JPH056488B2 - - Google Patents

Info

Publication number
JPH056488B2
JPH056488B2 JP62175715A JP17571587A JPH056488B2 JP H056488 B2 JPH056488 B2 JP H056488B2 JP 62175715 A JP62175715 A JP 62175715A JP 17571587 A JP17571587 A JP 17571587A JP H056488 B2 JPH056488 B2 JP H056488B2
Authority
JP
Japan
Prior art keywords
wafer
cutting blade
cutting
thickness
silicon ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62175715A
Other languages
Japanese (ja)
Other versions
JPS6418606A (en
Inventor
Kazunori Kizaki
Masaharu Ninomya
Tetsujiro Yoshiharu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENSHI KINZOKU KK
OOSAKA CHITANIUMU SEIZO KK
Original Assignee
KYUSHU DENSHI KINZOKU KK
OOSAKA CHITANIUMU SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENSHI KINZOKU KK, OOSAKA CHITANIUMU SEIZO KK filed Critical KYUSHU DENSHI KINZOKU KK
Priority to JP17571587A priority Critical patent/JPS6418606A/en
Publication of JPS6418606A publication Critical patent/JPS6418606A/en
Publication of JPH056488B2 publication Critical patent/JPH056488B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/0082Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work
    • B28D5/0094Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work the supporting or holding device being of the vacuum type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/02Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills
    • B28D5/022Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by cutting with discs or wheels
    • B28D5/028Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by cutting with discs or wheels with a ring blade having an inside cutting edge

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シリコンインゴツトや厚めのウエー
ハ等単結晶シリコン材料をスライスして板状の半
導体ウエーハを得る半導体ウエーハの製造装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a semiconductor wafer manufacturing apparatus for obtaining plate-shaped semiconductor wafers by slicing a single crystal silicon material such as a silicon ingot or a thick wafer.

(従来の技術) 従来では半導体ウエーハを製造する際には、第
4図に示すように、処理用ウエーハをスライスす
る工程S1、面取りする工程S2、ラツピングす
る工程S3、エツチングする工程S4、洗浄工程
S5、拡散処理工程S6、研削工程S7を経てミ
ラーポリシユ工程S8において仕上げることによ
り、半導体ウエーハ(以下、ウエーハという)を
製造している。上記スライスする工程S1におい
ては、内周刃等を備えた切断装置により単結晶シ
リコンインゴツトや厚めのウエーハ(以下、総称
する場合は「単結晶シリコン材料」という)を所
定厚さにスライスしていた。
(Prior Art) Conventionally, when manufacturing a semiconductor wafer, as shown in FIG. 4, the wafer for processing is subjected to a step S1 of slicing, a step S2 of chamfering, a step S3 of lapping, a step S4 of etching, and a cleaning step. A semiconductor wafer (hereinafter referred to as a wafer) is manufactured by completing S5, a diffusion treatment process S6, a grinding process S7, and a mirror polishing process S8. In the slicing step S1, a single crystal silicon ingot or a thick wafer (hereinafter collectively referred to as "single crystal silicon material") is sliced into a predetermined thickness using a cutting device equipped with an inner peripheral blade, etc. Ta.

(発明が解決しようとする課題) しかしながら、上記従来の製造装置において
は、板状の半導体ウエーハにスライスする際に、
切断刃等による切断位置の位置決めを切断毎に人
手で個別に行なつていたのであつて、そのため、
作業者の熟練度によつて、また、機械装置の特性
によつて板厚や平行度に狂いを生じるという不具
合そして準備作業に手間を要するという不具合が
あつた。更にまた、上述のように、一様な板厚に
スライスすることが難しいことから、研削工程や
ミラーポリツシユ工程において片面を仕上げ厚み
となるまで研磨しなければならず、そのため研磨
時の加工代が多くなること、加工時間がかかるこ
と、原料費が増大とすること等の問題があつた。
(Problem to be Solved by the Invention) However, in the above conventional manufacturing apparatus, when slicing into plate-shaped semiconductor wafers,
The positioning of the cutting position using a cutting blade, etc. was done manually for each cut, and as a result,
Depending on the skill level of the worker and the characteristics of the mechanical equipment, there were problems in that the plate thickness and parallelism could vary, and that preparation work was time-consuming. Furthermore, as mentioned above, it is difficult to slice the board into uniform thickness, so one side must be polished to the finished thickness in the grinding or mirror polishing process, which reduces processing costs during polishing. There were problems such as increased production, longer processing time, and increased raw material costs.

