JPH0563547B2 - - Google Patents

Info

Publication number
JPH0563547B2
JPH0563547B2 JP11874984A JP11874984A JPH0563547B2 JP H0563547 B2 JPH0563547 B2 JP H0563547B2 JP 11874984 A JP11874984 A JP 11874984A JP 11874984 A JP11874984 A JP 11874984A JP H0563547 B2 JPH0563547 B2 JP H0563547B2
Authority
JP
Japan
Prior art keywords
plating
alloy
iron
wire
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11874984A
Other languages
Japanese (ja)
Other versions
JPS60262949A (en
Inventor
Takeshi Myazaki
Satoru Takano
Kenichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11874984A priority Critical patent/JPS60262949A/en
Publication of JPS60262949A publication Critical patent/JPS60262949A/en
Publication of JPH0563547B2 publication Critical patent/JPH0563547B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、鉄、鋼又は鉄合金より成る鉄系金属
線に溶融亜鉛合金めつきを施した耐熱性、耐食
性、密着性、加工性に優れた亜鉛合金めつき鉄系
金属線に関するものである。 (背景技術) 耐熱性を要求される用途として、近年例えば送
電容量の増大、2回線運転時の事故時の1回線運
用による電力系統の信頼性向上のため、耐熱鋼心
アルミニウム撚線(以下、ACSRと称す)が使用
されている。このような耐熱ACSRに用いられる
鉄合金線は、通常ACSR用鋼線にAl被覆、亜鉛
めつきを施して用いられている。 しかし、Al被覆は耐食性、密熱性に優れてい
るものの、コストが高く、又亜鉛めつきは、Al
被覆には劣るが、ACSRとしての耐食性を向上さ
せ、コストも安いが、以前から報告されているよ
うに、加熱によりZn−Fe界面の拡散が進行し、
カーケンドールボイドを形成するため、めつきの
剥離を生じ(三浦他;金属学会誌、39(1975)〜
903)、耐熱性が低い欠点があつた。 この耐熱性の改善には、Znめつき浴へのAlの
添加の効果のあることが判明したが、単にZn−
Al合金のみではAlの影響により溶湯の酸化が激
しく、このためめつき浴面に酸化物を形成し、溶
融めつきの際にめつき絞り部に酸化膜を巻込み、
外観、均一性の悪いめつきしかできない欠点があ
つた。 又Zn−Al2元合金のみでは、加工性が悪く、例
えば鋭角な曲げ試験を実施すると、めつきに割れ
を生じたり、又アフタードローし難い欠点があつ
た。 (発明の開示) 本発明は、上述の問題点を解決するため、Zn
−Al合金への種々の他の元素の添加を検討した
結果成されたもので、溶融めつき時のめつき浴の
湯流れ、ぬれ性、反応性を改善して表面状態、密
着性、加工性を改善し、外観良好で、均一性の良
い耐熱亜鉛合金めつき鉄系金属線を提供せんとす
るものである。 本発明は、鉄、鋼又は鉄合金線の外周に、
Al0.2〜14%、Be0.0001〜0.01%を含み、Pbを
0.03%以下に抑制し、残部Znと不可避的な不純物
とからなるZn合金を融点プラス10゜〜100℃の温度
範囲で溶融めつきして成ることを特徴とする耐熱
亜鉛合金めつき鉄系金属線である。 本発明における鉄、鋼又は鉄合金線は、鉄、炭
素鋼、他の元素を添加した特殊鋼又は鉄合金より
成るものである。特に最近注目されている熱膨張
係数の小さなFe−Ni系合金等も用いることがで
きる。この合金としてはNi35〜42%を含む合金、
又はこの合金にCr,Mo,Si,Mn,C,Nb,
Co,Al,MgおよびTiより成るグループから選
ばれた1種以上の元素を合計で0.2〜10%添加し
た合金が用いられ、これらの添加元素によりFe
−Ni系合金線を強化するか、熱膨張係数を増加
しない効果が期待される。 一般に鉄系金属とZnは、Znの溶融めつき時又
はZnめつき後加熱されることにより、3種類の
化合物層{γ(ガンマ)、δ(デルタ)、ξ(ゼー
タ)}を生成する。このようなFe−Zn化合物によ
り、靭性面の劣化が生じ、例えば300℃で100時間
加熱すると振動疲労強度が低下する。又300℃で
100時間加熱すると捻回値の低下が著しく、極端
な場合は成長した合金層の界面で剥離が生じる例
が認められた。 この化合物層の成長を抑制するため、本発明で
はZnにAl0.2〜14%を添加する。ZnにAl0.2〜14
%を添加する理由は、溶融めつき時又はめつき後
の加熱時において、FeとZn合金との化合物層の
生長を抑制するためであり、Al量0.2%未満では
化合物層抑制に効果なく、Al量が14%を越える
と化合物層抑制効果が飽和するのみならず、Zn
−Al合金溶湯の粘性が高くなり、溶融めつき時
の外観不良が著しくなるからである。 Al量としては、好ましくは0.2〜1.0%および4.5
〜5.5%の二つの範囲であり、最も好ましいのは
0.2〜1.0%の範囲で、Al量が1.0%を越えるとZn
−Al合金溶湯中でAlの酸化によるドロス生成、
鉄系金属線との反応によるAl3Feの生成が激し
く、Alの成分コントロールに注意を要する。又
Al量が4.5〜5.5%の場合、Alの成分コントロール
が難しいものの、Zn−Al合金としては共晶とな
り、溶融点が低く、より低温でのめつき作業が可
能で、鉄系金属線に与える熱影響が小さくなると
いう利点がある。 又Zn合金中のBeは溶融めつき時の溶湯の酸化
を抑制し、湯流れを改善し、又濡れ性も改善し、
めつきの表面状態、密着性、加工性を改善する。
Be量を0.0001〜0.01%と規定したのは、BeはAl
量の増大につれ増加させた方が表面状態改善に効
果があるが、添加量増大につれ費用が高くなるの
で、0.01%以下が望ましく、又Be量0.0001%未満
では溶湯の酸化防止、湯流れの改善効果が充分で
ないためである。 又Pbを0.03%以下に抑制したのは、0.03%を越
えるPbはめつき浴の湯流れ、濡れ性を改善する
ものの、めつきの結晶粒径を粗くし、密着性、加
工性を劣化させるためである。特にPbが0.03%を
越えるZnめつきでは経時的なめつきの硬化を生
じ、例えばこのようなZn−Al合金めつき線を撚
り合せると、撚り合せのプレフオーム時に割れを
生じてしまう。 又溶融めつきの温度を合金の融点プラス10゜〜
100℃の温度範囲としたのは、プラス10℃未満で
は浴温の保持が難しく、又プラス100℃を越える
範囲ではZnとFeの化合物層を形成してしまい、
本発明の目的とする耐熱性が得られないためであ
る。 めつき浴の温度は、上述の範囲内でより高温で
ある方が密着性は向上し、その後の加工でも全く
割れを生じない。但し、浴温が上昇するにつれめ
つき付着量が低下し、冷却が難しくなり、極端な
場合には水冷の模様が入つてしまい、外観上商品
価値のないものとなつてしまう。最も好ましいの
は外観の劣化のない最高温度である。 Beの添加量はめつき浴中のAl濃度の増加に従
い増加させた方が結果は良好となるが、Al量が
14%を越えるとめつきの表面状態は劣化する。 次に本発明の亜鉛合金めつき鉄系金属線の製造
方法について述べる。 図は本発明めつき線の実施例の溶融めつきに用
いられる装置の例を示す断面図である。図におい
て、1は、通常の溶融亜鉛めつき方法と同様に鉛
浴、連続炉、電解法等による脱脂、塩酸、硫酸電
解等による酸洗、フラツクス処理又は還元性ガス
