JPH0564142B2 - - Google Patents

Info

Publication number
JPH0564142B2
JPH0564142B2 JP59228859A JP22885984A JPH0564142B2 JP H0564142 B2 JPH0564142 B2 JP H0564142B2 JP 59228859 A JP59228859 A JP 59228859A JP 22885984 A JP22885984 A JP 22885984A JP H0564142 B2 JPH0564142 B2 JP H0564142B2
Authority
JP
Japan
Prior art keywords
phosgene
reaction
dmi
water
dimethylethylenediamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59228859A
Other languages
Japanese (ja)
Other versions
JPS61109772A (en
Inventor
Teruyuki Nagata
Nobuyuki Kajimoto
Masaru Wada
Hitoshi Nakayama
Tadao Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59228859A priority Critical patent/JPS61109772A/en
Priority to CA000494275A priority patent/CA1259321A/en
Priority to EP85113840A priority patent/EP0183076B1/en
Priority to DE8585113840T priority patent/DE3578879D1/en
Priority to BR8505449A priority patent/BR8505449A/en
Priority to US06/794,034 priority patent/US4668793A/en
Priority to KR1019850008126A priority patent/KR870001899B1/en
Publication of JPS61109772A publication Critical patent/JPS61109772A/en
Publication of JPH0564142B2 publication Critical patent/JPH0564142B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は1,3−ジメチル−2−イミダゾリジ
ノンの製造方法に関する。詳しくはN,N′−ジ
メチルエチレンジアミンとホスゲンを反応させて
1,3−ジメチル−2−イミダゾリジノンを得る
に際し、水及び脱塩酸剤の存在下に反応させるこ
とを特徴とする1,3−ジメチル−2−イミダゾ
リジノンの改良された製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing 1,3-dimethyl-2-imidazolidinone. Specifically, 1,3-diamine is reacted with phosgene to obtain 1,3-dimethyl-2-imidazolidinone in the presence of water and a dehydrochlorination agent. The present invention relates to an improved method for producing dimethyl-2-imidazolidinone.

1,3−ジメチル−2−イミダゾリジノン(以
下DMIと略称)は極性非プロトン溶媒として有
用な物質である。とくにポリアミド類、ポリ塩化
ビニル、ポリビニルアルコール、ポリスチレン、
ポリウレタン、フエノール樹脂などの高分子化合
物に優れた溶媒であり、また無機塩類の多くのも
のと錯塩を形成して溶解し、多くの有機反応の溶
媒として用いられる有用な物質である。
1,3-Dimethyl-2-imidazolidinone (hereinafter abbreviated as DMI) is a substance useful as a polar aprotic solvent. Especially polyamides, polyvinyl chloride, polyvinyl alcohol, polystyrene,
It is an excellent solvent for polymeric compounds such as polyurethane and phenolic resins, and it is a useful substance that forms complex salts with many inorganic salts and dissolves them, and is used as a solvent for many organic reactions.

従来の技術 DMIの製造方法は多数提案されている。例え
ばエチレンジアミンと尿素を反応後、ホルマリン
を付加させた反応生成物をトリクロロ酢酸、ギ酸
などで還元する方法、また、これらの還元方法を
改良して貴金属触媒を使用し酸性下に水素添加す
る方法が提案されている。
Prior Art Many methods for manufacturing DMI have been proposed. For example, after reacting ethylenediamine and urea, formalin is added to the reaction product, and the reaction product is reduced with trichloroacetic acid, formic acid, etc., or an improved method of these reduction methods is hydrogenation under acidic conditions using a noble metal catalyst. Proposed.

