JPH0563305A - Manufacturing method of semiconductor quantum well case - Google Patents

Manufacturing method of semiconductor quantum well case

Info

Publication number
JPH0563305A
JPH0563305A JP8605091A JP8605091A JPH0563305A JP H0563305 A JPH0563305 A JP H0563305A JP 8605091 A JP8605091 A JP 8605091A JP 8605091 A JP8605091 A JP 8605091A JP H0563305 A JPH0563305 A JP H0563305A
Authority
JP
Japan
Prior art keywords
substrate
group
quantum well
islands
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8605091A
Other languages
Japanese (ja)
Inventor
Hisao Nagata
久雄 永田
Nobuyuki Komaba
信幸 駒場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Optoelectronics Technology Research Laboratory
Original Assignee
Nippon Sheet Glass Co Ltd
Optoelectronics Technology Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Optoelectronics Technology Research Laboratory filed Critical Nippon Sheet Glass Co Ltd
Priority to JP8605091A priority Critical patent/JPH0563305A/en
Publication of JPH0563305A publication Critical patent/JPH0563305A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the etching step, etc., to be eliminated by a method wherein MOVPE process etc., is utilized for the initial crystal growing process on a substrate not to form a laminar single crystal film in the epitaxial growing step. CONSTITUTION:The title manufacturing method of quantum well case utilizing MOVPE process is described as follows. That is, when a III group material, e.g. trimethylgallium(TMG), etc., is fed to a heated substrate 10, the material is cracked on the substrate 10 to produce Ga atoms sucking at the substrate 10 if the substrate 10 temperature exceeds the cracking temperature of the organic metal. However, when the wettability of liquid Ga to the substrate 10 is inferior and the feed of Ga material to the substrate 10 runs short, Ga is formed into droplets (islands) on the substrate 10. Furthermore, when As material 11 is fed to the substrate 10 having such islands, the As atoms are diffused in the islands so as to be GaAs 11 crystallized. At this time, the total feed of organic gallium compound shall not exceed the feed by which the mean film thickness of the metallic film formed of the Ga material on the substrate 10 may be made to attain to 50mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体量子井戸箱の製造
方法に関するものであり、特に超高速の光スイッチや光
論理素子などの非線形光学効果を用いた光制御素子の実
現に必要となる大きな非線形光学定数を有する材料に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor quantum well box, and particularly to a large-scale optical control element using a nonlinear optical effect such as an ultrafast optical switch or optical logic element. The present invention relates to a material having a nonlinear optical constant.

【0002】[0002]

【従来の技術】厚さが数nmから数(+)nmの範囲で、異
なる禁制帯幅をもつ2種類の超薄膜を周期的に積み重ね
た半導体積層構造(多重量子井戸構造)では、バルクの
化合物半導体にはない物理現象が生じ、各種デバイスへ
の応用が試みられている。たとえばGaAs/AlGa
As多重量子井戸構造を活性層とした半導体レーザは、
従来のダブルへテロ半導体レーザに比べて発振しきい値
の低減、スペクトルライン幅の低減、高出力化など種々
の優れた特性をもつことが報告されている。このような
多重量子井戸構造において出現する物理現象は、多重量
子井戸構造内で膜厚方向に周期化したポテンシャルの底
(量子井戸)に荷電粒子が閉じ込められること(量子サ
イズ効果)に起因するものである。一方、膜厚方向のみ
ならず、面内の1方向にもポテンシャルの周期的な変化
を形成し、荷電粒子の閉じ込めを2次元とした量子細線
構造、あるいは面内の2方向にポテンシャルの周期的な
変化をもたせ、膜厚方向を含めて3次元の閉じ込めを実
現する量子井戸箱構造では、荷電粒子の閉じ込め効果が
量子井戸構造に比べてさらに顕著になり、半導体レーザ
などのデバイスに応用した場合、その特性を大幅に向上
することが期待されている。
2. Description of the Related Art A semiconductor laminated structure (multiquantum well structure) in which two types of ultrathin films having different forbidden band widths are periodically stacked in a thickness range of several nm to several (+) nm Physical phenomena not found in compound semiconductors have occurred, and application to various devices has been attempted. For example, GaAs / AlGa
A semiconductor laser using an As multiple quantum well structure as an active layer is
It has been reported that it has various excellent characteristics such as a reduction in oscillation threshold, a reduction in spectral line width, and a higher output than those of the conventional double hetero semiconductor laser. The physical phenomenon that appears in such a multiple quantum well structure is due to the confinement of charged particles (quantum size effect) in the bottom (quantum well) of a potential that is periodic in the film thickness direction within the multiple quantum well structure. Is. On the other hand, not only in the film thickness direction, but also in the in-plane one direction, the potential changes periodically, and the quantum wire structure in which the confinement of charged particles is two-dimensional, or the potential periodically in two directions in the plane. In a quantum well box structure that achieves three-dimensional confinement including the film thickness direction, the confinement effect of charged particles becomes more remarkable than in the quantum well structure, and when applied to devices such as semiconductor lasers. , It is expected to greatly improve its characteristics.

