JPH0563549B2 - - Google Patents

Info

Publication number
JPH0563549B2
JPH0563549B2 JP2177586A JP17758690A JPH0563549B2 JP H0563549 B2 JPH0563549 B2 JP H0563549B2 JP 2177586 A JP2177586 A JP 2177586A JP 17758690 A JP17758690 A JP 17758690A JP H0563549 B2 JPH0563549 B2 JP H0563549B2
Authority
JP
Japan
Prior art keywords
powder
coating layer
thermal spray
thermal
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2177586A
Other languages
Japanese (ja)
Other versions
JPH0466656A (en
Inventor
Masayuki Shinno
Saburo Kitaguchi
Nobuyuki Shimoda
Tooru Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Nippon Steel Corp
Original Assignee
National Aerospace Laboratory of Japan
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan, Nippon Steel Corp filed Critical National Aerospace Laboratory of Japan
Priority to JP2177586A priority Critical patent/JPH0466656A/en
Publication of JPH0466656A publication Critical patent/JPH0466656A/en
Publication of JPH0563549B2 publication Critical patent/JPH0563549B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属のみでは適用困難な超耐熱耐久
性が要求される環境において使用可能な複合被覆
材料に関し、詳しくは超耐熱金属粉末と超耐熱セ
ラミツクスとにより成分を連続的に変化させた超
耐熱被覆層を形成する混合溶射方法に関するもの
である。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a composite coating material that can be used in environments that require super heat resistance and durability, which is difficult to apply to metals alone. The present invention relates to a mixed thermal spraying method for forming a super heat-resistant coating layer in which the components are continuously changed with heat-resistant ceramics.

[従来の技術] 極限状態で使用される材料はいわゆる超特性を
有していることが必要であるが、近年開発中ある
いは次世代として考えられている宇宙、航空、核
融合炉等の分野においては、超高温で使用されて
も耐久性のある材料が要求されている。
[Prior art] Materials used in extreme conditions must have so-called super properties, but in fields such as space, aviation, and nuclear fusion reactors, which are currently under development or are considered as the next generation, There is a need for materials that are durable even when used at extremely high temperatures.

例えば、宇宙往還機(スペースプレーン)を完
全再使用する場合は、その先端ノーズ部における
熱防御材料は、表面温度2000K、温度落差1000K
に耐える必要がある。
For example, if a space plane is to be completely reused, the thermal protection material at its tip nose should have a surface temperature of 2000K and a temperature drop of 1000K.
need to withstand.

一般に超耐熱・耐久材料としては、Ni基超耐
熱合金、Fe基超耐熱合金、Co基超耐熱合金が用
いられているが、いずれも900℃以下でしか使用
できない。
Generally, Ni-based super heat-resistant alloys, Fe-based super heat-resistant alloys, and Co-based super heat-resistant alloys are used as super heat-resistant and durable materials, but all of them can only be used at temperatures below 900°C.

これ以上の高温領域においてはセラミツクス被
覆が金属の上に施されて用いられるが、高温・低
温の熱的繰り返しがある環境においては破壊、脱
落が生じ耐久性に欠ける難点があつた。
Ceramic coatings are used on metals in higher temperature ranges, but they suffer from breakage and falling off in environments with repeated thermal cycles of high and low temperatures, resulting in a lack of durability.

[発明が解決しようとする課題] 超高温および極めて大きい温度落差のある環境
において使用可能な材料として耐熱セラミツクス
と超耐熱合金とからなる複合材料が考えられてい
るが、大きな熱応力が生じる事により両者の接合
部が剥離する。
[Problem to be solved by the invention] Composite materials made of heat-resistant ceramics and super-heat-resistant alloys have been considered as materials that can be used in environments with extremely high temperatures and extremely large temperature drops, but due to the generation of large thermal stress, The joint between the two peels off.

従つて、耐熱セラミツクス・超耐熱合金複合材
料は超耐熱合金のみよりはもちろん耐熱・耐久性
に優れているものの宇宙往還機のような材料とし
ての耐久性は満足しない。
Therefore, although heat-resistant ceramics/super heat-resistant alloy composite materials are of course superior in heat resistance and durability to super heat-resistant alloys alone, their durability as materials for spacecraft is not satisfactory.