さらにN,N′−ジメチルエチレンジアミンと
ホスゲンを反応させるDMIの製造方法も既に知
られている。ジヤーナル ケミカルソサイアテイ
ー(J.Chem.Soc.1947 307)が、収率は20%未満
に過ぎない。またこれと類似な技術として、ホス
ゲン誘導体であるトリクロロメチルクロロホーメ
ートをホスゲンの替りに使用して、トルエン等有
機溶媒中、脱塩酸剤及び触媒の存在下で反応させ
ることにより収率70%以上でDMIを製造する方
法(特開昭53−73561号公報)も提案されている。
Furthermore, a method for producing DMI in which N,N'-dimethylethylenediamine and phosgene are reacted is already known. J.Chem.Soc.1947 307), but the yield is only less than 20%. In addition, as a similar technique, a phosgene derivative, trichloromethyl chloroformate, is used instead of phosgene, and the reaction is carried out in an organic solvent such as toluene in the presence of a dehydrochlorination agent and a catalyst, resulting in a yield of 70% or more. A method for manufacturing DMI (Japanese Unexamined Patent Publication No. 73561/1983) has also been proposed.

発明が解決しようとする問題点 N,N′−ジメチルエチレンジアミンとホスゲ
ンとを反応させてDMIを製造する方法はこのよ
うに公知であるが、収率が極めて低く工業的方法
としては満足できるものではなかつた。この為の
改良法として、前記のようにホスゲンの替りにト
リクロロメチルクロロホーメートを反応時反応系
内で触媒によつてホスゲンに分解しながら反応さ
せる方法が提案されている。しかしながら該公報
方法はわざわざホスゲン2量体であるトリクロロ
メチルクロロホーメートをつくり、DMI製造時
には再びホスゲンに分解して使用すると言つた廻
りくどい方法であり、直接ホスゲンと反応させて
高収率で得ることができるなら、より安価な工業
的製造方法であることは明白である。
Problems to be Solved by the Invention Although the method for producing DMI by reacting N,N'-dimethylethylenediamine with phosgene is known, the yield is extremely low and it is not satisfactory as an industrial method. Nakatsuta. As an improved method for this purpose, a method has been proposed in which instead of phosgene, trichloromethyl chloroformate is reacted while being decomposed into phosgene by a catalyst in the reaction system during the reaction. However, the method disclosed in this publication is a cumbersome method in which trichloromethyl chloroformate, which is a phosgene dimer, is produced and used after being decomposed into phosgene again during the production of DMI, and it is directly reacted with phosgene to obtain the product in high yield. If possible, it is obvious that it would be a cheaper industrial manufacturing method.

問題点を解決するための手段 本発明者等は、ホスゲンとN,N′−ジメチル
エチレンジアミンとを反応させより安価に、且
つ、高収率でDMIをえる工業的製造方法につき
鋭意検討した結果、水及び脱塩酸剤の存在下に反
応させることによりその目的が達せられることを
見出し本発明を完成した。
Means for Solving the Problems The present inventors have conducted intensive studies on an industrial production method that reacts phosgene with N,N'-dimethylethylenediamine to obtain DMI at a lower cost and in a high yield. The present invention was completed by discovering that the object can be achieved by reacting in the presence of water and a dehydrochlorination agent.

通常、ホスゲンを使用する反応は極力水の存在
しない条件下に実施され、さらにホスゲンはアル
カリ性水溶液中にて容易に加水分解されることが
知られており、本発明方法では大過剰量のホスゲ
ンが必要となるであろうことが予想された。しか
し意外にも、本発明方法においては、ホスゲンは
その化学量論量の1.01〜1.5倍で充分であること
が判明した。且つ、水及び脱塩酸剤を存在させて
おくことにより、DMIの収率は従来知られてい
た20%未満から70%以上と飛躍的に向上した。
Usually, reactions using phosgene are carried out in the absence of water as much as possible, and it is known that phosgene is easily hydrolyzed in an alkaline aqueous solution. It was anticipated that this would be necessary. Surprisingly, however, it has been found that 1.01 to 1.5 times its stoichiometric amount of phosgene is sufficient in the process of the invention. In addition, by allowing water and a dehydrochlorination agent to exist, the yield of DMI was dramatically improved from the conventionally known level of less than 20% to over 70%.