による還元処理を施された鉄系金属線で、Zn合
金めつき浴2にシンカーロール3により浸漬され
た後、絞り装置4を通して引上げられて亜鉛合金
めつき鉄系金属線5とされる。フラツクスとして
は通常塩化亜鉛、塩化アンモニウム混合フラツク
スが用いられる。又還元性ガスとしてはH2ガス
が好適である。 このようにしてAl0.2〜14%等を含むZn合金め
つき浴2に進入した鉄系金属線1は、めつき浴2
との接触直後に線表面にFe2Al5等の金属間化合
物層を形成する。この金属間化合物形成が後の加
熱でのFe、Znの拡散を防止し、耐熱性改善の効
果を発揮するものである。なお通常の亜鉛めつき
とは異なり、めつき浴の浸漬時間の影響は小さ
く、5〜60秒の範囲で変化させてもめつきの耐熱
性等に変化はない。この場合めつき浴中のBeは
溶湯の酸化を抑制し、湯流れを改善し、又濡れ性
も改善するため、めつきの未着がなく、表面状態
良好で、密着性良好でかつ加工性に優れた均一な
めつき線が得られる。なおめつきの絞り装置4と
しては通常の亜鉛めつきの黒鉛粉等が利用でき、
特に制限はない。 実施例 1 図に示す装置を用い、3.0mmφ鋼線に表1に示
す組成のめつき浴により溶融めつきを施した。 酸洗には30%の濃度の硫酸による電解酸洗を用
いた。酸洗の後アンモニア変成ガスによる還元炉
を通し、めつき浴2に導入した。めつき浴温はそ
れぞれ融点プラス20℃とし、線速30m/分にてめ
つきを行なつた。 得られた溶融めつき鋼線の外観、260℃で1000
時間加熱後のめつきの剥離の有無、曲げ試験時の
めつきの割れについて調査した結果は表1に示す
通りである。
(Industrial Application Field) The present invention is a zinc alloy-plated iron that has excellent heat resistance, corrosion resistance, adhesion, and workability, and is produced by applying hot-dip zinc alloy plating to a ferrous metal wire made of iron, steel, or an iron alloy. This relates to metal wires. (Background technology) In recent years, heat-resistant steel core aluminum stranded wire (hereinafter referred to as ACSR) is used. The iron alloy wire used for such heat-resistant ACSR is usually a steel wire for ACSR coated with Al and galvanized. However, although Al coating has excellent corrosion resistance and heat tightness, it is expensive, and zinc plating is
Although it is inferior to the coating, it improves the corrosion resistance as an ACSR and is inexpensive, but as previously reported, heating progresses the diffusion of the Zn-Fe interface.
Due to the formation of Kirkendall voids, plating peels off (Miura et al.; Journal of the Japan Institute of Metals, 39 (1975) -
903), it had the disadvantage of low heat resistance. It was found that adding Al to the Zn plating bath was effective in improving this heat resistance, but it was found that adding Al to the Zn plating bath was effective.
If only Al alloy is used, the molten metal will be severely oxidized due to the influence of Al, and as a result, oxides will be formed on the plating bath surface, and an oxide film will be drawn into the plating area during melt plating.
It had the disadvantage of poor appearance and poor uniformity of plating. In addition, Zn-Al binary alloy alone has poor workability, for example, when an acute angle bending test is performed, cracks occur in the plating, and it is difficult to perform after-drawing. (Disclosure of the invention) In order to solve the above-mentioned problems, the present invention provides Zn
- This was achieved after studying the addition of various other elements to Al alloys, and it improves the flow, wettability, and reactivity of the plating bath during hot-dip galvanizing, and improves surface condition, adhesion, and processability. It is an object of the present invention to provide a heat-resistant zinc alloy plated iron-based metal wire with improved properties, good appearance, and good uniformity. The present invention provides, on the outer periphery of iron, steel or iron alloy wire,
Contains Al0.2~14%, Be0.0001~0.01%, Pb
A heat-resistant zinc alloy plated ferrous metal characterized by being made by melt-plating a Zn alloy containing 0.03% or less Zn and unavoidable impurities in a temperature range of 10° to 100°C above the melting point. It is a line. The iron, steel or iron alloy wire in the present invention is made of iron, carbon steel, special steel to which other elements are added, or iron alloy. In particular, Fe--Ni alloys with a small coefficient of thermal expansion, which have been attracting attention recently, can also be used. This alloy includes an alloy containing 35 to 42% Ni;
