JPH056494B2 - - Google Patents

Info

Publication number
JPH056494B2
JPH056494B2 JP59195151A JP19515184A JPH056494B2 JP H056494 B2 JPH056494 B2 JP H056494B2 JP 59195151 A JP59195151 A JP 59195151A JP 19515184 A JP19515184 A JP 19515184A JP H056494 B2 JPH056494 B2 JP H056494B2
Authority
JP
Japan
Prior art keywords
cooling
resin sheet
temperature
resin
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59195151A
Other languages
Japanese (ja)
Other versions
JPS6172509A (en
Inventor
Toshuki Hagiwara
Masami Akyama
Yoshimitsu Tsutsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Konica Minolta Inc
Original Assignee
Mitsubishi Heavy Industries Ltd
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Konica Minolta Inc filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19515184A priority Critical patent/JPS6172509A/en
Publication of JPS6172509A publication Critical patent/JPS6172509A/en
Publication of JPH056494B2 publication Critical patent/JPH056494B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は溶融押出される結晶性熱可塑性樹脂シ
ートの形成方法に関し、特に該樹脂シートのヘイ
ズの少ない冷却方法に関する。 (従来技術) 溶融した結晶性熱可塑性樹脂は静電荷印加法
(特公昭37−6142号)等の方法を用いて冷却ロー
ラ面に密着、キヤストされ、適当温度にまで冷却
して固化され、所定の延伸率で2軸延伸され所定
厚さの樹脂シートとなつて使用に供される。 キヤステイングに入つた結晶性可塑性樹脂(以
後特性樹脂と称する)シートの冷却条件は該特性
樹脂によつて最終的にえられる樹脂シートのヘイ
ズ(かすみ度)、表面の波打、凹凸(平面性)或
は強度等の物性に大きな影響を有し、特性樹脂の
結晶化温度に於る冷却速度が遅い場合には結晶化
の高い樹脂シートとなり、延伸した場合、切断、
厚み不均一、強度不足或はヘイズ発生等の問題を
生ずる。 樹脂シートの冷却効率を上げるため、前記静電
荷印加法をはじめとして種々の提案がなされてい
る。 例えばキヤステイング中の特性樹脂シート面に
冷却風あるいは冷却水スプレーの吹付、冷却水の
流下等の方法(特公昭44−30388号)が知られて
いるが、これらの方法は樹脂シート面の平面性を
損う欠点を有している。この難を避けて特開昭49
−108163号には非晶温度域で除冷した後急冷する
技術開示がある。 また問題の起り易い厚物シートの形成に於て
は、冷却ローラに対接して数個所にパラレルな気
流吹出口を設け、冷却ローラに非接触にあるシー
ト面に冷却風を当て、樹脂中から気化する低分子
物の凝固によつて生ずる粉塵の排除と同時に該樹
脂を急冷することにより結晶化の起り易い温度範
囲を急拠通過脱出する方法(特開昭52−93477号)
が提案され、また冷却気流を冷却ローラの回転方
向にカウンタ−カレントに流し冷却効果を上げる
方法(特開昭52−59669号)等が提案されている。 以上従来提案された方法は樹脂シートを全体と
して早急に冷却することに主眼が置かれ樹脂シー
ト面の平面性の損わない配慮をしながら樹脂シー
トがまだ高温にある時期から冷却風等による冷却
が始められており、冷却条件とヘイズとの関連に
ついては殆ど具体的に配慮されていない。 しかし樹脂シートのヘイズはその商品価値を左
右するものであり、特に写真材料に用いられる場
合にはその死命を制するに足る。 (発明の目的) 本発明の目的は前記特性樹脂の溶融押出し二軸
延伸樹脂シートに於てヘイズの少い樹脂シートの
形成方法を提供することにある。 (発明の構成) 本発明者等は二軸延伸特性樹脂シートのヘイズ
減少について鋭意検討し、ヘイズは冷却ローラ面
に非接触な外気に接する面(外気面と称す)の結
晶化の度合(結晶化度)に大きく影響され、該面
の結晶決勝化度を抑えることが必要であり、その
ためには空冷の開始時期を遅らせればよいことを
知つた。 即ち本発明の目的は、溶融状態で押出された結
晶性熱可塑性樹脂を冷却ローラ面上にキヤストし
冷却固化して樹脂シートを形成する際、該冷却ロ
ーラ面に対峙して設けた空冷装置による該樹脂シ
ートに対する空冷を、該樹脂シートの冷却ローラ
面とは非接触の外気に面する外気面の該樹脂シー
トの温度に関し、前記樹脂の融点からその最高結
晶化速度を与える温度に到るまでの相対結晶化速
度0.7〜70%を与える温度範囲内の温度点から開
始することを特徴とする樹脂シートの形成方法に
よつて達成される。 尚本発明に係る特性樹脂の結晶化速度は、該特
性樹脂の温度と第1図に示す関係を有する。 第1図に於て横軸は特性樹脂の温度Tであり、
縦軸が結晶速度Gである。 結晶化速度は特性樹脂中に生ずる球晶の半径r
方向の成長速度dr/dt〔ミクロン(μ)/秒(S)〕
で定義される。 G=dr/dt〔μ/S〕 結晶化速度Gは特性樹脂の融点M.P.に於てO、
温度Tが低下するにつれて増大し、温度TMに於
て前記最高結晶化速度GMに到達し、再び低下し
TMに立てた垂直に関しほゞ対称となる。但し本
発明で使用する範囲はM.P.からTMに到る側であ
る。 また前記相対結晶化速度gはGMを基準にとり
各温度に於る結晶化速度Gとの百分率で定義した
ものである。 g=(G/GM)×100% 本発明を適用する特性樹脂としてはポリエルテ
ルが好ましく、更にポリエチレンテレフタレート
が好適である。 (実施例) 本発明を実施例(第2図)を用いて具体的に説
明する。 第2図に於て1は押出ダイ、11は押出ダイ1
から溶融した特性樹脂を叶出するスリツト、2は
キヤステイング冷却ローラであつて、ローラ径
500〓、水温30℃の冷却水を冷却ローラ2の内側
を循環させながら2m/〓の円周速度で回転して
いる。 3は冷却ローラに同心円的にそのキヤステイン
グ面21に対峙して設けた円弧型の空冷装置であ
り、空冷開始端31は、特性樹脂の冷却ローラに
おける外気面の温度Tを非接触型赤外温度でチエ
ツクし、空冷装置を同心円的にスライドさせ任意
の相対結晶化速度giにある空冷キヤステイング
面21上の温度点Piに自由に設置できる。 冷却の終つた樹脂シート(原シート)は取出し
ローラ4の点で剥離され、縦延伸及び横延伸され
て製品シートに連続的に形成される。 本実施例ではポリエチレンテレフタレートを
290℃で押出ダイ1から厚さ2mmの原シートとし
て押出し、表−1に揚げた点P1、P2、…、P9(対
応温度T1、T2、…、T9;対応相対結晶化速度g
、g2、…、g9)の点から温度範囲を選んで空
冷を開始し、続いて二軸延伸を行い厚み175μの
ポリエチレンテレフタレートシートを連続生産
し、各試料のヘイズをヘイズメータ(東京電色(株)
製)で測定し表−1に掲げた。
(Industrial Application Field) The present invention relates to a method for forming a melt-extruded crystalline thermoplastic resin sheet, and particularly to a method for cooling the resin sheet with less haze. (Prior art) The molten crystalline thermoplastic resin is closely cast on the surface of the cooling roller using a method such as the electrostatic charge application method (Japanese Patent Publication No. 37-6142), and is cooled to an appropriate temperature and solidified to form a predetermined shape. The resin sheet is biaxially stretched at a stretching ratio of , and is made into a resin sheet of a predetermined thickness for use. The cooling conditions for the crystalline plastic resin sheet (hereinafter referred to as special resin) that enters the casting process depend on the haze (degree of haze), surface undulations, and unevenness (flatness) of the resin sheet finally obtained by the special resin. ) or have a large effect on physical properties such as strength, and if the cooling rate at the crystallization temperature of the resin is slow, it will result in a resin sheet with high crystallization, and when stretched, it will be difficult to cut,
Problems such as uneven thickness, insufficient strength, and haze occur. In order to increase the cooling efficiency of the resin sheet, various proposals have been made including the above-mentioned electrostatic charge application method. For example, methods such as blowing cooling air or cooling water spray or flowing cooling water onto the surface of a characteristic resin sheet during casting are known (Japanese Patent Publication No. 44-30388). It has disadvantages that impair its character. To avoid this difficulty, JP-A-49