そこで、本発明は耐熱セラミツクスと超耐熱金
属とからなる溶射被膜層において超高温、大温度
落差環境下での皮膜破壊、界面剥離を防止する超
耐熱皮膜を混合溶射法にて製造することにより長
寿命化という難問題の解決を図つた。
Therefore, the present invention aims to provide a super-heat-resistant coating layer made of heat-resistant ceramics and super-heat-resistant metals that will last longer by using a mixed thermal spraying method to prevent coating breakage and interfacial peeling in environments with extremely high temperatures and large temperature drops. We attempted to solve the difficult problem of extending the product's lifespan.

[課題を解決するための手段] 本発明は超高温・大温度落差環境下で使用可能
な超耐熱溶射被覆層の形成を可能としたものであ
る。
[Means for Solving the Problems] The present invention makes it possible to form a super heat-resistant thermal spray coating layer that can be used in an environment of super high temperatures and large temperature drops.

耐熱セラミツクスと超耐熱金属とから構成され
る傾斜皮膜の製造に際しては、両者の混合が適正
に行われ、しかも目的とする組成濃度で構造制御
されねばならない。しかし、従来の溶射方法によ
る異種材料混合溶射方法では、一つの溶射ガンに
一つもしくは二つの粉末投入孔から異種材料を一
緒もしくは個別に投入する方法が用いられている
が、一つの投入孔に異種材料を一緒に投入する場
合は、プラズマ・ジエツトを貫通してしまう未溶
融粉末粒子量が多いことから皮膜構成率を下げる
ことになり、いわゆる歩留りを悪くするために適
正な構造制御が困難である。また、二つの投入孔
から異種材料を個別に投入する方法では、プラズ
マ・ジエツトがおおきく惰円状に変形することに
より皮膜内部で異種材料が均一に混合せず分離層
が生じる。
When producing a gradient coating composed of heat-resistant ceramics and super-heat-resistant metals, it is necessary to properly mix the two and control the structure at a desired composition concentration. However, in the conventional thermal spraying method of mixing different materials, a method is used in which different materials are introduced together or individually into one thermal spray gun through one or two powder injection holes; When dissimilar materials are added together, the amount of unmelted powder particles that penetrate the plasma jet decreases the film composition rate, which impairs the so-called yield and makes it difficult to properly control the structure. be. Furthermore, in a method in which different types of materials are separately introduced through two input holes, the plasma jet is largely deformed into an inertial circular shape, and the different types of materials are not mixed uniformly within the film, resulting in a separated layer.

本発明者らは、上記の混合皮膜製造に際し、こ
れらの問題点を解決するために、一つの溶射ガン
に四つ以上の複数個の粉末投入孔を設け、溶射を
行えば歩留りが良く、均質な混合皮膜の構造制御
が行えることを見いだし、本発明をなすに至つ
た。
In order to solve these problems when manufacturing the above-mentioned mixed coating, the present inventors have found that if a single thermal spray gun is provided with four or more powder injection holes and thermal spraying is performed, the yield will be high and the coating will be uniform. The inventors have discovered that it is possible to control the structure of a mixed film, and have completed the present invention.

すなわち、本発明の要旨とするところは、 1 等間隔の位置に配設されたm×n個の投入孔
を有する一つの溶射ガンにより、m種類(m≧
2)の粉末を用いて同時溶射を行う場合、溶射ガ
ンのカソードを対称軸としたn回対称(n≧2)
の位置にあるn個の粉末投入孔より同種類の粉末
を供給して溶射することを特徴とする混合溶射被
覆層形成方法。または 2 各々の孔に粉末送給量制御機能をもたせるこ
とを特徴とする上記1項記載の混合溶射被覆層形
成方法。または 3 溶射雰囲気を減圧下とすることを特徴とする
上記1または2項記載の混合溶射被覆層形成方法
にある。
That is, the gist of the present invention is as follows: 1. M types (m≧
When performing simultaneous thermal spraying using the powder of 2), n-fold symmetry (n≧2) with the cathode of the thermal spray gun as the axis of symmetry
A method for forming a mixed thermal spray coating layer, characterized in that powder of the same type is supplied from n powder injection holes located at positions of n and thermal spraying is carried out. or 2. The method for forming a mixed thermal spray coating layer according to item 1 above, wherein each hole is provided with a powder feeding rate control function. or 3. The method for forming a mixed thermal sprayed coating layer according to item 1 or 2 above, characterized in that the thermal spraying atmosphere is under reduced pressure.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