Or this alloy contains Cr, Mo, Si, Mn, C, Nb,
An alloy is used in which a total of 0.2 to 10% of one or more elements selected from the group consisting of Co, Al, Mg, and Ti is added.
-It is expected to have the effect of strengthening the Ni-based alloy wire or not increasing the coefficient of thermal expansion. Generally, iron-based metals and Zn are heated during melt-plating of Zn or after Zn plating to generate three types of compound layers {γ (gamma), δ (delta), and ξ (zeta)}. Such Fe-Zn compounds cause deterioration in toughness, and, for example, when heated at 300° C. for 100 hours, vibration fatigue strength decreases. Also at 300℃
After heating for 100 hours, the torsion value decreased significantly, and in extreme cases, peeling occurred at the interface of the grown alloy layer. In order to suppress the growth of this compound layer, in the present invention, 0.2 to 14% of Al is added to Zn. Al0.2~14 to Zn
% is added to suppress the growth of a compound layer of Fe and Zn alloy during melt plating or heating after plating, and if the Al content is less than 0.2%, it is not effective in suppressing the compound layer. When the Al content exceeds 14%, not only the compound layer suppressing effect is saturated, but also Zn
- This is because the viscosity of the Al alloy molten metal becomes high and the appearance defect upon melt-welding becomes significant. The amount of Al is preferably 0.2 to 1.0% and 4.5
There are two ranges of ~5.5%, the most preferred being
In the range of 0.2 to 1.0%, if the Al amount exceeds 1.0%, Zn
- Dross generation due to oxidation of Al in molten Al alloy,
Al 3 Fe is generated violently due to the reaction with the iron-based metal wire, so care must be taken to control the Al component. or
When the Al content is 4.5 to 5.5%, although it is difficult to control the Al composition, it becomes eutectic as a Zn-Al alloy, has a low melting point, and can be plated at a lower temperature, giving a positive effect to iron-based metal wires. This has the advantage of reducing thermal effects. In addition, Be in the Zn alloy suppresses oxidation of the molten metal during melt welding, improves the flow of the molten metal, and improves wettability.
Improves plating surface condition, adhesion, and workability.
The reason why the amount of Be was specified as 0.0001 to 0.01% is that Be is Al
Increasing the amount as the amount increases is more effective in improving the surface condition, but as the amount added increases, the cost increases, so it is preferable to keep it below 0.01%, and if the Be amount is less than 0.0001%, it will prevent oxidation of the molten metal and improve the flow of the metal. This is because the effect is not sufficient. The reason why Pb was suppressed to 0.03% or less is that although Pb exceeding 0.03% improves the flow and wettability of the plating bath, it coarsens the crystal grain size of the plating and deteriorates adhesion and workability. be. In particular, Zn plating with Pb exceeding 0.03% causes the plating to harden over time, and for example, when such Zn-Al alloy plated wires are twisted together, cracks occur during the preform of the twisting. Also, set the melting temperature to the melting point of the alloy plus 10°.
The temperature range was set at 100℃ because it is difficult to maintain the bath temperature below +10℃, and a Zn and Fe compound layer is formed when the temperature exceeds +100℃.