No.-108163 discloses a technology for slow cooling in an amorphous temperature range and then rapid cooling. In addition, when forming thick sheets that are prone to problems, parallel airflow outlets are provided at several locations facing the cooling roller, and cooling air is applied to the sheet surface that is not in contact with the cooling roller. A method of quickly passing through and escaping the temperature range where crystallization is likely to occur by simultaneously removing dust generated by solidification of a vaporized low-molecular substance and rapidly cooling the resin (Japanese Patent Application Laid-Open No. 52-93477)
has been proposed, as well as a method (Japanese Patent Application Laid-open No. 59669/1983) to increase the cooling effect by flowing the cooling air flow countercurrently in the direction of rotation of the cooling roller. The methods proposed so far have focused on quickly cooling the resin sheet as a whole, and while taking care not to damage the flatness of the resin sheet surface, the resin sheet is cooled by cooling air while it is still at a high temperature. However, the relationship between cooling conditions and haze has hardly been specifically considered. However, the haze of a resin sheet affects its commercial value, and is enough to control its life and death, especially when it is used as a photographic material. (Objective of the Invention) An object of the present invention is to provide a method for forming a melt-extruded biaxially oriented resin sheet of the above-mentioned characteristic resin, which has less haze. (Structure of the Invention) The present inventors have diligently studied the haze reduction of biaxially oriented resin sheets, and found that the haze is determined by the degree of crystallization (crystallization It is necessary to suppress the degree of crystal finalization of the surface, and it has been learned that to do this, the timing of starting air cooling can be delayed. That is, an object of the present invention is to cast a crystalline thermoplastic resin extruded in a molten state onto the surface of a cooling roller, cool it, and solidify it to form a resin sheet, by using an air cooling device provided opposite to the surface of the cooling roller. The resin sheet is air-cooled from the melting point of the resin to a temperature that gives its maximum crystallization rate, with respect to the temperature of the resin sheet on the outside air surface that is not in contact with the cooling roller surface of the resin sheet. This is achieved by a method of forming a resin sheet, which is characterized in that it starts from a temperature point within a temperature range that gives a relative crystallization rate of 0.7 to 70%. The crystallization rate of the characteristic resin according to the present invention has a relationship with the temperature of the characteristic resin as shown in FIG. 1. In Figure 1, the horizontal axis is the temperature T of the characteristic resin,
The vertical axis is the crystal velocity G. The crystallization rate is determined by the radius r of the spherulites that occur in the characteristic resin.
Directional growth rate dr/dt [micron (μ)/second (S)]
Defined by G = dr/dt [μ/S] The crystallization rate G is O at the melting point MP of the characteristic resin.
It increases as the temperature T decreases, reaches the maximum crystallization rate G M at temperature T M , and then decreases again.
It is almost symmetrical with respect to the vertical direction of T M. However, the range used in the present invention is from MP to TM . The relative crystallization rate g is defined as a percentage of the crystallization rate G at each temperature based on GM . g=(G/G M )×100% The characteristic resin to which the present invention is applied is preferably polyester, and more preferably polyethylene terephthalate. (Example) The present invention will be specifically described using an example (FIG. 2). In Fig. 2, 1 is an extrusion die, and 11 is an extrusion die 1.
2 is a casting cooling roller, and the roller diameter is
500〓, while circulating cooling water at a temperature of 30℃ inside the cooling roller 2, it rotates at a circumferential speed of 2m/〓. Reference numeral 3 denotes an arc-shaped air cooling device provided concentrically on the cooling roller facing the casting surface 21 thereof, and an air cooling start end 31 detects the temperature T of the outside air surface of the cooling roller made of a special resin using non-contact infrared radiation. By checking the temperature, the air-cooling device can be slid concentrically and freely installed at a temperature point P i on the air-cooled casting surface 21 at an arbitrary relative crystallization speed gi. The resin sheet (original sheet) that has been cooled is peeled off at the take-out roller 4 and then longitudinally stretched and transversely stretched to continuously form a product sheet. In this example, polyethylene terephthalate was used.
The points P 1 , P 2 , ..., P 9 (corresponding temperatures T 1 , T 2 , ..., T 9 ; corresponding relative crystals rate of change g
1 , g2 ,..., g9 ) to start air cooling, followed by biaxial stretching to continuously produce polyethylene terephthalate sheets with a thickness of 175μ, and measure the haze of each sample using a haze meter (Tokyo Electric Power Co., Ltd.). Color Co., Ltd.
The results are listed in Table 1.

