JPH0564752B2 - - Google Patents

Info

Publication number
JPH0564752B2
JPH0564752B2 JP59279691A JP27969184A JPH0564752B2 JP H0564752 B2 JPH0564752 B2 JP H0564752B2 JP 59279691 A JP59279691 A JP 59279691A JP 27969184 A JP27969184 A JP 27969184A JP H0564752 B2 JPH0564752 B2 JP H0564752B2
Authority
JP
Japan
Prior art keywords
collimator
section
scintillation camera
fan beam
diverging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59279691A
Other languages
Japanese (ja)
Other versions
JPS61159179A (en
Inventor
Tokuyuki Shibahara
Kyoshi Kume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59279691A priority Critical patent/JPS61159179A/en
Publication of JPS61159179A publication Critical patent/JPS61159179A/en
Publication of JPH0564752B2 publication Critical patent/JPH0564752B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Nuclear Medicine (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は、シンチレーシヨンカメラをスライ
ス面内において被写体周囲に回転させるシンチレ
ーシヨンカメラ回転型ECT装置の、該シンチレ
ーシヨンカメラ前面に装着されるコリメータに関
する。
[Detailed Description of the Invention] (a) Industrial Application Field This invention is a scintillation camera rotation type ECT device that rotates a scintillation camera around a subject in a slice plane, and the scintillation camera is attached to the front surface of the scintillation camera. Regarding collimators.

(ロ) 従来技術 シンチレーシヨンカメラ回転型ECT装置では、
通常、第4図に示すように、多孔平行コリメータ
6をシンチレーシヨンカメラ7の前面に装着し
て、シンチレーシヨンカメラ7を被写体である患
者1の体軸を回転中心軸として回転させ、体軸に
ほぼ直角なスライス面での断層像を得る。換言す
ると、あるスライス面で断層像を得たい場合に
は、そのスライス面内においてシンチレーシヨン
カメラ7を被写体の周囲に回転させる必要があ
る。
(b) Conventional technology In the scintillation camera rotating type ECT device,
Normally, as shown in FIG. 4, a multi-hole parallel collimator 6 is attached to the front of a scintillation camera 7, and the scintillation camera 7 is rotated around the body axis of the subject, the patient 1, as the center of rotation. Obtain a tomographic image on a nearly perpendicular slice plane. In other words, when it is desired to obtain a tomographic image in a certain slice plane, it is necessary to rotate the scintillation camera 7 around the subject within that slice plane.

ところで、関心領域が患者1のボデイのなかの
心臓2のような小さい領域である場合、上記のよ
うな、患者1のボデイの全体を視野とするような
多孔平行コリメータ6を用いたのでは、ボデイの
全体で一様にデータ収集されるので、心臓2の部
分のみの感度の高い、且つ分解能の優れた画像を
効率良く得ることはできない。
By the way, when the region of interest is a small region such as the heart 2 in the body of the patient 1, using the multi-hole parallel collimator 6 that covers the entire body of the patient 1 as described above, Since data is collected uniformly over the entire body, it is not possible to efficiently obtain an image of only the heart 2 with high sensitivity and excellent resolution.

一方、頭部などの小さな被写体を分解能および
感度とも高く撮影するために用いられている、第
5図にしめすようなフアンビームコリメータ8を
用いたのでは、心臓2の部分はたしかに分解能お
よび感度とも高いデータ収集を行なうことができ
るが、その他のボデイの部分が視野の外になつて
データ収集ができないことになり、原理的に画像
再構成できない。
On the other hand, if a fan beam collimator 8 as shown in Fig. 5 is used, which is used to photograph small objects such as the head with high resolution and sensitivity, the heart 2 would certainly have low resolution and sensitivity. Although it is possible to collect a high amount of data, other parts of the body are outside the field of view, making it impossible to collect data, and in principle, image reconstruction is not possible.

(ハ) 目的 この発明は、被写体中の小さな領域のみの高分
解能で且つ高感度な画像を効率良く得ることので
きるECTコリメータを提供することを目的とす
る。
(c) Purpose It is an object of the present invention to provide an ECT collimator that can efficiently obtain a high-resolution and highly sensitive image of only a small area in a subject.