This is because the heat resistance targeted by the present invention cannot be obtained. The higher the temperature of the plating bath is within the above-mentioned range, the better the adhesion will be, and no cracking will occur during subsequent processing. However, as the bath temperature rises, the amount of glazing decreases, making cooling difficult, and in extreme cases, a water-cooled pattern will appear, making the product unworthy of commercial value in terms of appearance. The most preferred temperature is the highest temperature without deterioration of appearance. The results will be better if the amount of Be added is increased as the Al concentration in the plating bath increases.
If it exceeds 14%, the surface condition of the mating will deteriorate. Next, a method for manufacturing the zinc alloy plated iron-based metal wire of the present invention will be described. The figure is a sectional view showing an example of an apparatus used for melt plating of an embodiment of the plated wire of the present invention. In the figure, 1 has been subjected to degreasing using a lead bath, continuous furnace, electrolytic method, etc., pickling using hydrochloric acid, sulfuric acid electrolysis, etc., flux treatment, or reduction treatment using reducing gas, as in the usual hot-dip galvanizing method. The iron-based metal wire is immersed in a Zn alloy plating bath 2 using a sinker roll 3 and then pulled up through a squeezing device 4 to form a zinc alloy-plated iron-based metal wire 5. As the flux, a mixed flux of zinc chloride and ammonium chloride is usually used. Furthermore, H 2 gas is suitable as the reducing gas. The iron-based metal wire 1 that has entered the Zn alloy plating bath 2 containing 0.2 to 14% Al in this way is transferred to the plating bath 2.
Immediately after contact with the wire, an intermetallic compound layer such as Fe 2 Al 5 is formed on the wire surface. This intermetallic compound formation prevents the diffusion of Fe and Zn during subsequent heating, and exhibits the effect of improving heat resistance. Note that unlike normal galvanizing, the influence of the immersion time in the plating bath is small, and there is no change in the heat resistance etc. of the plating even if the immersion time is varied within the range of 5 to 60 seconds. In this case, Be in the plating bath suppresses oxidation of the molten metal, improves melt flow, and improves wettability, so there is no unplated plating, the surface is in good condition, adhesion is good, and workability is improved. Excellent uniform plating lines can be obtained. As the diaphragm drawing device 4, ordinary galvanized graphite powder or the like can be used.
There are no particular restrictions. Example 1 Using the apparatus shown in the figure, a 3.0 mmφ steel wire was hot-dipped in a plating bath having the composition shown in Table 1. Electrolytic pickling with 30% sulfuric acid was used for pickling. After pickling, it was introduced into plating bath 2 through a reduction furnace using ammonia converted gas. The plating bath temperature was 20° C. above the melting point, and plating was performed at a linear speed of 30 m/min. Appearance of the obtained hot-dip galvanized steel wire, 1000 at 260℃
Table 1 shows the results of investigating the presence or absence of peeling of the plating after heating for a certain period of time and the cracking of the plating during the bending test.