即ち、本発明はN,N′−ジメチルエチレンジ
アミンとホスゲンを水及び脱塩酸剤の存在下に反
応させることにより高収率でDMIが得られる改
良された製造方法を提供するものである。
That is, the present invention provides an improved production method in which DMI can be obtained in high yield by reacting N,N'-dimethylethylenediamine and phosgene in the presence of water and a dehydrochlorination agent.

本発明方法の通常の態様を述べれば還流冷却
器、温度計、ホスゲン吹き込み管、滴下ロート及
び機械的撹拌機を備えた反応器中に、水及びN,
N′−ジメチルエチレンジアミンを加える。この
液を適当な温度下で撹拌しながら、ホスゲンをホ
スゲン吹き込み管より導入すると同時に脱塩酸剤
を滴下ロートより滴下する。
In a typical embodiment of the process of the present invention, water and N,
Add N'-dimethylethylenediamine. While stirring this liquid at an appropriate temperature, phosgene is introduced through the phosgene blowing tube, and at the same time, a dehydrochlorination agent is added dropwise through the dropping funnel.

吹き込み及び滴下終了後、さらに滴下と同一温
度またはこれより若干高い温度で反応マスを熟成
する。熟成終了後、中性付近に調製して蒸留等の
常法によりDMIを取り出す。
After the blowing and dropping are completed, the reaction mass is further aged at the same temperature as the dropping or at a slightly higher temperature. After ripening, the solution is adjusted to near neutrality and DMI is extracted using a conventional method such as distillation.

本発明で用いられる水は、あらかじめ反応器中
に入れておいてもよいし、脱塩酸剤と一緒に、た
とえばアルカリ金属化合物の水溶液として滴下装
入してもよい。使用する水の量は特に限定されな
いが、均一反応が維持できる程度の充分な量が好
ましく、N,N′−ジメチルエチレンジアミンに
対して0.5〜50倍、好ましくは5〜30重量倍がよ
い。また、ホスゲン、原料アミン及びDMIに不
活性な有機溶媒と併用しても差し支えない。
The water used in the present invention may be placed in the reactor in advance, or may be added dropwise together with a dehydrochlorination agent, for example, as an aqueous solution of an alkali metal compound. The amount of water used is not particularly limited, but it is preferably a sufficient amount to maintain a homogeneous reaction, and is preferably 0.5 to 50 times, preferably 5 to 30 times the weight of N,N'-dimethylethylenediamine. Furthermore, it may be used in combination with an organic solvent that is inert to phosgene, raw material amine, and DMI.

本発明で用いられる脱塩酸剤は、トリメチルア
ミン、トリエチルアミンのような脂肪族第三級ア
ミン、ピリジン、ピラジンのような複素環式第三
級アミンなどのような第三級アミンまたは、水酸
化ナトリウム、炭酸ナトリウムのようなアルカリ
金属化合物が好適である。
The dehydrochlorination agent used in the present invention includes tertiary amines such as aliphatic tertiary amines such as trimethylamine and triethylamine, heterocyclic tertiary amines such as pyridine and pyrazine, sodium hydroxide, Alkali metal compounds such as sodium carbonate are preferred.

また、本発明における反応温度は特に限定され
ないが、好ましくは0〜70℃で行なう。
Further, the reaction temperature in the present invention is not particularly limited, but is preferably carried out at 0 to 70°C.

本発明で用いられるホスゲン及び脱塩酸剤量
は、特に限定されないが原料ジアミンに対して化
学量論量の1.01〜1.5倍で充分である。また、ホ
スゲンに対する脱塩酸剤量はほぼ化学量論量でよ
い。
The amounts of phosgene and dehydrochlorination agent used in the present invention are not particularly limited, but 1.01 to 1.5 times the stoichiometric amount relative to the raw material diamine is sufficient. Further, the amount of dehydrochlorination agent relative to phosgene may be approximately stoichiometric.