[作用] ここで一つの溶射ガンにより、二種以上の粉末
を用いて同時溶射を行う場合、溶射ガンに予め四
つ以上からなる複数個の粉末投入孔を設けてお
き、溶射することによつてもたらされる作用につ
いて第1図〜第4図を参照しながら説明する。
[Function] When performing simultaneous thermal spraying using two or more types of powder using one thermal spray gun, it is possible to prepare multiple powder injection holes of four or more in advance in the thermal spray gun and perform thermal spraying. The effects brought about by this will be explained with reference to FIGS. 1 to 4.

なお、本発明では二種以上の粉末の材質につい
ては任意に選択出来るのであるが、ここでは便宜
上セラミツクスと金属粉末による傾斜被覆形成の
方法を例にとり作用を説明する。一つの溶射ガン
を用いて傾斜被覆層を形成する際には二種以上の
粉末を用いて連続的に投入粉末の比率を変化させ
ながら溶射を行うが、通常第1図に示すごとく、
溶射ガン1のタングステン電極(カソード)2に
対称的に配置された二つの粉末投入孔Pa,Pb
よりそれぞれセラミツクス粉、金属粉を投入して
行われるが、説明を簡潔にするためにセラミツク
スと金属粉の投入比率を同じにして溶射すると、
第2図に示すように被溶射物4上の被覆層3中央
部では適正な混合比率の組成が成立するが、端部
側においてはセラミツクスCと金属Mの成分濃度
偏析が生じることにより、被覆層全域での均質な
組成を得ることが困難となる。
In the present invention, the materials of the two or more types of powder can be selected arbitrarily, but for the sake of convenience, the operation will be explained by taking as an example a method of forming a sloped coating using ceramics and metal powder. When forming a gradient coating layer using a single thermal spray gun, spraying is performed using two or more types of powder while continuously changing the ratio of the powders added, as shown in Figure 1.
Ceramics powder and metal powder are introduced into the tungsten electrode (cathode) 2 of the thermal spray gun 1 through two powder injection holes P a and P b arranged symmetrically, but for the sake of brevity, we will introduce ceramic powder and metal powder respectively. When spraying with the same injection ratio of metal powder and
As shown in Fig. 2, a composition with an appropriate mixing ratio is established in the center of the coating layer 3 on the object 4 to be thermally sprayed, but on the edge side, segregation of component concentrations of ceramics C and metal M occurs in the coating. It becomes difficult to obtain a homogeneous composition throughout the layer.

本発明者らは前記のように溶射ガンに対称的に
配置された二つの投入孔だけでセラミツクスと金
属の粉末を投入すると、プラズマジエツトの形状
を乱す原因となるものと考え、プラズマジエツト
の流れを安定に保持しつつ異種材料の投入が同時
に行える方法について種々検討したところ、タン
グステン電極に対して対称的に四つ以上の投入孔
を設け、相対するそれぞれの投入孔よりセラミツ
クス粉と金属粉を投入すれば、プラズマジエツト
の流れを乱さず被溶射物上に形成される被覆層の
全域にわたつて適正な混合組成が得られるとの知
見を得た。
The present inventors believe that if ceramic and metal powders are introduced only through the two symmetrically arranged injection holes in the spray gun as described above, it will cause the shape of the plasma jet to be disturbed. We investigated various methods for simultaneously introducing different materials while maintaining a stable flow of the material.We found that four or more injection holes were provided symmetrically with respect to the tungsten electrode, and ceramic powder and metal were introduced through each opposing injection hole. It has been found that by adding the powder, an appropriate mixed composition can be obtained over the entire area of the coating layer formed on the object to be thermally sprayed without disturbing the flow of the plasma jet.