【表】 〓
[Table] 〓

Claims (1)

【特許請求の範囲】[Claims] 1 鉄、鋼又は鉄合金線の外周に、Al0.2〜14%、
Be0.0001〜0.01%を含み、Pbを0.03%以下に抑制
し、残部Znと不可避的な不純物とから成るZn合
金を融点プラス10゜〜100℃の温度範囲で溶融めつ
きして成ることを特徴とする耐熱亜鉛合金めつき
鉄系金属線。
1 Al0.2-14% on the outer periphery of iron, steel or iron alloy wire,
A Zn alloy containing 0.0001 to 0.01% Be, suppressing Pb to 0.03% or less, and the balance Zn and unavoidable impurities is melt-plated at a temperature range of 10° to 100°C above the melting point. Features: Heat-resistant zinc alloy plated iron metal wire.
JP11874984A 1984-06-08 1984-06-08 Heat-resistant hot dip galvanized iron-base metallic wire Granted JPS60262949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11874984A JPS60262949A (en) 1984-06-08 1984-06-08 Heat-resistant hot dip galvanized iron-base metallic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11874984A JPS60262949A (en) 1984-06-08 1984-06-08 Heat-resistant hot dip galvanized iron-base metallic wire

Publications (2)

Publication Number Publication Date
JPS60262949A JPS60262949A (en) 1985-12-26
JPH0563547B2 true JPH0563547B2 (en) 1993-09-10

Family

ID=14744096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11874984A Granted JPS60262949A (en) 1984-06-08 1984-06-08 Heat-resistant hot dip galvanized iron-base metallic wire

Country Status (1)

Country Link
JP (1) JPS60262949A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154949A (en) * 1990-10-17 1992-05-27 Nippon Steel Corp Production of zn-al alloy plated steel wire

Also Published As

Publication number Publication date
JPS60262949A (en) 1985-12-26

Similar Documents

Publication Publication Date Title
JP2016084543A (en) Hot-dip plating steel sheet excellent in plating adhesion and method for manufacturing the same
JP3476408B2 (en) Hot-dip Zn-Mg-Al alloy-plated steel wire and method for producing the same
JP4264373B2 (en) Method for producing molten Al-based plated steel sheet with few plating defects
JPH06128758A (en) Method for galvanizing silicon-containing steel sheet
JP4968701B2 (en) Hot-dip zinc-plated high-strength steel with good appearance
JP2002371343A (en) Hot-dip plated steel cable superior in workability with high corrosion resistance
JPH0679449B2 (en) Heat resistant zinc coated iron alloy wire for ACSR
JP4702974B2 (en) Alloyed hot-dip galvanized high-tensile steel plate with excellent workability and method for producing the same
JPH0563547B2 (en)
JPS63312960A (en) Manufacture of zinc alloy hot dip galvanized steel sheet having superior workability
JPH0797670A (en) Galvanizing method for silicon-containing steel sheet
JP2783457B2 (en) Manufacturing method of hot-dip Zn-Al plated steel sheet
JP4299429B2 (en) Method for producing high-tensile molten Zn-Al alloy-plated steel sheet
JP7290757B2 (en) Plated steel wire and its manufacturing method
JP3142735B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability
JPS59166664A (en) Heat resistant zinc alloy plated product
JP2000169948A (en) Hot dip galvannealed steel sheet and its production
JPS59150076A (en) Iron-base metallic wire plated with heat resistant zinc alloy
JPH05230609A (en) Manufacture of hot-dip aluminum plated chromium-containing steel sheet
JPS59166665A (en) Heat resistant zinc alloy plated product
JP2724045B2 (en) Method for producing chromium-containing steel sheet plated with hot-dip zinc or zinc alloy
JPH11293438A (en) High tensile strength galvannealed steel sheet and its production
JPS63277733A (en) Zinc alloy for two bath galvanizing
JPS59166663A (en) Heat resistant zinc alloy plated ferrous metal product
JP2825690B2 (en) Manufacturing method of galvannealed steel sheet with excellent workability