟋においお、参考䟋の結晶性アルミノ
シリケヌトに倉えお、合成モルデナむト
東掋曹達TSZ−600SiO2Al2O310モル比
を䜿甚しお、実斜䟋ず同様にしお反応を行な぀
た。生成物の党留出量は35.4で、−ゞオ
キサンの収率は58であ぀た。
(Comparative Example 1) In Example 1, synthetic mordenite (Toyo Soda TSZ-600) SiO 2 /Al 2 O 3 = 10 (molar ratio) was used instead of the crystalline aluminosilicate ( ) of Reference Example 1.
The reaction was carried out in the same manner as in Example 1 using . The total distilled amount of product was 35.4 g, and the yield of 1,4-dioxane was 58%.

Claims (1)

【特蚱請求の範囲】  オキシ゚チレン基を基本単䜍ずしお構成され
る䟡アルコヌル類を、100〜500℃の反応枩床䞋
に、けい玠酞化物SiO2ず䟡金属の酞化物
ずのモル比SiO2M2O3が12〜3000の範囲内
になる結晶性金属シリケヌトに接觊させるこずを
特城ずする−ゞオキサンの補造方法。  前蚘䟡アルコヌル類が、゚チレングリコヌ
ル、ゞ゚チレングリコヌルおよびトリ゚チレング
リコヌルよりなる矀から遞択される少なくずも䞀
皮である前蚘特蚱請求の範囲第項に蚘茉の
−ゞオキサンの補造方法。  結晶性金属シリケヌトが酞玠10員環の䞻空掞
を有するれオラむトである前蚘特蚱請求の範囲第
項たたは第項に蚘茉の−ゞオキサンの
補造方法。  前蚘結晶性金属シリケヌトが、ZSM−型
もしくはZSM−11型構造を有する結晶性アルミ
ノシリケヌト、ZSM−型もしくはZSM−11型
構造を有する結晶性ガロシリケヌトおよびZSM
−型もしくはZSM−11型構造を有する結晶性
ボロシリケヌトよりなる矀から遞択される少なく
ずも䞀皮である前蚘特蚱請求の範囲第項、第
項たたは第項に蚘茉の−ゞオキサンの補
造方法。
[Claims] 1. A dihydric alcohol composed of an oxyethylene group as a basic unit is reacted with silicon oxide (SiO 2 ) and a trivalent metal oxide at a reaction temperature of 100 to 500°C. 1. A method for producing 1,4-dioxane, which comprises bringing it into contact with a crystalline metal silicate having a molar ratio (SiO 2 /M 2 O 3 ) in the range of 12 to 3000. 2. 1 according to claim 1, wherein the dihydric alcohol is at least one selected from the group consisting of ethylene glycol, diethylene glycol, and triethylene glycol.
Method for producing 4-dioxane. 3. The method for producing 1,4-dioxane according to claim 1 or 2, wherein the crystalline metal silicate is a zeolite having a main cavity of 10-membered oxygen rings. 4. The crystalline metal silicate is a crystalline aluminosilicate having a ZSM-5 type or ZSM-11 type structure, a crystalline gallosilicate having a ZSM-5 type or ZSM-11 type structure, and a ZSM
Claims 1 and 2 are at least one selected from the group consisting of crystalline borosilicate having -5 type or ZSM-11 type structure.
The method for producing 1,4-dioxane according to item 1 or 3.
JP60209446A 1985-09-21 1985-09-21 Production of 1,4-dioxane Granted JPS6270369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60209446A JPS6270369A (en) 1985-09-21 1985-09-21 Production of 1,4-dioxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60209446A JPS6270369A (en) 1985-09-21 1985-09-21 Production of 1,4-dioxane

Publications (2)

Publication Number Publication Date
JPS6270369A JPS6270369A (en) 1987-03-31
JPH0564954B2 true JPH0564954B2 (en) 1993-09-16

Family

ID=16572995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60209446A Granted JPS6270369A (en) 1985-09-21 1985-09-21 Production of 1,4-dioxane

Country Status (1)

Country Link
JP (1) JPS6270369A (en)

Also Published As

Publication number Publication date
JPS6270369A (en) 1987-03-31

Similar Documents

Publication Publication Date Title
JPH056536B2 (en)
US4966969A (en) Process for the preparation of triethylenediamines
JP3182383B2 (en) Production of triethylenediamine using surface acidity deactivated zeolite catalyst
JPH0686451B2 (en) Method for producing triethylenediamines
JP3049602B2 (en) Synthesis of triethylenediamine using base-treated zeolite as catalyst
US4777322A (en) Obtaining but-2-enes from C4 -hydrocarbon mixtures which contain but-1-ene and may or may not contain but-2-enes
JPH01163149A (en) Production of 1, 4-bis (4-phenoxybenzoyl) using zeolite catalyst
JPH04243843A (en) Process for producing 2- and 3-phenylalkanes by using catalyst based on special mordenite
JPS61200943A (en) Esterification by zeolite catalyst
JPS61221164A (en) Manufacture of fatty dinitrile
JPH0564954B2 (en)
HU208516B (en) Process for producing phenyl-acetaldehyde derivatives
CA1263872A (en) Preparation of ketones by isomerization of aldehydes
JP2640605B2 (en) Method for producing triethylenediamines
JP2002530363A (en) Method for producing methylamine using acidic molecular sieve catalyst
EP1552883B1 (en) Alkylation of benzene with propylene using a zeolite catalyst
JPH0529211B2 (en)
JPH0248535B2 (en)
US4806679A (en) Isomerization of diacyloxybutenes
JPH0380137B2 (en)
JPH1160531A (en) Production of polyhydric alcohol adduct of alicyclic hydrocarbon and catalyst using in the production
JPS64368B2 (en)
JPH04103541A (en) Production of olefin
JPH0725706B2 (en) Method for producing dimethylnaphthalene
JPH01103916A (en) Production of crystalline galloaluminosilicate and production of aromatic hydrocarbon