【0003】量子サイズ効果が出現する1辺の長さが数
nmから数(+)nmの半導体量子井戸箱構造を製造する方
法として、電子ビーム直接描画法に代表される超微細加
工技術を併用する方法が試みられてきた。これは多重量
子井戸構造に微細加工を施すことで面内方向にもポテン
シャルの周期性をもたらし、量子井戸箱を作製するもの
である。
The length of one side where the quantum size effect appears is a few
As a method of manufacturing a semiconductor quantum well box structure of several (+) nm from nm, a method using an ultrafine processing technology typified by an electron beam direct writing method has been tried. This is to fabricate a quantum well box by providing potential periodicity also in the in-plane direction by performing fine processing on the multiple quantum well structure.

【0004】すなわち、膜厚と界面の急峻性の制御に優
れたMOVPE(Metal OrganicVapor Phase Depositio
n) 法やMBE(Molecular Beam Epitaxy) 法などの結
晶成長技術により、図4(a)に示す如きGaAs基板
40上にAlGaAsからなるバリア層41とGaAs
の量子井戸42をエビタキシャル成長する。この基板に
第4図(b)のように電子ビーム露光法などで表面にレ
ジストなどの格子状のパターン43を形成し、これをマ
スクとしてエッチング(図4C)し(たとえばM.A.
Reed et al., J, Vac. Sci. Technol., B4,358(1986)),
最後にエッチングのマスクとして用いたグリッドパター
ンを除去すると基板方向がAlGaAs、残りが空気で
囲まれた3次元のポテンシャルの井戸、すなわち半導体
量子井戸箱図4(d)が得られる。
That is, MOVPE (Metal Organic Vapor Phase Depositio) excellent in controlling the film thickness and the steepness of the interface.
n) method or MBE (Molecular Beam Epitaxy) method, etc., a barrier layer 41 made of AlGaAs and GaAs are formed on a GaAs substrate 40 as shown in FIG.
Epitaxially grow the quantum well 42 of. As shown in FIG. 4 (b), a grid pattern 43 of resist or the like is formed on the surface of this substrate by an electron beam exposure method or the like, and this is used as a mask for etching (FIG. 4C) (for example, M.A.
Reed et al., J, Vac. Sci. Technol., B4,358 (1986)),
Finally, when the grid pattern used as the etching mask is removed, a three-dimensional potential well in which the substrate direction is AlGaAs and the rest is surrounded by air, that is, a semiconductor quantum well box FIG. 4D is obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、微細加
工技術を用いた前記半導体量子井戸箱の製造方法では電
子ビーム露光工程及びエッチング工程で次に示す欠点を
生じる。すなわち電子ビーム露光工程では紫外線を用い
た通常の露光のような深さ方向の干渉は生じないが、電
子の後方散乱が大きいため露光線幅が電子線のビーム幅
より大きくなるとともに、近接したパターンに歪が生じ
るいわゆる近接効果が現れてくる。このため散乱による
描画線幅の増大の抑制を目的として加速電圧を大きくす
る、あるいはレジストの膜厚を薄くするなどの配慮が必
要になってくるとともに、描画ソフトウエアにこれら効
果を組み込まなければならない。さらに露光に長時間を
必要とした。
However, in the method of manufacturing a semiconductor quantum well box using the microfabrication technique, the following drawbacks occur in the electron beam exposure step and the etching step. That is, in the electron beam exposure process, there is no interference in the depth direction as in ordinary exposure using ultraviolet rays, but since the backscattering of electrons is large, the exposure line width becomes larger than the beam width of the electron beam, and the adjacent pattern A so-called proximity effect appears in which distortion occurs. For this reason, consideration must be given to increasing the accelerating voltage or reducing the resist film thickness for the purpose of suppressing the increase of the drawing line width due to scattering, and these effects must be incorporated into the drawing software. .. Furthermore, it took a long time for exposure.