(ニ) 構成 この発明によるECTコリメータでは、スライ
ス面に平行な方向に関して中央部と周辺部とで性
質の異なるコリメータ部を形成し、その中央部の
コリメータ部は所定の1点に集束するフアンビー
ムコリメータ部とするとともに、その周辺部のコ
リメータ部はダイバージングコリメータ部とした
ことを特徴とする。
(D) Structure In the ECT collimator according to the present invention, a collimator section having different properties in the central part and the peripheral part in the direction parallel to the slice plane is formed, and the collimator part in the central part is a fan beam that is focused at one predetermined point. It is characterized in that it is a collimator section, and the collimator section around the collimator section is a diverging collimator section.

(ホ) 実施例 第1図、第2図に示すように、この発明の一実
施例にかかるコリメータは、スライス面に平行な
方向(第1図の紙面に平行な方向、第2図AのB
−B線に平行な方向)では、中央部にフアンビー
ムコリメータ部4、周辺部にダイバージングコリ
メータ部5を有している。フアンビームコリメー
タ部4は適宜な距離の焦点Fと適宜な大きさの視
野とを有している集束型のコリメータである。ま
た、ダイバージングコリメータ部4は焦点が後側
(シンチレーシヨンカメラ7側)にある発散型の
コリメータである。
(e) Embodiment As shown in FIGS. 1 and 2, a collimator according to an embodiment of the present invention can be used in a direction parallel to the slice plane (a direction parallel to the plane of the paper in FIG. 1, a direction parallel to the plane of the paper in FIG. 2A). B
- In the direction parallel to line B), a fan beam collimator section 4 is provided at the center, and a diverging collimator section 5 is provided at the peripheral section. The fan beam collimator section 4 is a focusing type collimator having a focal point F of an appropriate distance and a field of view of an appropriate size. Further, the diverging collimator section 4 is a diverging collimator whose focal point is on the rear side (on the scintillation camera 7 side).

他方、このコリメータ3は、スライス面の厚さ
方向(第1図の紙面に直角な方向)、第2図Aの
C−C線に平行な方向)では第2図Cに示すよう
に平行コリメータとなつている。
On the other hand, this collimator 3 is a parallel collimator as shown in FIG. 2C in the thickness direction of the sliced surface (direction perpendicular to the plane of the paper in FIG. It is becoming.

このコリメータ3は、放射線遮蔽性の隔壁板を
縦横(第2図AのB−B線方向およびC−C線方
向)に格子状に並べてなる。そして一方向の隔壁
板を第1図、第2図Bに示すように傾けることに
よつてフアンビームコリメータ部4とダイバージ
ングコリメータ部5とを形成する。
The collimator 3 is formed by arranging radiation-shielding partition plates in a lattice pattern vertically and horizontally (in the direction of the line B-B and the direction of the line C-C in FIG. 2A). Then, the fan beam collimator section 4 and the diverging collimator section 5 are formed by tilting the partition plates in one direction as shown in FIGS. 1 and 2B.

このコリメータ3を、第1図に示すようにシン
チレーシヨンカメラ7の前面に装着する。する
と、患者1の心臓2はフアンビームコリメータ部
4の視野内に入り、他のボデイ部分はダイバージ
ングコリメータ部5の視野内に入る。患者1のボ
デイ内には放射性同位元素が投与されており、こ
の放射性同位元素から発せられるγ線がコリメー
タ3を通ることによりコリメーシヨンされた上で
シンチレーシヨンカメラ7に入射し、各位置での
γ線入射計数データが得られる。そして、シンチ
レーシヨンカメラ7を、第1図の矢印で示すよう
に患者1の体軸に直角な平面内でこの体軸を回転
中心軸として回転させると、心臓2の領域はフア
ンビームコリメータ部4の視野に入つているので
心臓2では高分解能且つ高感度のデータを収集で
き、他のボデイ領域はダイバージングコリメータ
部5の視野に入つているので他のボデイ領域では
低分解能で低感度ではあるが、患者1のボデイ全
体の断層像を再構成するのに必要なデータを収集
できる。そのため、こうして収集したデータを用
いてコンピユータにより画像再構成アルゴリズム
で処理することによつてボデイ全体の断層像が得
られ、しかもこの心臓2の領域だけは高分解能で
且つ高感度の画像となる。
This collimator 3 is attached to the front of the scintillation camera 7 as shown in FIG. Then, the heart 2 of the patient 1 comes within the field of view of the Fan beam collimator section 4, and the other body parts come within the field of view of the diverging collimator section 5. A radioactive isotope is administered into the body of the patient 1, and the gamma rays emitted from this radioactive isotope are collimated by passing through the collimator 3, and then enter the scintillation camera 7, where the gamma rays at each position are collimated. Line incidence count data is obtained. Then, when the scintillation camera 7 is rotated within a plane perpendicular to the body axis of the patient 1 as shown by the arrow in FIG. Because it is within the field of view of the heart 2, data with high resolution and high sensitivity can be collected, and because other body regions are within the field of view of the diverging collimator section 5, the other body regions have low resolution and low sensitivity. However, the data necessary to reconstruct a tomographic image of the entire body of the patient 1 can be collected. Therefore, a tomographic image of the entire body can be obtained by processing the data collected in this manner with an image reconstruction algorithm by a computer, and only the region of the heart 2 becomes a high-resolution and highly sensitive image.

