JPH0564515B2 - - Google Patents

Info

Publication number
JPH0564515B2
JPH0564515B2 JP11560085A JP11560085A JPH0564515B2 JP H0564515 B2 JPH0564515 B2 JP H0564515B2 JP 11560085 A JP11560085 A JP 11560085A JP 11560085 A JP11560085 A JP 11560085A JP H0564515 B2 JPH0564515 B2 JP H0564515B2
Authority
JP
Japan
Prior art keywords
signal
pal
switch
phase
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11560085A
Other languages
Japanese (ja)
Other versions
JPS61274488A (en
Inventor
Akihiko Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP11560085A priority Critical patent/JPS61274488A/en
Publication of JPS61274488A publication Critical patent/JPS61274488A/en
Publication of JPH0564515B2 publication Critical patent/JPH0564515B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] この発明はPAL方式及びNTSC方式によるカ
ラーテレビジヨン信号の復調回路において、映像
信号の位相を変化させる色相可変回路に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a hue variable circuit for changing the phase of a video signal in a demodulation circuit for color television signals according to the PAL system and the NTSC system.

[発明の技術的背景] 現在、世界の国々では種々のカラーテレビジヨ
ン方式が採用されており、それらは主として
NTSC方式、PAL方式、SECAM方式に大別され
ており、これらは互いに互換性がないことはよく
知られている。また一方、各国に於て高画質化の
要請も強く、NTSC方式で採用されている色相の
調整をPAL方式の受像機に於ても可能とする必
要が生じている。特にNTSC方式及びPAL方式
の両方式を受像できる両用受像機に於ては、両方
式ともに色相調整できることが好ましい。
[Technical Background of the Invention] Currently, various color television systems are being adopted in countries around the world, and these are mainly
It is broadly divided into NTSC, PAL, and SECAM systems, and it is well known that these systems are not compatible with each other. On the other hand, there is a strong demand for higher image quality in each country, and there is a need to make the hue adjustment adopted in the NTSC system possible for PAL system receivers as well. Particularly in a dual-purpose receiver capable of receiving images of both the NTSC and PAL systems, it is preferable to be able to adjust the hue of both systems.

そこでまず従来例として第2図に示すNTSC方
式のみ色相可変可能とし、PAL方式では色相可
変調節機能なしとした方式のブロツク図について
説明する。
First, as a conventional example, a block diagram of a system shown in FIG. 2 in which only the NTSC system is capable of changing the hue, and the PAL system does not have a hue variable adjustment function will be described.

第2図に示すブロツク図に於て、スイツチ1
3,14のそれぞれの端子a側に接続されている
場合は入力の映像信号がPAL方式の場合を示し、
端子b側に接続されている場合はNTSC方式の映
像信号が加えられている事を示す。
In the block diagram shown in Figure 2, switch 1
If it is connected to the terminal a side of each of 3 and 14, it means that the input video signal is PAL system,
If it is connected to the terminal b side, it indicates that an NTSC video signal is being added.