本発明方法では、従来のホスゲンを用いる反応
にくらべて70%以上の高収率でDMIが得られる。
その理由はよくわからないが、脱塩酸剤と水を併
用することにより、脱塩酸剤がカルバモイルクロ
ライドの生成で生じる副生塩酸と、カルバモイル
クロライドのDMIへの閉環反応で生じる副生酸
性のキヤツチに都合よく作用するためと思われ
る。
In the method of the present invention, DMI can be obtained in a higher yield of 70% or more compared to the conventional reaction using phosgene.
The reason for this is not well understood, but by using the dehydrochloride agent and water together, the dehydrochloride agent can effectively catch the by-product hydrochloric acid generated from the production of carbamoyl chloride and the by-product acidity generated from the ring-closing reaction of carbamoyl chloride to DMI. This seems to be because it works well.

もし脱塩酸剤を使用しなければ、原料自体が副
生酸性のキヤツチ剤となり、それ以上反応を進め
ることは困難である。
If a dehydrochlorination agent is not used, the raw material itself becomes a by-product acidic catch agent, making it difficult to proceed with the reaction any further.

また、本発明の有利な点は、溶媒として安価な
水を使用するので原料ジアミンは水に可溶であ
り、脱塩酸剤またはその生成塩も水に可溶で、通
常反応は均一液下で行なわれ、反応速度が速く、
収率が向上する。
Furthermore, the advantage of the present invention is that since cheap water is used as a solvent, the raw material diamine is soluble in water, and the dehydrochlorination agent or its generated salt is also soluble in water, and the reaction is usually carried out under a homogeneous liquid. is carried out, the reaction speed is fast,
Yield is improved.

さらに、この発明のもう一つの有利な点は、塩
基存在下の水溶液中の反応であつてもホスゲンの
損失がほとんどなく、ほぼ当モル量で反応が進行
することである。
Furthermore, another advantage of the present invention is that even when the reaction is carried out in an aqueous solution in the presence of a base, there is almost no loss of phosgene, and the reaction proceeds in approximately equimolar amounts.

以下実施例及び比較例をあげさらに詳細に説明
する。
Examples and comparative examples will be given below to explain in more detail.

実施例 1 還流冷却器、温度計、滴下ロート、ホスゲン吹
き込み管及び撹拌機を備えた300mlの四つ口フラ
スコ中に水100ml、N,N′−ジメチルエチレンジ
アミン8.8g(0.1モル)を入れ、一方滴下ロート
中にトリエチルアミンを20.2g(0.2モル)用意
した。フラスコを20℃に維持し、撹拌しながらホ
スゲンをホスゲン吹き込み管を通して10g/hrで
1時間吹き込んだ。同時に、トリエチルアミンを
滴下ロートより1時間かけて滴下した。吹き込み
及び滴下終了後、20℃で1時間熟成した。この反
応マスをサンプリングしてガスクロマトグラフイ
ーによりDMIの定量を行なつた。理論収率は75.1
%であつた。
Example 1 100 ml of water and 8.8 g (0.1 mol) of N,N'-dimethylethylenediamine were placed in a 300 ml four-necked flask equipped with a reflux condenser, a thermometer, a dropping funnel, a phosgene blowing tube, and a stirrer. 20.2 g (0.2 mol) of triethylamine was prepared in the dropping funnel. The flask was maintained at 20° C. and phosgene was bubbled through the phosgene blow tube at 10 g/hr for 1 hour while stirring. At the same time, triethylamine was added dropwise from the dropping funnel over a period of 1 hour. After blowing and dropping, the mixture was aged at 20°C for 1 hour. This reaction mass was sampled and DMI was quantified by gas chromatography. Theoretical yield is 75.1
It was %.