第3図に示すようにタングステン電極2に対し
て対称的に四つの投入孔を配置し、例えば相対す
る投入孔Pa,Pcからセラミツクス粉、Pb,Pd
ら金属粉を投入して溶射を行つたところ、プラズ
マジエツトの形状的な乱れを起こす事なく、第4
図の3′に示すごとく溶射被覆層全域にわたつて
均質な混合層が得られた。
As shown in Fig. 3, four charging holes are arranged symmetrically with respect to the tungsten electrode 2, and for example, ceramic powder is charged through the opposing charging holes P a and P c , and metal powder is charged through the opposing charging holes P b and P d . When thermal spraying was carried out, there was no disturbance in the shape of the plasma jet.
As shown at 3' in the figure, a homogeneous mixed layer was obtained over the entire area of the sprayed coating layer.

次に、粉末投入孔に粉末を供給する方法は各種
考えられるが、連続的にセラミツクスと金属の成
分組成を変化させる、いわゆる傾斜被覆層を高精
度な変化率で得るための粉末供給方式について検
討を行つたところ、各々の粉末投入孔個別に粉末
供給器を直結させることが最も組成比率を精密に
変化せしめる方法であることが判明した。
Next, although various methods of supplying powder to the powder injection hole can be considered, we will consider a powder supply method that continuously changes the composition of ceramics and metal to obtain a so-called graded coating layer at a highly accurate rate of change. As a result, it was found that the most precise way to change the composition ratio was to directly connect a powder feeder to each powder inlet hole.

すなわち、各々の投入孔からの粉末投入量の変
化を対称的に正確に制御することができるために
プラズマジエツトの形状を安定に保持することが
可能となつたためである。又、本法について溶射
を減圧雰囲気下で行ういわゆる減圧プラズマ溶射
法にて実施するとその効果は更に顕著となつた。
減圧溶射法は真空チヤンバー内を真空排気後アル
ゴンガス等の不活性ガスで置換し所定の減圧下で
プラズマジエツトを発生させ溶射を行うものであ
るが、減圧下ではプラズマジエツトの形状は長大
化しそれに伴い溶射ガンと被溶射物との距離も大
きくなるために、プラズマジエツトの形状の乱れ
による被溶射物上の被覆層の混合組成の不均質性
は増長される。
That is, this is because the shape of the plasma jet can be stably maintained because changes in the amount of powder introduced from each injection hole can be controlled symmetrically and accurately. Furthermore, the effect of this method became even more remarkable when thermal spraying was performed in a reduced pressure atmosphere, ie, a so-called reduced pressure plasma spraying method.
In the low-pressure spraying method, the inside of a vacuum chamber is evacuated and then replaced with an inert gas such as argon gas, and a plasma jet is generated under a predetermined reduced pressure to perform thermal spraying. As a result, the distance between the spray gun and the object to be thermally sprayed becomes larger, which increases the non-uniformity of the mixture composition of the coating layer on the object to be thermally sprayed due to the disturbance in the shape of the plasma jet.

これに対し本発明による等間隔の位置に配設さ
れたm×n個の投入孔を有する一つの溶射ガンに
より、m種類(m≧2)の粉末を用いて同時溶射
を行う場合、溶射ガンのアノードを対称軸とした
n回対称(n≧2)の位置にあるn個の粉末投入
孔より同種類の粉末を供給して混合溶射すると、
長大なプラズマジエツトにもかかわらず形状の乱
れを発生させないで被溶射物上全域に均質な混合
被覆層が得られた。
On the other hand, when simultaneous thermal spraying is performed using m types of powder (m≧2) using one thermal spray gun having m×n injection holes arranged at equal intervals according to the present invention, the thermal spray gun When the same type of powder is supplied from n powder injection holes located at n-fold symmetrical positions (n≧2) with the anode as the axis of symmetry and mixed spraying,
Despite the long plasma jet, a homogeneous mixed coating layer was obtained over the entire surface of the sprayed object without causing any disturbance in shape.

第5図にこれまでの発明により得られる傾斜被
覆層の模式図を示す。又、m=3の場合あるいは
n=3の場合についても良好な結果が得られるこ
とは言うまでもない。
FIG. 5 shows a schematic diagram of the inclined coating layer obtained by the invention so far. It goes without saying that good results can also be obtained when m=3 or n=3.

以下に本発明を実施例に基づいて具体的に説明
する。
The present invention will be specifically described below based on Examples.