【0006】また、エッチング工程としてはウェットエ
ッチングとドライエッチングとがあるが、ウェットエッ
チングでは図5(a)あるいは図5(b)の如くGaA
sやInPなどの遷亜鉛鉱型の結晶50を(100)面
を<011>あるいは<0−11>方向に平行なストラ
イブ状のマスク51を用いてエッチングすると(10
0)面に対してそれぞれ55°、125°の角度を有す
る(111)あるいはそれに等価な面が現れ、図5
(C)のように<010>あるいは<001>方向のス
トライプマスクを用いてエッチングしたときのみ、それ
ぞれ(100)面に対して垂直な<001>あるいは<
010>面が現れる。すなわち格子状のパターンを用い
て量子井戸箱を単結晶のウェットエッチングで作製する
際には、パターンの方向が限られてくる。さらにウェッ
トエッチングにおいて、たとえ基板表面に対して垂直な
面が現れても、第5図のようにエッチング溝幅はサイド
エッチングのためパターン幅よりも大きくなる。
The etching process includes wet etching and dry etching. In wet etching, GaA as shown in FIG. 5 (a) or 5 (b) is used.
Etching of a transzinc-type crystal 50 such as s or InP using a stripe-shaped mask 51 whose (100) plane is parallel to the <011> or <0-11> direction (10
The (111) planes or their equivalent planes having angles of 55 ° and 125 ° with respect to the (0) plane respectively appear, and
Only when etching is performed using a stripe mask in the <010> or <001> direction as in (C), <001> or <0> perpendicular to the (100) plane, respectively.
The 010> surface appears. That is, when a quantum well box is produced by wet etching of a single crystal using a lattice pattern, the pattern direction is limited. Further, in wet etching, even if a surface perpendicular to the substrate surface appears, the etching groove width becomes larger than the pattern width due to side etching as shown in FIG.

【0007】他方、反応性イオンエッチングや反応性イ
オンビームエッチングをはじめとするドライエッチング
では結晶面に依存しないエッチング面が得られ、いずれ
の面方向のパターンを用いても条件によっては基板面に
対して垂直なエッチング面が得られる。しかもパターン
幅とほぼ等しいエッチング幅が得られることもある。と
ころがこれはイオンの衝撃によってエッチングを行って
おり、ダメージが結晶に残る可能性が非常に大きいとい
う欠点がある。
On the other hand, dry etching such as reactive ion etching and reactive ion beam etching can provide an etching surface that does not depend on the crystal plane. A vertical etching surface is obtained. Moreover, an etching width almost equal to the pattern width may be obtained. However, this has the drawback that etching is performed by ion bombardment, and there is a great possibility that damage will remain in the crystal.

【0008】[0008]

【課題を解決するための手段】本発明は電子ビーム露光
工程やエッチング工程を必要としない半導体量子井戸箱
の製造方法であって、エピキタキシャル成長の初期過程
を巧みに利用するものである。すなわち、本発明は2族
または3族の溶融金属と濡れ性の悪い基板上に、その原
料を供給し、2族または3族の原子からなる微細な液滴
を形成する工程と、その後6族または5族の原子を含む
原料を供給して前記2族または3族の液滴に夫々6族ま
たは5族原子を拡散して半導体の微結晶を形成する工程
とからなり、前記2族または3族の原料の供給量が50
nmの平均膜厚の前記金属膜を基板上に生成するのに必要
な量以下であることを特徴とする2−6族化合物または
3−5族化合物の半導体量子井戸箱の製造方法である。
The present invention is a method of manufacturing a semiconductor quantum well box which does not require an electron beam exposure step or an etching step, and makes good use of the initial process of epitaxial growth. That is, the present invention comprises the steps of supplying the raw material to a substrate having poor wettability with a molten metal of Group 2 or Group 3 to form fine droplets of atoms of Group 2 or Group 3, and then forming Group 6 Or supplying a raw material containing atoms of group 5 to diffuse the atoms of group 6 or group 5 into the droplets of group 2 or group 3 to form semiconductor crystallites. The amount of tribal raw materials supplied is 50
A method for producing a semiconductor quantum well box of a 2-6 group compound or a 3-5 group compound, characterized in that the amount is not more than the amount required to form the metal film having an average film thickness of nm on the substrate.

【0009】本発明によるMOVPE法を用いたGaA
s半導体量子井戸箱の製造法について以下に説明する。
加熱した基板にトリメチルガリウム(TMG)あるいは
トリエチルガリウム(TEG)をはじめとする3族原料
を供給した場合、基板がそれら有機金属の分解温度より
も高いと基板上もしくは基板近傍で分解してGa原子を
生成し基板に吸着する。Gaはエネルギ的に原子として
存在するよりもクラスタを形成した方が安定である。基
板が液体Gaに対して濡れ性が悪く、Ga原料の供給量
が少ない場合には基板上にGaは液滴(アイランド)を
形成する。このようにGaのアイランドを有する基板に
As原料を供給すると、As原子はGaアイランド内に
拡散してGaAs結晶を生成する。GaAs結晶へのA
sの付着率はゼロであるため、全てのGaがGaAsを
形成すると成長は自動的に停止する。
GaA using the MOVPE method according to the present invention
A method of manufacturing an s semiconductor quantum well box will be described below.
When a Group 3 source material such as trimethylgallium (TMG) or triethylgallium (TEG) is supplied to the heated substrate, if the substrate is higher than the decomposition temperature of the organic metal, it decomposes on or near the substrate to cause Ga atoms. Are generated and adsorbed on the substrate. Ga is more stable when it forms a cluster than when it is energetically present as an atom. When the substrate has poor wettability with respect to the liquid Ga and the supply amount of Ga raw material is small, Ga forms droplets (islands) on the substrate. When the As raw material is supplied to the substrate having the Ga islands, As atoms diffuse into the Ga islands to generate GaAs crystals. A to GaAs crystal
Since the deposition rate of s is zero, the growth automatically stops when all Ga forms GaAs.