比較例 還流冷却器、温度計、ホスゲン吹き込み管及び
撹拌機を備えた300mlの四つ口フラスコ中に、ト
ルエン100ml、N,N′−ジメチルエチレンジアミ
ン8.8g(0.1モル)を入れた。フラスコを20℃に
維持し、撹拌しながらホスゲンをホスゲン吹き込
み管を通じて、10g/hrで1時間吹き込んだ。吹
き込み終了後、同一温度で1時間熟成した。この
反応マスのガスクロマトグラフイー分析を行な
い、DMIの定量を行なつたところ、理論収率19.2
%でDMIが生成しているにすぎなかつた。
Comparative Example 100 ml of toluene and 8.8 g (0.1 mol) of N,N'-dimethylethylenediamine were placed in a 300 ml four-necked flask equipped with a reflux condenser, thermometer, phosgene blowing tube, and stirrer. The flask was maintained at 20° C. and phosgene was bubbled through the phosgene blow tube at 10 g/hr for 1 hour while stirring. After the blowing was completed, the mixture was aged for 1 hour at the same temperature. Gas chromatography analysis of this reaction mass was performed to quantify DMI, and the theoretical yield was 19.2.
% and was only generated by DMI.

実施例 2 トルエチルアミンの代わりに、10%炭酸ソーダ
水溶液212g(0.2モル)を用いたことを除いて実
施例1と全く同様に反応を行なつた。
Example 2 The reaction was carried out in exactly the same manner as in Example 1, except that 212 g (0.2 mol) of a 10% aqueous sodium carbonate solution was used instead of toluethylamine.

ガスクロマトグラフイー分析による理論収率は
70.8%であつた。
The theoretical yield by gas chromatography analysis is
It was 70.8%.

実施例 3 トリエチルアミンの代わりに、10%水酸化ナト
リウム水溶液80g(0.20モル)を用いた以外は、
実施例1と全く同様の反応を行なつた。
Example 3 Except that 80 g (0.20 mol) of a 10% aqueous sodium hydroxide solution was used instead of triethylamine.
The reaction was carried out in exactly the same manner as in Example 1.

ガスクロマトグラフイー分析による理論収率は
81.3%であつた。
The theoretical yield by gas chromatography analysis is
It was 81.3%.

Claims (1)

【特許請求の範囲】[Claims] 1 N,N′−ジメチルエチレンジアミンとホス
ゲンを反応させて、1,3−ジメチル−2−イミ
ダゾリジノンを得るに際し、水及びトリメチルア
ミン、トリエチルアミン、ピリジン、ピラジン、
水酸化ナトリウム、水酸化カリウム、炭酸ナトリ
ウム、炭酸カリウムから選ばれた少なくとも一種
の脱塩酸剤の存在下、ホスゲンをN,N′−ジメ
チルエチレンジアミンに対し化学量論量の1.01〜
1.5倍用い、均一溶液で反応させることを特徴と
する1,3−ジメチル−2−イミダゾリジノンの
製造方法。
1 When reacting N,N'-dimethylethylenediamine and phosgene to obtain 1,3-dimethyl-2-imidazolidinone, water and trimethylamine, triethylamine, pyridine, pyrazine,
In the presence of at least one dehydrochlorination agent selected from sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate, phosgene is added in a stoichiometric amount of 1.01 to N,N'-dimethylethylenediamine.
1. A method for producing 1,3-dimethyl-2-imidazolidinone, characterized in that the reaction is carried out in a homogeneous solution using 1.5 times the amount.
JP59228859A 1984-11-01 1984-11-01 Preparation of 1,3-dimethyl-2-imidazolidinone Granted JPS61109772A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59228859A JPS61109772A (en) 1984-11-01 1984-11-01 Preparation of 1,3-dimethyl-2-imidazolidinone
CA000494275A CA1259321A (en) 1984-11-01 1985-10-30 Process for producing 1,3-dimethyl-2-imidazolidinone
EP85113840A EP0183076B1 (en) 1984-11-01 1985-10-30 Process for producing 1,3-dimethyl-2-imidazolidinone
DE8585113840T DE3578879D1 (en) 1984-11-01 1985-10-30 METHOD FOR PRODUCING 1,3-DIMETHYL-2-IMIDAZOLIDINONE.
BR8505449A BR8505449A (en) 1984-11-01 1985-10-31 PROCESS FOR THE PRODUCTION OF 1,3-DIMETHYL-2-IMIDAZOLIDINONE
US06/794,034 US4668793A (en) 1984-11-01 1985-11-01 Process for producing 1,3-dimethyl-2-imidazolidinone
KR1019850008126A KR870001899B1 (en) 1984-11-01 1985-11-01 Preparation method of 1,3-dimethyl-2-imidazolidinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59228859A JPS61109772A (en) 1984-11-01 1984-11-01 Preparation of 1,3-dimethyl-2-imidazolidinone