実施例 1 本発明に基づく効果を確認するために四つの投
入孔を設けた溶射ガンを用い減圧下で溶射を行い
被溶射物上に形成される被覆層の断面を観察した
結果、被覆層内全域で組成濃度偏析のない均質な
混合層が得られることが確認できた。なお、粉末
投入孔の記号は第3図に準ずるものとする。
Example 1 In order to confirm the effects of the present invention, thermal spraying was carried out under reduced pressure using a thermal spray gun provided with four injection holes, and the cross section of the coating layer formed on the object to be thermally sprayed was observed. It was confirmed that a homogeneous mixed layer without compositional concentration segregation could be obtained over the entire area. Note that the symbols for the powder injection holes shall be as shown in FIG. 3.

(1) 溶射粉末 セラミツクス;ZrO2−8%
Y2O3 金属 ;Ni−20Cr合金 (2) 粉末供給量 セラミツクス ;Pa,Pc各孔 20g/min 金属 ;Pb,Pd各孔 20g/min (3) 粉末供給ガス量 ;各孔 10/min(アルゴン) (4) 減圧雰囲気 ;200Torr (5) 溶射距離 ;200mm (6) 溶射電流 ;1400A (7) プラズマガス アルゴン;120/min 水素 ;20l/min (8) 被溶射物 ;軟鋼(板厚10mm) 溶射後、被覆層断面を顕微鏡観察するとともに
写真を画像解析するそとにより均一に混合された
組成構造であることを確認した。
(1) Thermal spray powder ceramics; ZrO 2 -8%
Y 2 O 3 metal; Ni-20Cr alloy (2) Powder supply amount Ceramics; P a , P c each hole 20 g/min Metal; P b , P d each hole 20 g/min (3) Powder supply gas amount; each hole 10/min (Argon) (4) Reduced pressure atmosphere: 200Torr (5) Spraying distance: 200mm (6) Spraying current: 1400A (7) Plasma gas Argon: 120/min Hydrogen: 20l/min (8) Spray target: Mild steel (Plate thickness: 10 mm) After thermal spraying, the cross-section of the coating layer was observed under a microscope and image analysis of photographs confirmed that the composition was uniformly mixed.

実施例 2 次に同じく本発明の効果を確認するために、前
述と同じ溶射ガンを用いて投入孔よりのセラミツ
クスと金属粉末の供給比率の割合を変化させて連
続的に成分組成を変えた混合溶射被覆層形成の実
施条件について記述する。セラミツクスおよび金
属粉の供給比率は第6図に示すように5段階の比
率設定を行つた。なお四つの粉末投入孔の各々の
最大粉末供給量は20g/minに設定した。
Example 2 Next, in order to similarly confirm the effects of the present invention, a mixture was prepared in which the composition was continuously changed by changing the feed ratio of ceramics and metal powder from the injection hole using the same thermal spray gun as described above. The conditions for forming the thermal spray coating layer will be described. The supply ratio of ceramics and metal powder was set in five stages as shown in FIG. The maximum powder supply rate of each of the four powder injection holes was set to 20 g/min.