本発明は、位置決め操作が容易で機械装置の特
性に左右されない半導体ウエーハの製造装置を提
供する目的でなされたものである。
The present invention has been made for the purpose of providing a semiconductor wafer manufacturing apparatus in which the positioning operation is easy and is not affected by the characteristics of the mechanical device.

(課題の解決手段および作用) すなわち本発明装置は、単結晶シリコン材料を
切断刃によつてスライスし、板状の半導体ウエー
ハを得る半導体ウエーハの製造装置であつて、前
記切断刃の上方に、単結晶シリコン材料を吸引保
持する吸着部材を配するとともに、該吸着部材を
支持する支持部材に縦横に移動調整可能な位置決
め機構を具備させ、更に、前記吸着部材に、上記
切断刃による切断面に平行な基準面を、該切断刃
により前記吸着部材の下端側を切断することによ
り形成した構成であり、したがつて、単結晶シリ
コン材料を吸着する支持部の下面が基準面に形成
されているので位置決め機構により切断刃の位置
決めが容易となり、スライスにより得られた半導
体ウエーハの板厚が均一となり、板厚のばらつき
に伴う拡散半導体ウエーハの研磨量を減少でき、
研磨時間の短縮および原料費を低減できる。
(Means for Solving the Problems and Effects) That is, the apparatus of the present invention is a semiconductor wafer manufacturing apparatus for slicing a single crystal silicon material with a cutting blade to obtain a plate-shaped semiconductor wafer, and above the cutting blade, A suction member for sucking and holding the single crystal silicon material is disposed, and a support member that supports the suction member is provided with a positioning mechanism that can be moved vertically and horizontally, and the suction member is further provided with a positioning mechanism that allows the suction member to be attached to the cut surface by the cutting blade. A parallel reference plane is formed by cutting the lower end side of the adsorption member with the cutting blade, and therefore, the lower surface of the support part that adsorbs the single crystal silicon material is formed as the reference plane. Therefore, the positioning mechanism makes it easy to position the cutting blade, the thickness of the semiconductor wafer obtained by slicing becomes uniform, and the amount of polishing of the diffused semiconductor wafer due to variations in thickness can be reduced.
Polishing time and raw material costs can be reduced.

(実施例) 以下、本願発明を添付図面に基づいて説明す
る。半導体ウエーハは、第1図に示すフローチヤ
ートの手順により製造される。すなわち、切断工
程S11では単結晶シリコンインゴツト20を厚
めのウエーハ20aにスライスし、面取り工程S
12で切断されたウエーハの表面処理を行なう。
次に、ラツピング工程S13で表面を研磨し、エ
ツチング工程S14でウエーハ表面の前加工面を
除去して平滑な表面を得た後、洗浄工程S15で
所定の洗浄水で洗浄した後、拡散処理S16が行
なわれる。拡散処理S17では、所定のガス中で
ウエーハを加熱しながら行ない、その後、分割切
断工程S17において、拡散ウエーハ(厚めのウ
エーハ)が所定厚さに近い厚さとなるように二分
割にスライスされ(分割切断工程S17)、その
後研磨工程S18でウエーハを所定厚さまで研削
してミラーポリツシユにより表面研磨を行い、拡
散ウエーハが仕上げられる。
(Example) Hereinafter, the present invention will be explained based on the accompanying drawings. A semiconductor wafer is manufactured according to the procedure of the flowchart shown in FIG. That is, in the cutting step S11, the single crystal silicon ingot 20 is sliced into thick wafers 20a, and in the chamfering step S
At step 12, the surface of the cut wafer is subjected to surface treatment.
Next, the surface is polished in a wrapping step S13, the pre-processed surface of the wafer surface is removed in an etching step S14 to obtain a smooth surface, and after cleaning with predetermined cleaning water in a cleaning step S15, a diffusion treatment S16 is performed. will be carried out. In the diffusion process S17, the wafer is heated in a predetermined gas, and then in the dividing and cutting process S17, the diffusion wafer (thick wafer) is sliced into two parts so that the thickness is close to a predetermined thickness. After the cutting step S17), the wafer is ground to a predetermined thickness in a polishing step S18, and the surface is polished by mirror polishing to finish the diffusion wafer.