なお、スライス面に平行な方向でのみ上記のよ
うにフアンビームコリメータ部4とダイバージン
グコリメータ部5とが形成されればよいので、上
記のコリメータ3のように放射線遮蔽性隔壁板を
格子状に組み合わせる構成だけでなく、第3図の
ように放射線遮蔽性隔壁板を単に一方向に並べた
だけのスラツトコリメータ31,32をその方向
が互いに直角になるよう重ね合せ、一方のスラツ
トコリメータ31でフアンビームコリメータ部4
とダイバージングコリメータ部5とを設けるよう
な構成、あるいはその他の構成を採用することも
できる。
Note that since it is only necessary to form the fan beam collimator section 4 and the diverging collimator section 5 as described above in the direction parallel to the slice plane, the radiation-shielding partition plates can be arranged in a lattice shape like the collimator 3 described above. In addition to the combined configuration, as shown in FIG. 3, slat collimators 31 and 32 in which radiation-shielding partition plates are simply arranged in one direction are stacked one on top of the other so that their directions are perpendicular to each other, and one slat collimator 31 Fan beam collimator section 4
It is also possible to adopt a configuration in which a diverging collimator section 5 and a diverging collimator section 5 are provided, or other configurations.

また、フアンビームコリメータ部4の焦点距離
や視野の大きさは関心領域の大きさ、形状等によ
つて変えることにより、心臓以外に、肝臓や腎臓
などの臓器を関心領域とする場合にも適用できる
ことは勿論である。
In addition, by changing the focal length and field of view of the Juan beam collimator unit 4 depending on the size and shape of the region of interest, it can also be applied to cases where the region of interest is not only the heart but also organs such as the liver and kidneys. Of course it can be done.

(ヘ) 効果 この発明のECTコリメータを用いれば、心臓
や肝臓あるいは腎臓などの臓器を関心領域とする
ような場合、その小さな関心領域のみ高い分解能
で且つ高い感度でデータを収集でき、しかも他の
領域でもデータ収集できるので、被写体の全体の
断層像を得るとともに、その断層像のなかの関心
領域では分解能および感度とも高くすることがで
きる。したがつて、必要な部分でのみ分解能、感
度とも高いデータ収集を行なうので、効率が良
い。
(F) Effects By using the ECT collimator of the present invention, when the region of interest is an organ such as the heart, liver, or kidney, data can be collected with high resolution and high sensitivity only in the small region of interest, and it is possible to collect data from other organs such as the heart, liver, or kidney. Since data can be collected even in a region, it is possible to obtain a tomographic image of the entire subject and to increase both resolution and sensitivity in the region of interest within the tomographic image. Therefore, data collection with high resolution and sensitivity is performed only in the necessary portions, resulting in high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を模式的に示す断
面図、第2図A,B,Cは同実施例を模式的に示
すもので、第2図Aは平面図、第2図BはB−B
線断面図、第2図CはC−C線断面図、第3図は
他の実施例の模式的な断面図、第4図および第5
図はそれぞれ従来例の模式的な断面図である。 1……患者、2……心臓、3……この発明のコ
リメータ、4……フアンビームコリメータ部、5
……ダイバージングコリメータ部、6……多孔平
行コリメータ、8……フアンビームコリメータ、
31,32……スラツトコリメータ。
Fig. 1 is a cross-sectional view schematically showing an embodiment of the present invention, Fig. 2 A, B, and C schematically show the same embodiment, Fig. 2 A is a plan view, Fig. 2 B is B-B
2C is a line sectional view, FIG. 3 is a schematic sectional view of another embodiment, and FIGS. 4 and 5 are
Each figure is a schematic cross-sectional view of a conventional example. DESCRIPTION OF SYMBOLS 1... Patient, 2... Heart, 3... Collimator of this invention, 4... Fan beam collimator section, 5
... Diverging collimator section, 6 ... Multi-hole parallel collimator, 8 ... Fan beam collimator,
31, 32... Slut collimator.

Claims (1)

【特許請求の範囲】[Claims] 1 シンチレーシヨンカメラをスライス面内にお
いて被写体周囲に回転させるシンチレーシヨンカ
メラ回転型ECT装置の、該シンチレーシヨンカ
メラ前面に装着されるコリメータにおいて、スラ
イス面に平行な方向に関して、その中央部に所定
の1点に集束するフアンビームコリメータ部を設
けるとともに、その周辺部にダイバージングコリ
メータ部を設けたことを特徴とするECTコリメ
ータ。
1. In a scintillation camera rotation type ECT device that rotates a scintillation camera around a subject in a slice plane, a collimator attached to the front surface of the scintillation camera has a predetermined 1. An ECT collimator characterized by having a fan beam collimator section that focuses on a point, and a diverging collimator section around the fan beam collimator section.
JP59279691A 1984-12-31 1984-12-31 Ect collimator Granted JPS61159179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59279691A JPS61159179A (en) 1984-12-31 1984-12-31 Ect collimator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59279691A JPS61159179A (en) 1984-12-31 1984-12-31 Ect collimator

Publications (2)

Publication Number Publication Date
JPS61159179A JPS61159179A (en) 1986-07-18
JPH0564752B2 true JPH0564752B2 (en) 1993-09-16

Family

ID=17614525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59279691A Granted JPS61159179A (en) 1984-12-31 1984-12-31 Ect collimator

Country Status (1)

Country Link
JP (1) JPS61159179A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240891A (en) * 1986-04-14 1987-10-21 Kagaku Gijutsucho Hoshasen Igaku Sogo Kenkyusho Single photon ect
US4831261A (en) * 1986-06-20 1989-05-16 Digital Scintigraphics, Inc. Compound collimator and tomography camera using same
US5717213A (en) * 1995-06-23 1998-02-10 Siemens Medical Systems, Inc. Collimator and scintillation camera system for use in carrying out attenuation-corrected spect studies of small body organs such as the heart and brain
US6696686B1 (en) 1999-06-06 2004-02-24 Elgems Ltd. SPECT for breast cancer detection
US8362438B2 (en) * 2009-08-27 2013-01-29 Digirad Corporation Use of hybrid collimation for interleaved emission and transmission scans for SPECT

Also Published As

Publication number Publication date
JPS61159179A (en) 1986-07-18

Similar Documents

Publication Publication Date Title
US6987836B2 (en) Anti-scatter grids and collimator designs, and their motion, fabrication and assembly
US7521681B2 (en) Non-rotating transaxial radionuclide imaging
US6271524B1 (en) Gamma ray collimator
US20060145081A1 (en) Collimator with variable focusing and direction of view for nuclear medicine imaging
US6363136B1 (en) Grid for the absorption of X-rays
DK151988B (en) MAN-HOLE COLLIMATOR OR RADIATING BLADES FOR EXAMPLE SCINTILLATION CAMERAS
JPS6315558B2 (en)
US20080088059A1 (en) Anti-scatter grid and collimator designs, and their motion, fabrication and assembly
US4250392A (en) Bi-focal collimator
US4203034A (en) Diffraction camera for imaging penetrating radiation
US4659935A (en) Bilateral collimator for rotational camera transaxial SPECT imaging of small body organs
JPH0564752B2 (en)
US4859852A (en) Collimator system with improved imaging sensitivity
JPH0143278B2 (en)
JPS63314489A (en) Compound collimator, tomograph using the same and constructing of compound collimator
JPH0145594B2 (en)
JPS63172983A (en) Scintillation camera system and collimator
JPS6146144B2 (en)
JP2002357661A (en) Line projection lead-through type compton camera
JPH0449600Y2 (en)
JPH044232Y2 (en)
JPH0146146B2 (en)
KR102565843B1 (en) Collimator for detector and its application
van Holen Collimators for Gamma Ray Imaging
van Holen 14 Collimators for Gamma Ray Imaging