Publications (2)

Publication Number Publication Date
JPS61109772A JPS61109772A (en) 1986-05-28
JPH0564142B2 true JPH0564142B2 (en) 1993-09-14

Family

ID=16882998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59228859A Granted JPS61109772A (en) 1984-11-01 1984-11-01 Preparation of 1,3-dimethyl-2-imidazolidinone

Country Status (1)

Country Link
JP (1) JPS61109772A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1148052A3 (en) 1998-10-09 2003-10-15 Mitsui Chemicals, Inc. 1,3-dialkyl-2-imidazolidinones and a manufacturing process therefor
KR100464193B1 (en) 2001-01-04 2005-01-03 미쯔이가가꾸가부시끼가이샤 Process for Producing 1,3-Dialkyl-2-Imidazolidinone Compound
CN112176372B (en) * 2020-09-27 2021-10-15 东北大学 Method for preparing cobalt-tantalum alloy coating at low temperature by taking cobalt dichloride and tantalum pentachloride as raw materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373561A (en) * 1976-12-10 1978-06-30 Kawaken Fine Chem Co Ltd Preparation of 1,3-dimethyl-2-imidazolidinone
US4659837A (en) * 1981-12-22 1987-04-21 Basf Aktiengesellschaft Method for the preparation of 1,3-disubstituted 4,5-cis-dicarboxy-2-imidazolidones

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373561A (en) * 1976-12-10 1978-06-30 Kawaken Fine Chem Co Ltd Preparation of 1,3-dimethyl-2-imidazolidinone
US4659837A (en) * 1981-12-22 1987-04-21 Basf Aktiengesellschaft Method for the preparation of 1,3-disubstituted 4,5-cis-dicarboxy-2-imidazolidones

Also Published As

Publication number Publication date
JPS61109772A (en) 1986-05-28

Similar Documents

Publication Publication Date Title
US4668793A (en) Process for producing 1,3-dimethyl-2-imidazolidinone
US7560593B2 (en) Process for producing nitroisourea derivatives
JPH0564142B2 (en)
JPS5829296B2 (en) Method for producing monomethylhydrazine
EP0844239B1 (en) Method for producing homocystine
JP3169103B2 (en) Method for producing 2-hydroxymethylmercaptobutyric acid
US4374266A (en) Ammonium salts of fluorophthalamic acids and method of preparation
WO2006045612A1 (en) Process for the preparation of phenyl 2-pyrimidinyl ketones and their novel intermediates
JPH0588227B2 (en)
JPH09323973A (en) Production of amide-based compound or its salt
JPH0667909B2 (en) Method for producing 2-imidazolidinone
JP2515326B2 (en) Method for producing tetrahydro-2 (1H) -pyrimidinones
JPH05230026A (en) Production of 2-chloro-5-methylpyridine derivative
JPH0667908B2 (en) Method for producing 1,3-dialkyl-2-imidazolidinone
US4873358A (en) Preparation of nitroesters via the reaction of nitroparaffins with cyanoformates
JPH0667910B2 (en) Method for producing 2-imidazolidinones
JP3205975B2 (en) Method for producing pyrazinecarboxamide
JPS6127979A (en) Preparation of hydroxyflavan compound
JPH0449546B2 (en)
JPH10218868A (en) Production of 5-methyltetrazole
JPH11343272A (en) Production of alfa,alfa-dialkyl-substituted amino acid amide
JPH06100539A (en) Production of substituted pyridinylsulfonyl carbamate
JPWO2004067500A1 (en) Novel O-isopropylisourea salt and process for producing the same
JP2000053645A (en) Production of hydrazine derivative, intermediate thereof and production the same
JPH0684340B2 (en) Formamidine formate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term