上記切断工程S11ではシリコンインゴツト2
0が、そして分割切断工程S17では厚めのウエ
ーハ20aがスライスされるが、これらスライス
には、第2図に示す本発明装置10が用いられ
る。この装置10は、回転軸11上に半球状のハ
ウジング12が固定され、このハウシング12の
周縁部に固着された支持ブレード13に所定内径
の切断刃14が取付けられており、回転軸11の
回転により切断刃14が回転する。
In the cutting step S11, the silicon ingot 2
In the dividing and cutting step S17, a thick wafer 20a is sliced, and the apparatus 10 of the present invention shown in FIG. 2 is used for these slices. In this device 10, a hemispherical housing 12 is fixed on a rotating shaft 11, and a cutting blade 14 with a predetermined inner diameter is attached to a support blade 13 fixed to the peripheral edge of the housing 12. The cutting blade 14 rotates.

また、ハウジング12の中央上方には、第2図
中の矢印A,Bで示すように、上下、水平に移動
できるような公知の割出し機構(位置決め機構)
に連結された支持部材15が配設されている。支
持部材15の下面にはカーボンよりなる柱状の吸
着部材16が固設されている。この吸着部材16
の内部にはシーフレツクスチユーブ17が埋め込
まれており、該シーフレツクスチユーブ17の一
端は吸着部材16の側壁からチユーブ18を通じ
て吸引装置に連結されている。また、吸着部材1
6の下面には、切断刃14の回転平面と平行な基
準面16aが形成されている。
Further, at the upper center of the housing 12, as shown by arrows A and B in FIG. 2, there is a known indexing mechanism (positioning mechanism) that can move vertically and horizontally.
A support member 15 connected to is provided. A columnar adsorption member 16 made of carbon is fixed to the lower surface of the support member 15. This adsorption member 16
A sea flex tube 17 is embedded inside the suction member 16, and one end of the sea flex tube 17 is connected to a suction device through a tube 18 from the side wall of the suction member 16. In addition, the adsorption member 1
A reference surface 16a parallel to the plane of rotation of the cutting blade 14 is formed on the lower surface of the cutting blade 6.

この基準面16aは、第3図aに示すような方
法により設定される。すなわち、シリコンインゴ
ツト20又は厚めのウエーハ20aの切断に先だ
つて、吸着部材16の下端側を切断刃14により
切断する。これにより、切断刃14の回転平面に
対し平行となつた切断面が得られる。この切断面
を、シリコンインゴツト20又は厚めのウエーハ
20aを吸着する基準面16aとして用いる。
This reference plane 16a is set by the method shown in FIG. 3a. That is, prior to cutting the silicon ingot 20 or the thick wafer 20a, the lower end side of the suction member 16 is cut by the cutting blade 14. As a result, a cutting surface parallel to the plane of rotation of the cutting blade 14 is obtained. This cut surface is used as a reference surface 16a for adsorbing the silicon ingot 20 or thick wafer 20a.