【表】 表−1から明らかなように本発明の効果を歴然
と認めることができる。
[Table] As is clear from Table 1, the effects of the present invention can be clearly recognized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特性樹脂の温度Tと結晶化速度Gの関
係を示す図である。第2図は押出二軸延伸製膜機
のキヤステイング部分の説明のための側面図であ
る。 1……押出ダイ、1……冷却ローラ、3……空
冷装置。
FIG. 1 is a diagram showing the relationship between temperature T and crystallization rate G of a characteristic resin. FIG. 2 is a side view for explaining the casting portion of the extrusion biaxial stretching film forming machine. 1... Extrusion die, 1... Cooling roller, 3... Air cooling device.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融状態で押出された結晶性熱可塑性樹脂を
冷却ローラ面上にキヤストし冷却固化して樹脂シ
ートを形成する際、該冷却ローラ面に対峙して設
けた空冷装置によつて、冷却ローラ面とは非接触
の外気に面する外気面の該樹脂シートの温度に関
し、前記樹脂の融点からその最高結晶化速度を与
える温度に到るまでの相対結晶化加速度0.7〜70
%を与える温度範囲内の温度点から該樹脂シート
に対し空冷を開始することを特徴とする樹脂シー
トの形成方法。
1. When a crystalline thermoplastic resin extruded in a molten state is cast onto the cooling roller surface and cooled and solidified to form a resin sheet, an air cooling device installed opposite to the cooling roller surface is the relative crystallization acceleration of 0.7 to 70 from the melting point of the resin to the temperature that gives its highest crystallization rate, with respect to the temperature of the resin sheet on the outside air surface facing the outside air without contact.
A method for forming a resin sheet, characterized in that air cooling of the resin sheet is started from a temperature point within a temperature range that gives %.
JP19515184A 1984-09-14 1984-09-14 Forming process of resin sheet Granted JPS6172509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19515184A JPS6172509A (en) 1984-09-14 1984-09-14 Forming process of resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19515184A JPS6172509A (en) 1984-09-14 1984-09-14 Forming process of resin sheet