【0010】アイランドの生成は定性的に液滴生成に伴
うポテンシャルエネルギの減少量、基板と液滴の界面エ
ネルギの増大量および液滴の表面エネルギの増大量で決
まる。したがって、本発明においては界面エネルギの大
きな材料からなる基板、すなわち液体金属と濡れ性が悪
い材料からなる基板、例えば石英、アルミナ、窒化珪
素、ガラスをはじめとする誘電体物質からなる単結晶、
多結晶もしくはアモルファス基板、あるいは半導体から
なる単結晶、多結晶、もしくはアモルファス基板も用い
ることができる。
The formation of islands is qualitatively determined by the amount of decrease in potential energy associated with droplet formation, the increase in interface energy between the substrate and the droplet, and the increase in surface energy of the droplet. Therefore, in the present invention, a substrate made of a material having a large interface energy, that is, a substrate made of a material having poor wettability with a liquid metal, for example, a single crystal made of a dielectric substance such as quartz, alumina, silicon nitride, or glass,
A polycrystalline or amorphous substrate, or a semiconductor single crystal, polycrystalline, or amorphous substrate can also be used.

【0011】有機ガリウム化合物を原料としたときの原
料の供給条件は以下の範囲を用いることができる。供給
時の基板温度が低いほど吸着種の拡散距離が短くなるた
め、基板温度を低く設定したほうが基板上に生成するG
a液滴の生成密度が高くなる。したがって原料の供給量
が同じでも、低温で供給した方がそれぞれのアイランド
のサイズは小さくなる。ところが金属アイランドを成長
するために必要な温度は、供給する有機ガリウム化合物
の分解温度以上でなければならない。たとえばトリメチ
ルガリウムを用いる場合、基板温度を少なくともトリメ
チルガリウムの分解温度である約450℃以上にしなけ
ればならない。一方、基板を高温にすると生成した液体
金属アイランドが拡散してお互い結合するため、最終的
に得られるアイランドの粒径が大きくなり、最後にAs
を供給して得られるGaAs結晶も大きくなる。以上の
ことより基板温度は1000℃以下にするとよい。
When the organic gallium compound is used as the raw material, the raw material can be supplied under the following conditions. The lower the substrate temperature at the time of supply, the shorter the diffusion distance of the adsorbed species. Therefore, the lower the substrate temperature, the more the G generated on the substrate.
a The droplet generation density is increased. Therefore, even if the amount of raw material supplied is the same, the size of each island becomes smaller when supplied at a low temperature. However, the temperature required for growing the metal island must be equal to or higher than the decomposition temperature of the supplied organogallium compound. For example, when trimethylgallium is used, the substrate temperature must be at least about 450 ° C. which is the decomposition temperature of trimethylgallium. On the other hand, when the substrate is heated to a high temperature, the generated liquid metal islands diffuse and bond with each other, so that the grain size of the finally obtained island increases, and finally As
Also, the GaAs crystal obtained by supplying From the above, the substrate temperature may be set to 1000 ° C. or lower.