そして、切断工程S11および分割切断工程S
17では、吸引装置の吸引により吸着部材16の
基準面16aにシリコンインゴツト20又は厚め
のウエーハ20aを吸着させて支持し、該シリコ
ンインゴツト20又は厚めのウエーハ20aを位
置決め機構で上下に移動させ、以て切断板厚の位
置合せを行う。切断時には、回転軸11を回転し
切断刃14を回転させた状態で、上記位置決め機
構でシリコンインゴツト20又は厚めのウエーハ
20aを水平移動させ、シリコンインゴツト20
又は厚めのウエーハ20aを切断刃14でスライ
スし、所要板厚のウエーハを得る。分割切断時に
は、図中下端側(片面側)の加工代が切落され、
吸着された厚めのウエーハ20aが目標とする厚
さに近い板厚にスライスされ、この分割切断後、
ウエーハは、研磨工程S18において、目標厚さ
まで研磨され、ミラーポリツシユにより仕上げら
れる。
Then, the cutting process S11 and the dividing cutting process S
At step 17, the silicon ingot 20 or the thicker wafer 20a is sucked and supported by the reference surface 16a of the suction member 16 by the suction of the suction device, and the silicon ingot 20 or the thicker wafer 20a is moved up and down by the positioning mechanism. , to align the thickness of the cut plate. During cutting, the silicon ingot 20 or the thick wafer 20a is horizontally moved by the positioning mechanism with the rotating shaft 11 rotated and the cutting blade 14 rotated.
Alternatively, a thick wafer 20a is sliced with the cutting blade 14 to obtain a wafer of a desired thickness. When cutting in parts, the machining allowance on the lower end side (one side) in the figure is cut off.
The thicker wafer 20a that has been sucked is sliced to a thickness close to the target thickness, and after this division cutting,
In a polishing step S18, the wafer is polished to a target thickness and finished by mirror polishing.

ところで、上述の吸着部材16の下面には、切
断刃14の回転平面と平行な基準面16aが形成
されている。この基準面16aは、個々の機械装
置の特性に相応するものであり、したがつて、切
断時において平行度を全く気にしないで(吸着部
材16を上下させるだけで)割出し機構の位置合
せをすることができる。つまり、基準面16aが
切断刃14の回転平面と平行に形成されているた
め、ウエーハの板厚のみを考慮するだけで平行度
を維持しつつシリコンインゴツド20や厚めのウ
エーハ20aを均一にスライスすることができ、そ
の結果、研磨工程での加エ代がウエイの少なくて
済み、研磨時間が短縮されるとともに、切落され
たウエーの再利用を図ることにより原料費の浪費
を低減することができる。
By the way, a reference plane 16a parallel to the rotation plane of the cutting blade 14 is formed on the lower surface of the above-mentioned suction member 16. This reference plane 16a corresponds to the characteristics of each mechanical device, and therefore, the positioning of the indexing mechanism can be performed without worrying about parallelism at all during cutting (by simply moving the suction member 16 up and down). can do. In other words, since the reference plane 16a is formed parallel to the plane of rotation of the cutting blade 14, the silicon ingot 20 or thick wafer 20a can be sliced uniformly while maintaining parallelism by only considering the thickness of the wafer. As a result, the processing cost in the polishing process is reduced, the polishing time is shortened, and the waste of raw materials is reduced by reusing the cut waes. I can do it.