まずPAL方式の映像信号の再生手段(特にこ
の場合はPAL−D方式の復調手段を示している)
について説明する。スイツチ13,14はそれぞ
れ端子a側に設定される。PAL方式の映像信号
が入力端子に加えられればY/C分離回路6にて
輝度信号と搬送色信号とに分離される。該搬送色
信号は和演算回路2,3と1水平走査期間遅延す
る1H遅延線1及びバースト信号のみを検出する
バーストゲート回路7に供給される。前記1H遅
延線1を経由した搬送色信号はスイツチ14を経
て、前記和演算回路3に1H遅延していない搬送
色信号とともに加えられ、(B−Y)搬送色差信
号を得る。また、前記1H遅延線1を経由しスイ
ツチ14を経た搬送色信号は位相反転回路16に
て位相を反転されて和演算回路2に1H遅延して
いない搬送色信号とともに加えられ、(R−Y)
搬送色差信号を得る。十分、搬送色信号のバース
ト信号成分を抜き出す前記バーストゲート回路7
のバースト信号出力は次段のAPC回路にて制御
される副搬送波発振回路8及び1水平走査ごとに
180°位相の異なるバースト信号を判別するライン
識別回路11に供給される。
First, means for reproducing PAL video signals (particularly in this case, it shows demodulating means for PAL-D)
I will explain about it. Switches 13 and 14 are each set to the terminal a side. When a PAL video signal is applied to the input terminal, the Y/C separation circuit 6 separates it into a luminance signal and a carrier color signal. The carrier color signal is supplied to summation circuits 2 and 3, a 1H delay line 1 that delays by one horizontal scanning period, and a burst gate circuit 7 that detects only burst signals. The carrier color signal that has passed through the 1H delay line 1 is applied to the sum calculation circuit 3 together with the carrier color signal that has not been delayed by 1H via the switch 14 to obtain a (B-Y) carrier color difference signal. Further, the phase of the carrier color signal that has passed through the 1H delay line 1 and the switch 14 is inverted by the phase inversion circuit 16, and is applied to the summation circuit 2 together with the carrier color signal that has not been delayed by 1H. )
Obtain a carrier color difference signal. The burst gate circuit 7 extracts the burst signal component of the carrier color signal.
The burst signal output is performed by the subcarrier oscillation circuit 8 controlled by the next stage APC circuit and every horizontal scan.
The signal is supplied to a line identification circuit 11 that discriminates between burst signals having a phase difference of 180 degrees.

前記副搬送波発振回路8の副搬送波信号出力は
スイツチ13を経て90°の位相差を発生させる90°
移相器10を経、B−Y色復調器5に前記(B−
Y)搬送色差信号とともに加えられB−Y色差信
号を得る。また、前記副搬送波信号出力はスイツ
チ12の端子b側に直接接続され、端子a側には
副搬送波信号出力を180°の位相差とある180°移相
器9の出力を接続する。スイツチ12の切換えは
ライン識別回路11の出力によつて1Hごとに切
換えられる。スイツチ12を経た副搬送波信号は
R−Y色復調器4に前記(R−Y)搬送色差信号
とともに加えられR−Y色差信号を得る。
The subcarrier signal output of the subcarrier oscillation circuit 8 passes through a switch 13 and generates a 90° phase difference.
The above (B-
Y) added together with the carrier color difference signal to obtain a BY color difference signal. Further, the subcarrier signal output is directly connected to the terminal b side of the switch 12, and the output of a 180° phase shifter 9, which has a phase difference of 180°, is connected to the terminal a side of the subcarrier signal output. The switch 12 is switched every 1H based on the output of the line identification circuit 11. The subcarrier signal passed through the switch 12 is applied to the R-Y color demodulator 4 together with the (R-Y) carrier color difference signal to obtain the R-Y color difference signal.

次にNTSC方式の映像信号の再生手段について
説明する。スイツチ13,14はそれぞれ端子b
側に設定される。NTSC方式の映像信号が入力端
子に加えられればY/C分離回路6にて搬送色信
号が選別され和演算回路2,3を通過しそれぞれ
色復調回路4,5に加えられてR−Y色差信号、
B−Y色差信号を得る。前記Y/C分離回路6の
出力搬送色信号のバースト信号はバーストゲート
回路7にて抜き出され、前述の副搬送波発振回路
8を制御する。該副搬送波発振回路8の出力は色
相を調節する機能手段としてのΦの位相差を発生
する移相器15を経て90°移相器10を通りB−
Y色復調器5に加えられる。また該移相器15を
経に副搬送波発振信号は、前述スイツチ12が端
子b側に設定されている(NTSC方式の場合ライ
ン識別回路11は機能しない)のでスイツチ12
を通過し前記R−Y復調器4に加えられ、R−Y
色差信号を得ることとなる。
Next, a means for reproducing an NTSC video signal will be explained. Switches 13 and 14 are each connected to terminal b.
set on the side. When an NTSC video signal is applied to the input terminal, the carrier color signal is sorted by the Y/C separation circuit 6, passes through the summation circuits 2 and 3, and is applied to the color demodulation circuits 4 and 5, respectively, to generate the R-Y color difference. signal,
Obtain a B-Y color difference signal. The burst signal of the carrier color signal output from the Y/C separation circuit 6 is extracted by a burst gate circuit 7 and controls the subcarrier oscillation circuit 8 described above. The output of the subcarrier oscillation circuit 8 passes through a phase shifter 15 that generates a phase difference of Φ as a function means for adjusting the hue, and then passes through a 90° phase shifter 10.
It is added to the Y color demodulator 5. Further, the subcarrier oscillation signal passes through the phase shifter 15, and the switch 12 is set to the terminal b side (in the case of the NTSC system, the line identification circuit 11 does not function).
is applied to the R-Y demodulator 4, and the R-Y
A color difference signal will be obtained.

よつて上述の如く、第2図に示す構成によつて
PAL方式及びNTSC方式の両方式ともに色復調
できる。
Therefore, as mentioned above, by the configuration shown in FIG.
Color demodulation is possible for both PAL and NTSC systems.

[背景技術の問題点] 前述の如く両方式ともに再生される色復調手段
は構成されているので、PAL方式の場合には高
画質化及び好みの色相に調節することができない
し、NTSC方式の場合には副搬送波発振回路8の
出力に移相器15が必要でありその為に該副搬送
波信号は温度、湿度の影響を受け易く不安定の要
因ともなりスイツチ13をも含めた回路構成によ
りPAL方式及びNTSC方式ともに正規の復調位
相からずれやすいという欠点を有していた。
[Problems in the background art] As mentioned above, since the color demodulation means is configured to reproduce both systems, it is not possible to achieve high image quality or adjust the hue to your preference in the case of the PAL system, and In this case, a phase shifter 15 is required at the output of the subcarrier oscillation circuit 8, and therefore, the subcarrier signal is easily affected by temperature and humidity, which can cause instability. Both the PAL system and the NTSC system have the disadvantage that they tend to deviate from the normal demodulation phase.

[発明の目的] 本発明は、上記のような従来のものの問題点及
び欠点を除去するために成されたもので、従来の
PAL方式色再生手段の前段に同一絶対値の±移
相器を設けライン識別手段による切換操作によつ
てNTSC方式では勿論PAL方式に於ても色相を
可変とし、副搬送波発振回路後段に可変移相器を
設けないので、安定な副搬送波信号を得る事とな
り一度設定した色相を安定に保持できる色相可変
手段を提供することを目的としている。
[Object of the invention] The present invention has been made to eliminate the problems and drawbacks of the conventional ones as described above, and is
A ±phase shifter with the same absolute value is provided in the front stage of the PAL color reproduction means, and the hue can be made variable not only in the NTSC system but also in the PAL system by a switching operation by the line identification means, and the hue can be variably shifted in the rear stage of the subcarrier oscillation circuit. Since no phase shifter is provided, a stable subcarrier signal can be obtained, and the object of the present invention is to provide a hue variable means that can stably maintain a once set hue.

[発明の概要] NTSC方式及びPAL方式カラーテレビジヨン
信号の色復調手段に於て、可変できる絶対値同一
の±移相器に搬送色信号を通し、この後段にて各
方式の色復調手段を設け、NTSC方式及びPAL
方式の両方式ともに安定な再生動作と色相可変機
能を達成した。
[Summary of the Invention] In the color demodulation means for NTSC and PAL color television signals, the carrier color signal is passed through a variable ±phase shifter with the same absolute value, and the color demodulation means for each system is processed at the subsequent stage. NTSC and PAL
Both methods achieved stable playback operation and hue variable function.

[発明の実施例] 以下、本発明の実施例を図に基づいて詳細に説
明する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は本発明の一実施例を示すブロツク図で
あり、図中第2図と同等部分は同一符号により示
している。搬送映像信号が入力端子に入力される
とY/C分離回路6にて搬送色信号が抽出され、
可変できてしかも互いに逆相の位相差±Φを発生
する移相器17,18及びバーストゲート回路7
に入力される。
FIG. 1 is a block diagram showing one embodiment of the present invention, in which parts equivalent to those in FIG. 2 are designated by the same reference numerals. When the carrier video signal is input to the input terminal, the carrier color signal is extracted by the Y/C separation circuit 6,
Phase shifters 17 and 18 and a burst gate circuit 7 that generate a phase difference ±Φ that is variable and opposite in phase to each other.
is input.

まず、PAL方式の場合スイツチ14は端子a
側に設定される。またスイツチ12,19はライ
ン識別回路11によつて1水平走査ごとに切換え
られ、本図の例では連動して動作する。第3図に
第n本目のまた第n+1本目の水平走査線におけ
る基本バースト信号に対するベクトル図を示す。
まず、B−Y成分軸に対しθの位相角を有する搬
送色信号が入力された場合を想定すると、n本目
の水平走査線上の搬送色信号はa図に示すように
なり、+Φの移相器17を経た出力はc図に示す
ようにθ+Φの位相角を有する搬送色信号とな
り、−Φの移相器18の出力はe図に示すように
θ−Φの位相角を有する搬送色信号となる。次に
n+1本目の水平走査線上の搬送色信号はb図に
示すようになり、+Φ移相器17の出力はd図に
示すように−θ+Φの位相角を有し、−Φ移相器
18の出力はf図に示すように−θ−Φの位相角
を有することになる。ここでスイツチ19により
n本目の水平走査線が入力された場合c図に示す
位相角を有する搬送色信号を選択する端子a側に
接続され、n+1本目の水平走査線が入力された
場合f図に示す位相角を有する搬送色信号を選択
する端子b側に接続される。すなわちスイツチ1
9の出力はn本目の水平走査期間では+Φ移相器
17の出力を、n+1本目の水平走査期間では−
Φ移相器18の出力を選択し、第3図のc図、f
図のベクトルを有する搬送色信号を出力する。よ
つてスイツチ19の出力の搬送色信号の位相角は
n本目の水平走査期間ではθ+Φとなり、n+1
本目の水平走査期間では−(θ+Φ)となる。こ
のことはPAL方式の搬送色信号の位相がθの入
力搬送色信号のベクトルに対しベクトルΦだけ回
転した搬送色信号となつたことを示す。
First, in the case of PAL system, switch 14 is connected to terminal a.
set on the side. The switches 12 and 19 are switched by the line identification circuit 11 for each horizontal scan, and in the example shown in the figure, they operate in conjunction. FIG. 3 shows a vector diagram for the basic burst signal in the n-th and (n+1)-th horizontal scanning lines.
First, assuming that a carrier color signal having a phase angle of θ with respect to the B-Y component axis is input, the carrier color signal on the n-th horizontal scanning line will be as shown in figure a, with a phase shift of +Φ. The output from the phase shifter 17 becomes a carrier color signal having a phase angle of θ+Φ as shown in figure c, and the output of the -Φ phase shifter 18 becomes a carrier color signal having a phase angle of θ−Φ as shown in figure e. becomes. Next, the conveyed color signal on the n+1 horizontal scanning line becomes as shown in figure b, the output of +Φ phase shifter 17 has a phase angle of -θ+Φ as shown in figure d, and -Φ phase shifter 18 The output has a phase angle of -θ-Φ as shown in the f diagram. Here, when the n-th horizontal scanning line is input by the switch 19, it is connected to the terminal a side which selects the carrier color signal having the phase angle shown in figure c, and when the n+1-th horizontal scanning line is input, figure f It is connected to the terminal b side which selects the carrier color signal having the phase angle shown in FIG. In other words, switch 1
The output of 9 is the output of +Φ phase shifter 17 in the n-th horizontal scanning period, and - in the n+1-th horizontal scanning period.
Select the output of the Φ phase shifter 18 and select the output of the Φ phase shifter 18,
Output a carrier color signal having the vector shown in the figure. Therefore, the phase angle of the carrier color signal output from the switch 19 becomes θ+Φ in the n-th horizontal scanning period, and becomes n+1.
In the main horizontal scanning period, it becomes -(θ+Φ). This indicates that the phase of the carrier color signal of the PAL system has become a carrier color signal rotated by the vector Φ with respect to the vector of the input carrier color signal of θ.

このスイツチ19の出力は前述の従来例で示す
PAL方式の復調手段により再生され、B−Y色
差信号、R−Y色差信号の出力には入力搬送色信
号に対し+Φの位相だけ回転した色差信号を得ら
れることになる。尚、バーストゲート回路7、副
搬送波発振器8、ライ識別回路11、更にPAL
マトリクス等の構成は前述の従来例で示すPAL
方式の復調手段で説明した内容と同一である。以
上第1図に基づいて一実施例について説明した
が、±Φ移相器17,18の移相量は固定するだ
けでなく周知の可変手段を用いることにより、使
用者が自由に移相量を設定できることとし、即ち
色相を変えることができる機能を持つ。
The output of this switch 19 is shown in the conventional example mentioned above.
This is reproduced by the PAL demodulation means, and the B-Y color difference signal and the R-Y color difference signal are output as color difference signals rotated by a phase of +Φ with respect to the input carrier color signal. In addition, the burst gate circuit 7, the subcarrier oscillator 8, the lie identification circuit 11, and the PAL
The structure of the matrix etc. is PAL as shown in the conventional example above.
The contents are the same as those explained in the demodulation means of the system. Although one embodiment has been described above based on FIG. In other words, it has the function of changing the hue.

また、第1図でスイツチ19は±Φ移相器1
7,18の後段に設けているが、±Φ移相器17,
18の前段に設けてもよく、また前段、後段両方
に設けてもよい。
In addition, in FIG. 1, the switch 19 is the ±Φ phase shifter 1.
7, 18, the ±Φ phase shifter 17,
It may be provided in the front stage of 18, or it may be provided in both the front stage and the rear stage.

更に第1図ではスイツチ19がPAL−SWのス
イツチ12と連動で動作する場合について説明し
たが、逆相で動作させてもスイツチ19の出力に
は同様の逆転した回転位相角を有する搬送色信号
を得られる。またスイツチ19の出力の搬送色信
号の復調手段にPAL−D方式について説明した
が、別の方式を用いてもよい。
Further, in FIG. 1, the case where the switch 19 operates in conjunction with the PAL-SW switch 12 has been explained, but even if the switch 19 operates in the opposite phase, the output of the switch 19 will still contain a carrier color signal having a similar reversed rotational phase angle. You can get . Further, although the PAL-D method has been described as a means for demodulating the carrier color signal output from the switch 19, another method may be used.

次にNTSC方式における再生手段について説明
する。本方式の場合スイツチ12は端子b側に、
スイツチ19は端子a側に、スイツチ14は端子
b側に接続、設定される。またライン識別回路1
1の機能ははずされる。この設定は自動でも、手
動でも構わない。そこでY/C分離回路6から出
力される搬送色信号は+Φ移相器17によつて伝
送されて来た搬送色信号に対し+Φだけ位相が進
められた搬送色信号となる。すなわちバースト系
とその進められてた+Φの位相差分だけ色相が変
化することとなる。この+Φ位相器17の出力は
スイツチ19をスルーし、前述の従来例で示した
NTSC方式の色再生手段によつてB−Y色差信
号、R−Y色差信号として出力される。尚前述の
従来例で示した移相器15及びスイツチ13が不
要となるので副搬送波発振回路8は従来例より安
定な動作が可能であり、温度、湿度等外的条件に
よつて色相がふらつく事も少なくなる。また本方
式で−Φの色相を得たい場合はスイツチ19の端
子をb側に設定し、−Φ移相器18を活用するか
または+Φ移相器17の移相量を可変することに
より±Φだけ移相できる機能を持たせてスイツチ
19の端子a側に設定しておくことで希望する色
相を得ることができる。
Next, the reproduction means in the NTSC system will be explained. In this method, the switch 12 is placed on the terminal b side,
The switch 19 is connected and set to the terminal a side, and the switch 14 is connected to the terminal b side. Also, line identification circuit 1
Function 1 is removed. This setting can be done automatically or manually. Therefore, the carrier color signal output from the Y/C separation circuit 6 becomes a carrier color signal whose phase is advanced by +Φ with respect to the carrier color signal transmitted by the +Φ phase shifter 17. In other words, the hue changes by the phase difference between the burst system and its advanced +Φ. The output of this +Φ phase shifter 17 is passed through the switch 19, as shown in the conventional example above.
The NTSC color reproduction means outputs the B-Y color difference signal and the R-Y color difference signal. Furthermore, since the phase shifter 15 and switch 13 shown in the above-mentioned conventional example are not required, the subcarrier oscillation circuit 8 can operate more stably than the conventional example, and the hue may fluctuate depending on external conditions such as temperature and humidity. There will be fewer things. If you want to obtain a -Φ hue using this method, set the terminal of the switch 19 to the b side and use the -Φ phase shifter 18 or vary the phase shift amount of the +Φ phase shifter 17. A desired hue can be obtained by providing the function of shifting the phase by Φ and setting it on the terminal a side of the switch 19.

[発明の効果] 以上のように、この発明によればPAL方式の
色復調手段の場合は、PAL方式の伝送系の位相
ひずみの相殺という他方式にない優位性を損なう
ことなく、各々逆相となる移相器の移相量を変化
させることにより、色相を変化させ、使用者の好
みの色相を調整できることが可能となる。またこ
のことは、本色復調手段の後段で発生しやすい
R、G、B各色の出力に至る処理手段でのバラツ
キを補正することや放送局や番組制作等の送り手
側の色バラツキを補正することができることにな
る。
[Effects of the Invention] As described above, according to the present invention, in the case of the PAL color demodulation means, each of the reverse phase By changing the amount of phase shift of the phase shifter, it is possible to change the hue and adjust the hue to the user's preference. This also means correcting variations in the processing means leading to the output of each color of R, G, and B, which tend to occur after the main color demodulation means, and correcting color variations on the sender side, such as broadcasting stations and program production. You will be able to do that.

また本発明では副搬送波発振回路の次段に従来
例の如き移相器及びPAL方式/NPTSC方式切換
えスイツチを設ける必要がないので両方式ともに
安定した復調用の副搬送波を得られ、一度設定し
た色相が外的状況に左右されなくなる。
In addition, in the present invention, there is no need to provide a phase shifter and a PAL/NPTSC mode changeover switch in the next stage of the subcarrier oscillation circuit as in the conventional example, so both systems can obtain stable subcarriers for demodulation, and once set Hue is no longer influenced by external circumstances.

更に本発明ではPAL方式及びNTSC方式とも
に同一の調整部で色相が変えられるので別々に設
けられる場合よりもスペース的に又回路部品的に
も簡略化、コストダウン化、安定化等の改善が計
られることになる。
Furthermore, in the present invention, since the hue can be changed by the same adjustment section for both the PAL system and the NTSC system, improvements such as simplification, cost reduction, and stability in terms of space and circuit components can be expected compared to when they are provided separately. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロツク図、
第2図は従来例のブロツク図、第3図は第1図を
説明する為の色信号ベクトル図を示す。 1……1H遅延線、2,3……和演算回路、4
……R−Y色復調回路、5……B−Y色復調回
路、7……バーストゲート回路、17……+Φ移
相器、18……−Φ移相器。
FIG. 1 is a block diagram showing one embodiment of the present invention;
FIG. 2 is a block diagram of a conventional example, and FIG. 3 is a color signal vector diagram for explaining FIG. 1. 1...1H delay line, 2, 3...sum calculation circuit, 4
...RY color demodulation circuit, 5...B-Y color demodulation circuit, 7... Burst gate circuit, 17...+Φ phase shifter, 18...-Φ phase shifter.

Claims (1)

【特許請求の範囲】 1 PAL方式及びNTSC方式カラーテレビジヨ
ン信号の色復調手段において、 (a) 搬送色信号を同一絶対値で、逆相で移相する
第1、第2の移相手段と、 (b) 前記第1、第2の移相手段の入力又は出力を
1水平走査線ごとに切換える切換手段と、 (c) PAL方式の場合には、前記切換手段を動作
させて、この切換手段の後段に接続された
PAL方式復調手段を動作させると共に、 (d) NTSC方式の場合には、前記第1、第2の移
相手段の片方のみ信号を通すように前記切換手
段を固定する設定手段と、前記PAL方式復調
手段における1水平走査期間遅延線を接続しな
い設定手段と、パルスイツチを固定する手段、 とを備えたPAL/NTSC方式映像回路。
[Scope of Claims] 1. A color demodulating means for PAL and NTSC color television signals, comprising: (a) first and second phase shifting means for shifting the carrier color signal by the same absolute value and in opposite phases; (b) switching means for switching the input or output of the first and second phase shifting means for each horizontal scanning line; (c) in the case of the PAL system, operating the switching means to switch the input or output of the first and second phase shifting means for each horizontal scanning line; connected to the latter part of the means
(d) in the case of the NTSC system, setting means for fixing the switching means so that only one of the first and second phase shifting means passes the signal, and the PAL system; A PAL/NTSC video circuit comprising: a setting means for not connecting a delay line for one horizontal scanning period in a demodulating means; and a means for fixing a pulse switch.
JP11560085A 1985-05-29 1985-05-29 Pal/ntsc system video circuit Granted JPS61274488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11560085A JPS61274488A (en) 1985-05-29 1985-05-29 Pal/ntsc system video circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11560085A JPS61274488A (en) 1985-05-29 1985-05-29 Pal/ntsc system video circuit

Publications (2)

Publication Number Publication Date
JPS61274488A JPS61274488A (en) 1986-12-04
JPH0564515B2 true JPH0564515B2 (en) 1993-09-14

Family

ID=14666637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11560085A Granted JPS61274488A (en) 1985-05-29 1985-05-29 Pal/ntsc system video circuit

Country Status (1)

Country Link
JP (1) JPS61274488A (en)

Also Published As

Publication number Publication date
JPS61274488A (en) 1986-12-04

Similar Documents

Publication Publication Date Title
US5504535A (en) Television receiver for displaying two pictures of similar or different aspect ratios simultaneously
US4533938A (en) Color modifier for composite video signals
US5333054A (en) Apparatus for reducing noise in a video signal by processing a luminance and chrominance component
US4183050A (en) Clamping circuit for color television signals
US5424784A (en) Method and apparatus for cross fading between combed and simple filtered outputs
GB2106742A (en) Clock generator for a digital color television signal processor
US3449510A (en) Circuit arrangement for producing a dissymmetrical switching signal in an ntsc-pal conversion system
JPH0564515B2 (en)
JPH056840B2 (en)
JPH0453105Y2 (en)
US4625233A (en) I-phase fleshtone correction system using R-Y, G-Y and B-Y color difference signal demodulators
JPH0478235B2 (en)
JPS639180Y2 (en)
JPS63135088A (en) Color television receiver
JPS6242431B2 (en)
JP2514221B2 (en) Television receiver
JPH02260784A (en) Chrominance signal processing circuit
JPS6252520B2 (en)
JPH0744144Y2 (en) Color television receiver
JPS58141092A (en) Automatic system switching circuit of color television receiver
JPH0160988B2 (en)
JPS6129199B2 (en)
JPS61117992A (en) Hue adjusting circuit
JPH01115291A (en) Rgb multi-terminal input type sequential scanning conversion television receiver
GB1603570A (en) Pal system colour demodulation circuit