【0012】有機ガリウム化合物の供給時の圧力として
はlTorrから常圧でいかなる範囲でもよいが、原料
の平均自由工程が成長圧力が高いほど長くなるため、結
晶の生成密度は大きくなる。有機ガリウム化合物のトー
タルの供給量は主に生成するアイランドの粒径を変化さ
せるため、粒径制御が可能である。ただし有機ガリウム
化合物のトータルの供給量は、基板上に(Ga)の原料
から生成した金属膜の平均膜厚が50nmとなる供給より
も小さくする必要があり、これ以上供給量を増すともは
やアイランドがお互いに接触して膜となる。一方、有機
ガリウム化合物の単位時間当りの供給量も微結晶生成密
度に大きく影響を及ぼす。供給初期段階における核の形
成は、表面吸着種同士の衝突からもたらされるため、原
料の単位時間あたりの供給量を増やして吸着種の密度を
高めると核生成密度も大きくなる。本発明では最終的に
GaアイランドにAsを供給してGaAs微結晶を生成
し、その微結晶に量子サイズ効果をもたせることが目的
であるため、原料の単位時間当たりの供給量を増やすこ
とは、供給時間を極端に短くしなければならない。そこ
で有機Ga化合物の供給の制御性を考慮すると、有機ガ
リウム化合物を1秒以上の時間をかけて供給することが
望ましい。単位時間当りのAs原料の供給に関しては、
少なくともGaAsからのAs抜けを抑えることのでき
る量は必要である。この際の基板温度は、Gaのアイラ
ンドを製造する温度から変わっても問題はないが、さき
に述べたようにアイランドの結合に基づくアイランドの
成長が起こらなければよい。
The pressure at the time of supplying the organic gallium compound may be any pressure from 1 Torr to normal pressure, but the average free path of the raw material becomes longer as the growth pressure becomes higher, so that the crystal formation density becomes higher. Since the total supply amount of the organic gallium compound mainly changes the particle size of the island to be formed, the particle size can be controlled. However, the total supply amount of the organic gallium compound needs to be smaller than the supply amount at which the average film thickness of the metal film formed from the (Ga) raw material on the substrate becomes 50 nm. Come into contact with each other to form a film. On the other hand, the supply amount of the organic gallium compound per unit time also has a great influence on the density of crystallite formation. Since the formation of nuclei in the initial stage of supply is caused by the collision between surface adsorbed species, increasing the supply amount of the raw material per unit time to increase the density of adsorbed species also increases the nucleation density. Since the purpose of the present invention is to finally supply As to Ga islands to generate GaAs microcrystals and to give the microcrystals a quantum size effect, increasing the supply amount of the raw material per unit time is as follows. The supply time must be extremely short. Therefore, considering the controllability of the supply of the organic Ga compound, it is desirable to supply the organic gallium compound over a time period of 1 second or more. Regarding the supply of As raw material per unit time,
At least an amount capable of suppressing As escape from GaAs is necessary. There is no problem if the substrate temperature at this time is changed from the temperature at which Ga islands are manufactured, but it suffices that the island growth based on the island coupling does not occur as described above.

【0013】以上、MOVPE法を用いたGaAs半導
体量子井戸箱の製造法について述べたが、同様にAlG
aAs、InP、InGaAsPをはじめとする種々の
3−5族化合物半導体やCdSe、CdSSe、ZnS
e、ZnSSe、CdTeなどの2−6族化合物半導体
など半導体からなる量子井戸箱を製造することができ
る。結晶成長法としてMOVPEについて述べたが他の
成長法、たとえばMBE法、ハライドVPE法など他の
成長法でもよい。またこの化合物半導体微結晶を作製し
た基板上にその微結晶のバンドギャップよりも大きなバ
ンドギャツプを有する材料を障壁層として成膜してもよ
い。この材料としてたとえば石英、アルミナ、炭化珪
素、窒化珪素、ガラスをはじめとする誘電体物質、種々
の半導体があげられる。
The method of manufacturing a GaAs semiconductor quantum well box using the MOVPE method has been described above.
Various 3-5 group compound semiconductors including aAs, InP, InGaAsP, CdSe, CdSSe, ZnS
It is possible to manufacture a quantum well box made of a semiconductor such as a 2-6 group compound semiconductor such as e, ZnSSe, or CdTe. MOVPE has been described as the crystal growth method, but other growth methods such as MBE method and halide VPE method may be used. Further, a material having a band gap larger than the band gap of the microcrystal may be formed as a barrier layer on the substrate on which the compound semiconductor microcrystal is produced. Examples of this material include quartz, alumina, silicon carbide, silicon nitride, dielectric substances such as glass, and various semiconductors.

【0014】[0014]

【作用】本発明によれば、エピタキシャル成長で層状の
単結晶膜を形成できない基板にMOVPE法等で、その
結晶成長の初期過程を利用することで、半導体量子井戸
箱の従来の製造方法で必要であった電子ビーム露光工程
やエッチング工程を経ることなく、半導体量子井戸箱を
製造することができる。この場合半導体量子井戸箱を取
り囲む空気もしくはガラス状非晶質、あるいは化合物半
導体微結晶を有する基板上に成膜した材料が障壁層とし
て作用し、この半導体微結晶はキャリアやエキシトンを
閉じ込めるポテンシャルの井戸として作用する。
According to the present invention, by using the initial process of the crystal growth by the MOVPE method or the like on the substrate on which the layered single crystal film cannot be formed by the epitaxial growth, it is necessary in the conventional manufacturing method of the semiconductor quantum well box. A semiconductor quantum well box can be manufactured without going through the existing electron beam exposure step and etching step. In this case, air or glassy amorphous surrounding the semiconductor quantum well box, or a material deposited on a substrate having compound semiconductor microcrystals acts as a barrier layer, and the semiconductor microcrystals have a potential well for confining carriers and excitons. Acts as.

【0015】[0015]

【実施例】実施例1 光学研磨を施した石英板をフッ酸でエッチングして表面
を清浄にすることで親水性にしたものを基板として用い
た。本実施例ではMOVPE装置を用いて、GaAsを
成長した。GaAsの成長にはトリメチルガリウムとア
ルシン(10%水素希釈)を原料とし、水素をキャリア
ガスとして用いた。ガス供給量はトリメチルガリウム
(−10℃)8.6cc/分、アルシン200cc/分、水
素8000cc/ 分とした。
EXAMPLES Example 1 A quartz plate that had been optically polished was made hydrophilic by etching with hydrofluoric acid to clean the surface and used as a substrate. In this example, GaAs was grown using a MOVPE device. To grow GaAs, trimethylgallium and arsine (diluted with 10% hydrogen) were used as raw materials, and hydrogen was used as a carrier gas. The gas supply rates were trimethylgallium (-10 ° C) 8.6 cc / min, arsine 200 cc / min, and hydrogen 8000 cc / min.

【0016】まず、石英基板10を650℃に加熱して
10秒間トリメチルガリウムを供給した。この試料は表
面が白色であり、先の工程で金属Gaが付着したものと
考えられる。これを透過型電子顕微鏡(TEM)で観察
したところ、図1に示すように基板10に球形の粒子が
一面に付着しており、その粒径は5nm程度であった。粒
径分布は非常に小さく、単位面積当りの微結晶の密度は
約108cm -1であった。また電子線回折からアモルファ
ス状態であることが確認できた。
First, the quartz substrate 10 was heated to 650 ° C. and trimethylgallium was supplied for 10 seconds. The surface of this sample is white, and it is considered that metal Ga was attached in the previous step. When it was observed with a transmission electron microscope (TEM), spherical particles adhered to the entire surface of the substrate 10 as shown in FIG. 1, and the particle size was about 5 nm. The particle size distribution was very small, and the density of crystallites per unit area was about 10 8 cm -1 . In addition, it was confirmed from electron diffraction that it was in an amorphous state.

【0017】石英基板10上に金属Gaの液滴を付着に
続いてアルシンを供給し、供給開始1分後に基板の温度
を下げた。アルシンは基板温度が350℃以下になるま
で供給を続けた。この試料をTEMで観察したところ、
粒径は約8nmとなりそれぞれの粒子11が良好な結晶性
をもつことがわかった。さらに電子線回折パターンから
格子定数を求めたところ、バルクのGaAsのそれとほ
ぼ一致しており、GaAs微結晶であることが確認でき
た。図2はArイオンレーザの488nmの発振光を用い
て測定したフォトルミネッセンスで、室温で830nm付
近にピークをもつ発光が観測できた。バルクのGaAs
のフォトルミネッセンスのピーク波長は室温で870nm
程度であることから、本方法で作製した石英上のGaA
s結晶は量子サイズ効果を有すると結論できる。
After depositing the metallic Ga droplets on the quartz substrate 10, arsine was supplied, and one minute after the start of the supply, the temperature of the substrate was lowered. The supply of arsine was continued until the substrate temperature fell below 350 ° C. When this sample was observed by TEM,
The particle size was about 8 nm, and it was found that each particle 11 had good crystallinity. Further, when the lattice constant was obtained from the electron beam diffraction pattern, it was almost the same as that of bulk GaAs, and it was confirmed that it was a GaAs microcrystal. FIG. 2 shows the photoluminescence measured using the 488 nm oscillation light of an Ar ion laser, and the emission having a peak near 830 nm was observed at room temperature. Bulk GaAs
Photoluminescence peak wavelength is 870 nm at room temperature
Since it is about the same, GaA on quartz produced by this method
It can be concluded that s crystals have a quantum size effect.

【0018】実施例2 本発明の方法を用いて作製した非線形導波の模式図を図
3に示す。これは石英板30に高周波スパッタ法により
GeO2 を添加したSiO2 を35μm 成膜31し、こ
の基板32上に実施例1と同様な方法でGaAs微結晶
33を成長した。次いで同じくGeO2 添加SiO2
膜34を3.5μm 、最後にSiO2 膜35を5μmそ
れぞれスパッタ法により成膜した。
Example 2 FIG. 3 shows a schematic view of a non-linear waveguide manufactured by using the method of the present invention. In this, a SiO 2 film with GeO 2 added was formed to a thickness of 35 μm 31 on a quartz plate 30 by a high frequency sputtering method, and a GaAs microcrystal 33 was grown on this substrate 32 by the same method as in Example 1. Next, similarly, a GeO 2 -added SiO 2 film 34 having a thickness of 3.5 μm and a SiO 2 film 35 having a thickness of 5 μm were formed by sputtering.

【0019】以上により、GaAs微結晶を含有する層
31、33、34が最も屈折率が高く、石英板30およ
びSiO2 膜35が最も低いスラブ導波路が形成でき、
さらに導波光を横方向にも閉じ込めるため、フォトリソ
グラフィとCF4 を用いた反応性イオンエッチングによ
り6μm 幅のリッジ構造を形成した。この光非線形性を
色素レーザ(styry19、波長790〜890nm)
を用いて評価したところ、約820nmにおいて吸収係数
αは25cm-1であり、非線形感受率χ(3) として約1×
10-10 esuの値を得た。
As described above, a slab waveguide having the highest refractive index in the layers 31, 33 and 34 containing GaAs microcrystals and the lowest in the quartz plate 30 and the SiO 2 film 35 can be formed.
Further, in order to confine the guided light also in the lateral direction, a ridge structure having a width of 6 μm was formed by photolithography and reactive ion etching using CF 4 . This optical non-linearity is caused by dye laser (styry 19, wavelength 790 to 890 nm)
The absorption coefficient α was about 25 cm −1 at about 820 nm, and the nonlinear susceptibility χ (3) was about 1 ×.
A value of 10 −10 esu was obtained.

【0020】[0020]

【発明の効果】本発明によれば、従来のように電子ビー
ム露光工程やエッチング工程を経ることなく半導体量子
井戸箱を製造する方法であるので、露光線幅に対する格
別な操作を必要とせず、またエッチング工程での結晶面
による依存性がなく、また結晶にダメージのない優れた
量子サイズ効果を有する半導体量子井戸箱を作製するこ
とができる。また本発明により作製した半導体量子井戸
箱は、たとえばガラス導波路上に作製することができ、
非線形光学効果を用いた導波路型光制御デバイス用基板
として応用することができる。
According to the present invention, since it is a method of manufacturing a semiconductor quantum well box without going through an electron beam exposure step and an etching step as in the prior art, no special operation for the exposure line width is required, In addition, it is possible to manufacture a semiconductor quantum well box having an excellent quantum size effect that does not depend on the crystal plane in the etching process and does not damage the crystal. Further, the semiconductor quantum well box manufactured according to the present invention can be manufactured, for example, on a glass waveguide,
It can be applied as a substrate for a waveguide type optical control device using a nonlinear optical effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による石英基板上に作製したGaAs量
子井戸箱の斜視模式図。
FIG. 1 is a schematic perspective view of a GaAs quantum well box manufactured on a quartz substrate according to the present invention.

【図2】図1に示したGaAs量子井戸箱のフォトルミ
ネッセンススペクトルを示す図。
FIG. 2 is a diagram showing a photoluminescence spectrum of the GaAs quantum well box shown in FIG.

【図3】(a)〜(d)は、本発明のGaAs量子井戸
箱を利用した非線形導波路の製造工程を示す斜視説明
図。
3A to 3D are perspective explanatory views showing a manufacturing process of a nonlinear waveguide using the GaAs quantum well box of the present invention.

【図4】(a)〜(d)は、従来の半導体量子井戸箱の
製造工程を示す説明図。
4A to 4D are explanatory views showing a manufacturing process of a conventional semiconductor quantum well box.

【図5】表面の結晶面方位(100)である遷亜鉛鉱形
結晶をウェットエッチングしたときに得られる断面形状
を表したものであって、(a)はストライブ状マスクを
<0−11>方向、(b)は<011>方向、(c)は
<010>あるいは<0−10>と平行とした場合を示
す。
FIG. 5 shows a cross-sectional shape obtained by wet-etching a trans-zinc ore crystal having a crystal plane orientation (100) on the surface, in which (a) shows a stripe mask <0-11. > Direction, (b) shows the <011> direction, and (c) shows the case parallel to <010> or <0-10>.

【符号の説明】[Explanation of symbols]

10、30 石英板 11、33 GaAs微結晶 31、34 GeO2 添加SiO2 膜 35 SiO2 10, 30 Quartz plate 11, 33 GaAs microcrystal 31, 34 GeO 2 added SiO 2 film 35 SiO 2 film

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年5月10日[Submission date] May 10, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】まず、石英基板10を650℃に加熱して
10秒間トリメチルガリウムを供給した。この試料は表
面が白色であり、先の工程で金属Gaが付着したものと
考えられる。これを透過型電子顕微鏡(TEM)で観察
したところ、図1に示すように基板10に球形の粒子が
一面に付着しており、その粒径は5nm程度であった。粒
径分布は非常に小さく、単位面積当りの微結晶の密度は
約108 cm-2であった。また電子線回折からアモルファ
ス状態であることが確認できた。
First, the quartz substrate 10 was heated to 650 ° C. and trimethylgallium was supplied for 10 seconds. The surface of this sample is white, and it is considered that metal Ga was attached in the previous step. When it was observed with a transmission electron microscope (TEM), spherical particles adhered to the entire surface of the substrate 10 as shown in FIG. 1, and the particle size was about 5 nm. The particle size distribution was very small, and the density of crystallites per unit area was about 10 8 cm -2 . In addition, it was confirmed from electron diffraction that it was in an amorphous state.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2族または3族の溶融金属と濡れ性が悪
い基板上に、その原料を供給し、2族または3族の原子
からなる微細な液滴を形成する工程と、その後6族また
は5族の原子を含む原料を供給して前記2族または3族
の液滴に夫々6族または5族原子を拡散して半導体の微
結晶を形成する工程とからなり、前記2族または3族の
原料の供給量が50nmの平均膜厚の前記金属膜を基板上
に生成するのに必要な量以下であることを特徴とする2
−6族化合物または3−5族化合物の半導体量子井戸箱
の製造方法。
1. A step of supplying a raw material to a substrate having poor wettability with a molten metal of group 2 or group 3 to form fine droplets of atoms of group 2 or group 3, and then group 6 Or supplying a raw material containing atoms of group 5 to diffuse the atoms of group 6 or group 5 into the droplets of group 2 or group 3 to form semiconductor crystallites. The supply amount of the group I raw material is less than or equal to the amount required to form the metal film having an average film thickness of 50 nm on the substrate 2.
A method for manufacturing a semiconductor quantum well box of a -6 group compound or a 3-5 group compound.
JP8605091A 1991-03-26 1991-03-26 Manufacturing method of semiconductor quantum well case Pending JPH0563305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8605091A JPH0563305A (en) 1991-03-26 1991-03-26 Manufacturing method of semiconductor quantum well case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8605091A JPH0563305A (en) 1991-03-26 1991-03-26 Manufacturing method of semiconductor quantum well case

Publications (1)

Publication Number Publication Date
JPH0563305A true JPH0563305A (en) 1993-03-12

Family

ID=13875859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8605091A Pending JPH0563305A (en) 1991-03-26 1991-03-26 Manufacturing method of semiconductor quantum well case

Country Status (1)

Country Link
JP (1) JPH0563305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106984A1 (en) * 2004-04-26 2005-11-10 Epiplus Co., Ltd. Method for fabricating semiconductor epitaxial layers using metal islands
DE10026911B4 (en) * 1999-05-31 2008-11-06 Japan, vertreten durch den Generaldirektor des Nationalen Metallforschungsinstitutes, Tsukuba A method for producing a semiconductor superatom and an aggregate thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10026911B4 (en) * 1999-05-31 2008-11-06 Japan, vertreten durch den Generaldirektor des Nationalen Metallforschungsinstitutes, Tsukuba A method for producing a semiconductor superatom and an aggregate thereof
US7718001B2 (en) 2000-04-26 2010-05-18 Galaxia Photonics Co., Ltd. Method for fabricating semiconductor epitaxial layers using metal islands
WO2005106984A1 (en) * 2004-04-26 2005-11-10 Epiplus Co., Ltd. Method for fabricating semiconductor epitaxial layers using metal islands

Similar Documents

Publication Publication Date Title
US7842595B2 (en) Fabricating electronic-photonic devices having an active layer with spherical quantum dots
WO1997011518A1 (en) Semiconductor material, method of producing the semiconductor material, and semiconductor device
JP3045115B2 (en) Method for manufacturing optical semiconductor device
JP2000196065A (en) Device equipped with quantum dot
JPH0563305A (en) Manufacturing method of semiconductor quantum well case
JPH05251352A (en) Manufacture of semiconductor quantum-well box
JPH05346601A (en) Production of semiconductor quantum well box
JPH0936487A (en) Fabrication of semiconductor device
JP3465349B2 (en) Semiconductor multilayer substrate and method of manufacturing semiconductor multilayer film
JPH0548215A (en) Semiconductor laser diode and its manufacture
JPH05226781A (en) Production of semiconductor light emitting element
JP2003158074A (en) Semiconductor multilayer substrate and method for manufacturing semiconductor multilayer film
JPH04137521A (en) Semiconductor super lattice and its manufacture
JP4041887B2 (en) Method for forming antimony quantum dots
JP3030932B2 (en) Manufacturing method of semiconductor fine structure
JPH05175118A (en) Method for creating compound semiconductor having quantum fine line or quantum box structure
JPH10256666A (en) Crystal growth method of nitride based compound semiconductor and semiconductor light emitting element
JP2546381B2 (en) Distributed feedback semiconductor laser and manufacturing method thereof
JP3298572B2 (en) Method for manufacturing optical semiconductor device
JP2643771B2 (en) Semiconductor embedded structure and manufacturing method thereof
JP3787792B2 (en) Manufacturing method of semiconductor device
JPH03159287A (en) Semiconductor quantum box structure and manufacture thereof
Kishino by MBE
JP3082444B2 (en) Manufacturing method of semiconductor laser
JPH10261785A (en) Quantum box semiconductor device and its manufacture