具体的に、シリコンインゴツト20のスライス
と厚めのウエーハ20aのスライスとを分けて説
明すると、シリコンインゴツト20をスライスす
る場合、吸着部材16の基準面16aにシリコン
インゴツト20を吸着させて支持し、該シリコン
インゴツト20を位置決め機構で上下に移動さ
せ、以て切断板厚の位置合せを行い、続いて、回
転軸11を回転し切断刃14を回転させた状態
で、上記位置決め機構でシリコンインゴツト20
又は厚めのウエーハ20aを水平移動させ、シリ
コンインゴツト20を切断刃14でスライスし、
所要板厚の1枚目のウエーハを得、残りのシリコ
ンインゴツド20を上記位置合せ場所に戻し、2
枚目のウエーハを得る。そしてこの操作を繰返す
ことにより、シリコンインゴツド20から多数枚
のウエーハを得る。したがつて、シリコンインゴ
ツド20は順次降下されることになるが、この場
合のシリコンインゴツド20の割り出し量Zは、
Z=X+Yとなる。尚、Xはウエーハ板厚、Yは
刃厚(切代を含む)である。
Specifically, slicing the silicon ingot 20 and slicing the thicker wafer 20a will be explained separately. When slicing the silicon ingot 20, the silicon ingot 20 is adsorbed and supported on the reference surface 16a of the adsorption member 16. Then, the silicon ingot 20 is moved up and down by the positioning mechanism to align the thickness of the cut plate, and then, while the rotating shaft 11 is rotated and the cutting blade 14 is rotated, the silicon ingot 20 is moved up and down by the positioning mechanism. silicon ingot 20
Alternatively, the thick wafer 20a is moved horizontally and the silicon ingot 20 is sliced with the cutting blade 14,
Obtain the first wafer of the required thickness, return the remaining silicon ingots 20 to the above alignment place, and
Obtain the first wafer. By repeating this operation, a large number of wafers are obtained from the silicon ingot 20. Therefore, the silicon ingots 20 will be lowered sequentially, but the indexing amount Z of the silicon ingots 20 in this case is
Z=X+Y. Note that X is the wafer thickness, and Y is the blade thickness (including the cutting margin).

厚めのウエーハ20aを2分割にスライスする
場合も、上記シリコンゴツド20と同様にしてス
ライスされるが、この場合の厚めのウエーハ20
aの戻し量(降下量)Z、Z=(X−Y)/2と
なる。尚、Xはウエーハの板厚、Yは刃厚(切代
を含む)である。
When slicing the thick wafer 20a into two parts, it is sliced in the same manner as the silicone god 20 described above, but in this case, the thick wafer 20a
The return amount (falling amount) of a is Z, Z=(X-Y)/2. Note that X is the thickness of the wafer, and Y is the thickness of the blade (including the cutting margin).

(発明の効果) 以上説明したように、本発明によれば、シリコ
ンインゴツト又は厚めのウエーハが切断刃と平行
な基準面を有する吸着部材に吸着支持されるの
で、平行度調整をすることなくスライス時の板厚
を均一なものとすることが可能となり、位置合せ
作業が容易となり、更には、板厚のばらつきに伴
う研磨時間の短縮化および原料費を低減できる。
なる。
(Effects of the Invention) As explained above, according to the present invention, a silicon ingot or a thick wafer is suction-supported by a suction member having a reference plane parallel to the cutting blade, so there is no need to adjust the parallelism. It becomes possible to make the thickness of the plate uniform during slicing, making the alignment work easier, and furthermore, it is possible to shorten the polishing time and reduce the raw material cost due to variations in the plate thickness.
Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体ウエーハの製造処理を示すフロ
ーチヤート、第2図は本発明装置の一部破断側面
図であつてシリコンインゴツトを処理対象とした
もの、第3図aは基準面の形成を説明する一部破
断側面図、第3図bは本発明装置の一部破断側面
図であつて厚めのウエーハを処理対象としたも
の、第4図は従来の製造工程を示すフローチヤー
ト。 10……本発明装置、14……切断刃、15…
…支持部材、16,16a……吸着部材、16a
……基準面、20……シリコンインゴツト、20
a……厚めのウエーハ。
Fig. 1 is a flowchart showing the manufacturing process of a semiconductor wafer, Fig. 2 is a partially cutaway side view of the apparatus of the present invention, which is used to process a silicon ingot, and Fig. 3a shows the formation of a reference surface. FIG. 3b is a partially cutaway side view of the apparatus of the present invention for processing thick wafers, and FIG. 4 is a flowchart showing a conventional manufacturing process. 10... Device of the present invention, 14... Cutting blade, 15...
...Supporting member, 16, 16a...Adsorption member, 16a
... Reference surface, 20 ... Silicon ingot, 20
a...Thick wafer.