Publications (2)

Publication Number Publication Date
JPS6172509A JPS6172509A (en) 1986-04-14
JPH056494B2 true JPH056494B2 (en) 1993-01-26

Family

ID=16336279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19515184A Granted JPS6172509A (en) 1984-09-14 1984-09-14 Forming process of resin sheet

Country Status (1)

Country Link
JP (1) JPS6172509A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971828A (en) * 1982-10-19 1984-04-23 Teijin Ltd Cooler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353474U (en) * 1976-10-07 1978-05-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971828A (en) * 1982-10-19 1984-04-23 Teijin Ltd Cooler

Also Published As

Publication number Publication date
JPS6172509A (en) 1986-04-14

Similar Documents

Publication Publication Date Title
JP2000263642A (en) Manufacture of biaxially oriented polyester film
JPH0550381B2 (en)
JPH0617065B2 (en) Heat treatment method for biaxially stretched polyester film
JPH056494B2 (en)
JP2841755B2 (en) Polyamide film and method for producing the same
JPS6127231A (en) Manufacture of fluorine plastic film
JPS6140539B2 (en)
EP0353356B1 (en) Vacuum pinning process
JP2917443B2 (en) Thermoplastic stretched film
KR0158241B1 (en) Process for preparing polyester film
JPH0419012B2 (en)
JPH0129134B2 (en)
JP2841816B2 (en) Method for producing thermoplastic resin film
JP2841817B2 (en) Method for producing thermoplastic resin film
JP2003211534A (en) Film manufacturing method
JP2762618B2 (en) Manufacturing method of thermoplastic synthetic resin sheet
JPH03264334A (en) Manufacture of polyester film
JPH09295345A (en) Biaxially oriented polyester film and its manufacture
JPH10329210A (en) Biaxially oriented polyester film, and its manufacture
JPS5651331A (en) Manufacture of polyester film
JPS598343B2 (en) Stretching method for thermoplastic resin film or sheet
JPS6288754A (en) Winding method for polymeric film
JP3548346B2 (en) Cooling device for molten resin sheet
JPH0136594Y2 (en)
JP2000043123A (en) Method for forming thermoplastic resin sheet