(1) 溶射粉末 セラミツクス;ZrO2−8%
Y2O3 金属 ;Ni−20Cr合金 (2) 粉末供給量 セラミツクス ;Pa,Pc各孔 0〜20g/min 金属 ;Pb,Pd各孔 20〜0g/min (3) 粉末供給ガス量 ;各孔 10/min(アルゴン) (4) 減圧雰囲気 ;200Torr (5) 溶射距離 ;200mm (6) 溶射電流 ;1400A (7) プラズマガス アルゴン;120/min 水素 ;20l/min (8) 被溶射物 ;銅(板厚5mm) 本法によりZrO2−8%Y2O3とNi−20Cr合金の
粉末供給量を直線状の濃度勾配がつくように溶射
被覆層内を構造制御した。試験片は直径30mmの表
面に被覆層1mm厚とした。本試験片は銅基材側を
液体窒素で冷却されるようにおき溶射被覆層表面
のZrO2−8%Y2O3側を30kwランプ加熱源により
照射をON、OFFする加熱−冷却の繰り返し試験
を行つた。表面温度1500℃で100回行つた後表面
部と被覆断面を顕微鏡観察してクラツクの発生状
況を観察した。その結果全くクラツクが発生せず
優れた性能を示した。裏面との温度落差も900℃
となり優れた断熱性能を有していた。
(1) Thermal spray powder ceramics; ZrO 2 -8%
Y 2 O 3 metal; Ni-20Cr alloy (2) Powder supply rate Ceramics; P a , P c each hole 0 to 20 g/min Metal; P b , P d each hole 20 to 0 g/min (3) Powder supply gas Amount: 10/min (argon) for each hole (4) Reduced pressure atmosphere: 200Torr (5) Spraying distance: 200mm (6) Spraying current: 1400A (7) Plasma gas Argon: 120/min Hydrogen: 20l/min (8) Sprayed material: Copper (plate thickness: 5 mm) Using this method, the structure of the sprayed coating layer was controlled so that the powder supply amount of ZrO 2 -8% Y 2 O 3 and Ni-20Cr alloy had a linear concentration gradient. The test piece had a coating layer 1 mm thick on its surface with a diameter of 30 mm. For this test piece, the copper substrate side was cooled with liquid nitrogen, and the ZrO 2 -8% Y 2 O 3 side of the surface of the thermally sprayed coating layer was irradiated with a 30kw lamp heating source and then turned on and off, repeatedly heating and cooling. I conducted a test. After testing 100 times at a surface temperature of 1500°C, the surface area and the cross section of the coating were observed under a microscope to observe the occurrence of cracks. As a result, no cracks occurred and excellent performance was demonstrated. The temperature difference with the back side is also 900℃
It had excellent heat insulation performance.

[発明の効果] 以上の如く本発明は一つの溶射ガンにより二つ
以上の異種材料からなる混合溶射被覆層を工業的
に容易に製造することを可能としたために、宇宙
往還機、原子炉用材料等の製造に寄与することが
できるために利点が大きく、極めて工業的に有用
である。
[Effects of the Invention] As described above, the present invention makes it possible to industrially easily manufacture a mixed thermal spray coating layer made of two or more different materials using one thermal spray gun, and therefore it is suitable for use in spacecraft and nuclear reactors. It has great advantages because it can contribute to the production of materials, etc., and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は中心電極をはさんで対称位置にある二
つの粉末投入孔を有する溶射ガンの説明図、第2
図は第1図の溶射ガンを用いて溶射を行つた場合
の被覆状態を示す説明図、第3図は中心電極をは
さんで対称位置にある四つの粉末投入孔を有する
溶射ガンの説明図、第4図は第3図の溶射ガンを
用いて溶射を行つた場合の被覆状態を示す説明
図、第5図は本発明により得られた傾斜被覆層の
模式図、第6図は本発明の実施例におけるセラミ
ツクスと金属粉の供給比率の一例を示すグラフで
ある。 1……溶射ガン、2……タングステン電極、
3,3′……溶射被覆層、4……被溶射物、C…
…セラミツクス層、M……金属層、C×M……セ
ラミツクスと金属の適正混合層、Pa,Pc,Pb
Pd……粉末投入孔。
Figure 1 is an explanatory diagram of a thermal spray gun with two powder inlet holes located symmetrically across the center electrode, Figure 2
The figure is an explanatory diagram showing the coating state when thermal spraying is performed using the thermal spray gun shown in Figure 1. Figure 3 is an explanatory diagram of a thermal spray gun having four powder injection holes located symmetrically across the center electrode. , FIG. 4 is an explanatory diagram showing the coating state when thermal spraying is performed using the thermal spray gun of FIG. 3, FIG. 5 is a schematic diagram of the inclined coating layer obtained by the present invention, and FIG. 3 is a graph showing an example of the supply ratio of ceramics and metal powder in Example 1. 1... thermal spray gun, 2... tungsten electrode,
3, 3'...Thermal spray coating layer, 4...Thermal spraying object, C...
...ceramics layer, M...metal layer, C×M...appropriate mixed layer of ceramics and metal, P a , P c , P b ,
P d ...Powder input hole.

Claims (1)

【特許請求の範囲】 1 等間隔の位置に配設されたm×n個の投入孔
を有する一つの溶射ガンにより、m種類(m≧
2)の粉末を用いて同時溶射を行う場合、溶射ガ
ンのカソードを対称軸としたn回対称(n≧2)
の位置にあるn個の粉末投入孔より同種類の粉末
を供給して溶射することを特徴とする混合溶射被
覆層形成方法。 2 各々の孔に粉末送給量制御機能をもたせるこ
とを特徴とする請求項1記載の混合溶射被覆層形
成方法。 3 溶射雰囲気を減圧下とすることを特徴とする
請求項1または2記載の混合溶射被覆層形成方
法。
[Claims] 1. One thermal spray gun having m×n injection holes arranged at equal intervals can spray m types (m≧
When performing simultaneous thermal spraying using the powder of 2), n-fold symmetry (n≧2) with the cathode of the thermal spray gun as the axis of symmetry
A method for forming a mixed thermal spray coating layer, characterized in that powder of the same type is supplied from n powder injection holes located at positions of n and thermal spraying is carried out. 2. The method for forming a mixed thermal spray coating layer according to claim 1, wherein each hole has a function of controlling powder feeding amount. 3. The mixed thermal spray coating layer forming method according to claim 1 or 2, characterized in that the thermal spraying atmosphere is under reduced pressure.
JP2177586A 1990-07-06 1990-07-06 Method for forming mixed thermal-spraying coated layer Granted JPH0466656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2177586A JPH0466656A (en) 1990-07-06 1990-07-06 Method for forming mixed thermal-spraying coated layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177586A JPH0466656A (en) 1990-07-06 1990-07-06 Method for forming mixed thermal-spraying coated layer

Publications (2)

Publication Number Publication Date
JPH0466656A JPH0466656A (en) 1992-03-03
JPH0563549B2 true JPH0563549B2 (en) 1993-09-10

Family

ID=16033573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177586A Granted JPH0466656A (en) 1990-07-06 1990-07-06 Method for forming mixed thermal-spraying coated layer

Country Status (1)

Country Link
JP (1) JPH0466656A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029375B2 (en) 2000-06-21 2008-01-09 スズキ株式会社 Mixed powder spraying method
KR100802329B1 (en) * 2005-04-15 2008-02-13 주식회사 솔믹스 Method of preparing metal matrix composite and coating layer and bulk prepared by using the same

Also Published As

Publication number Publication date
JPH0466656A (en) 1992-03-03

Similar Documents

Publication Publication Date Title
Gatto et al. Plasma Transferred Arc deposition of powdered high performances alloys: process parameters optimisation as a function of alloy and geometrical configuration
EP1436441B2 (en) Method for applying metallic alloy coatings and coated component
US3075066A (en) Article of manufacture and method of making same
US6346301B2 (en) Coating method for producing a heat-insulating layer on a substrate
Lindfors et al. Cathodic arc deposition technology
Blazdell et al. Plasma spraying of submicron ceramic suspensions using a continuous ink jet printer
EP2145976A1 (en) Sputter target assembly having a low-temperature high-strength bond
JP2013174014A (en) Method for constructing thermal barrier coating
KR20130051289A (en) Cold spray coating method and coating layer manufactured by the same method
US20030207031A1 (en) Methods to make nanolaminate thermal barrier coatings
CN111893336B (en) Preparation device and preparation method of titanium alloy composite material
CN112063961A (en) Preparation method of high-entropy alloy coating
Kovalchuk et al. Profile electron beam 3D metal printing
JPS62297452A (en) Formation of high quality plasma spraying deposit having complicated geometrical shape
JPH0563549B2 (en)
US3620815A (en) Vapor collimation in vacuum deposition of coatings
US3655430A (en) Vapor deposition of alloys
JPS63274032A (en) Method of forming superconducting layer on substrate
US20130236659A1 (en) Methods for vapor depositing high temperature coatings on gas turbine engine components utilizing pre-alloyed pucks
KR102608155B1 (en) Methods of forming coating layers of exterem-ultra high temperature ceramics, coating layers therefrom and components comprising the same
JPH03100157A (en) Production of shape memory alloy
Abd Razzaq The effect of laser and thermal treatment on the hardness and adhesion force on the cermet coating by thermal spray technique
CN110616394A (en) Preparation method for improving thermal shock resistance of double-ceramic-layer TBCs
KR20210031554A (en) High melting point uniform composite powder manufacturing method and the High melting point uniform composite powder
US9611532B2 (en) Coating additive