Claims (1)

【特許請求の範囲】 1 単結晶シリコン材料を切断刃によつてスライ
スし、板状の半導体ウエーハを得る半導体ウエー
ハの製造装置であつて、 前記切断刃の上方に、単結晶シリコン材料を吸
引保持する吸着部材を配するとともに、該吸着部
材を支持する支持部材に、縦横に移動調整可能な
位置決め機構を具備させ、更に、前記吸着部材
に、上記切断刃による切断面に平行な基準面を、
該切断刃により前記吸着部材の下端側を切断する
ことにより形成したことを特徴とする半導体ウエ
ーハの製造装置。
[Claims] 1. A semiconductor wafer manufacturing apparatus for slicing a single crystal silicon material with a cutting blade to obtain a plate-shaped semiconductor wafer, the single crystal silicon material being sucked and held above the cutting blade. At the same time, a support member that supports the suction member is provided with a positioning mechanism that can be moved vertically and horizontally, and a reference plane parallel to the cut surface by the cutting blade is provided on the suction member,
A semiconductor wafer manufacturing apparatus characterized in that the semiconductor wafer is formed by cutting the lower end side of the suction member using the cutting blade.
JP17571587A 1987-07-14 1987-07-14 Manufacture of semi-conductor wafer Granted JPS6418606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17571587A JPS6418606A (en) 1987-07-14 1987-07-14 Manufacture of semi-conductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17571587A JPS6418606A (en) 1987-07-14 1987-07-14 Manufacture of semi-conductor wafer

Publications (2)

Publication Number Publication Date
JPS6418606A JPS6418606A (en) 1989-01-23
JPH056488B2 true JPH056488B2 (en) 1993-01-26

Family

ID=16000972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17571587A Granted JPS6418606A (en) 1987-07-14 1987-07-14 Manufacture of semi-conductor wafer

Country Status (1)

Country Link
JP (1) JPS6418606A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2667520B2 (en) * 1989-06-29 1997-10-27 株式会社東京精密 Error correction method for slicing machine
WO2008099502A1 (en) 2007-02-16 2008-08-21 Advantest Corporation Tester

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502281A (en) * 1973-05-16 1975-01-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502281A (en) * 1973-05-16 1975-01-10

Also Published As

Publication number Publication date
JPS6418606A (en) 1989-01-23

Similar Documents

Publication Publication Date Title
US6077149A (en) Method and apparatus for surface-grinding of workpiece
KR920004063B1 (en) Method and apparatus for grinding the surface of a semiconductor
JPH07118473B2 (en) Method for manufacturing semiconductor wafer
KR102507675B1 (en) Wafer processing method
TWI732824B (en) Wafer processing method
US11141830B2 (en) Method for setting processing device
JP5541657B2 (en) Sharpening board
JPH1190803A (en) Mirror polishing device for work edge
JP2000031099A (en) Fabrication of semiconductor wafer
JPS6312741B2 (en)
JPH10180624A (en) Device and method for lapping
JPS6022500B2 (en) Positioning and mounting method
JPH056488B2 (en)
JP2636383B2 (en) Wafer processing method
JP3079203B2 (en) Method for manufacturing semiconductor wafer
JPH11274112A (en) Manufacture of semiconductor wafer
JP7007625B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
JP7041931B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
JPH11162909A (en) Manufacture of semiconductor wafer
JP3804332B2 (en) Workpiece surface polishing apparatus and carrier used therefor
JPH11179638A (en) Manufacture of semiconductor wafer and device therefor
JPS62224537A (en) Composite working machine for manufacture of thin base plate
JPH1131670A (en) Manufacture of semiconductor substrate
KR20230061781A (en) Wafer processing method and wafer processing apparatus used therein
JP2024062447A (en) Semiconductor crystal wafer manufacturing apparatus and manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees